Discrete and Continuous Models and Applied Computational ScienceDiscrete and Continuous Models and Applied Computational Science2658-46702658-7149Peoples' Friendship University of Russia named after Patrice Lumumba (RUDN University)2219310.22363/2658-4670-2019-27-1-21-32Research ArticleParallel algorithm for numerical solution of heat equation in complex cylindrical domainAyriyanAlexander S<p>researcher of the Laboratory of Information Technologies</p>ayriyan@jinr.ruBuša JrJán<p>PhD in Mathematics, Senior Researcher of the Laboratory of Information Technologies</p>busa@jinr.ruJoint Institute for Nuclear ResearchInstitute of Experimental Physics, Slovak Academy of Sciences15122019271213220112019Copyright © 2019, Ayriyan A.S., Buša Jr J.2019<p>In this article we present a parallel algorithm for simulation of the heat conduction process inside the so-called pulse cryogenic cell. This simulation is important for designing the device for portion injection of working gases into ionization chamber of ion source. The simulation is based on the numerical solving of the quasilinear heat equation with periodic source in a multilayered cylindrical domain. For numerical solution the Alternating Direction Implicit (ADI) method is used. Due to the non-linearity of the heat equation the simple-iteration method has been applied. In order to ensure convergence of the iteration process, the adaptive time-step has been implemented. The parallelization of the calculation has been realized with shared memory application programming interface OpenMP and the performance of the parallel algorithm is in agreement with the case studies in literature.</p>quasilinear heat equationmultilayer cylindrical geometrical structurepulse periodic sourceparallel algorithmthermal gatesквазилинейное уравнение теплопроводности, многослойная цилиндрическая геометрическая структура, импульсный периодический источник, параллельный алгоритм, тепловые вентили[D. E. Donets, E. E. Donets, T. Honma, K. Noda, A. Y. Ramzdorf, V. V. Salnikov, V. B. Shutov, E. D. Donets, Physics research and technology developments of electron string ion sources, Review of Scientific Instruments 83 (2012) 02A512. doi:10.1063/1.3678660][K. Katagiri, A. Noda, K. Suzuki, K. Nagatsu, A. Y. Boytsov, D. E. Donets, E. D. Donets, E. E. Donets, A. Y. Ramzdorf, M. Nakao, S. Hojo, T. Wakui, K. Noda, Cryogenic molecular separation system for radioactive 11C ion acceleration, Review of Scientific Instruments 86 (12) (2015) 123303. doi:10.1063/1.4937593][A. Ayriyan, J. Buša Jr., E. E. Donets, H. Grigorian, J. Pribiš, Algorithm and simulation of heat conduction process for design of a thin multilayer technical device, Applied Thermal Engineering 94 (2016) 151-158. doi:10.1016/j.applthermaleng.2015.10.095][R. E. Honig, H. O. Hook, Vapor pressure data for some common gases, David Sarnoff Research Center, RCA, Princeton, 1960][D. B. Chelton, D. B. Mann, Cryogenic data book (1956)][P. Symons, Digital waveform generation, Cambridge University Press, New York, 2013][M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, Tenth Edition, Dover Publications, New York, 1972][G. A. Korn, T. M. Korn, Mathematical handbook for scientists and engineers, Revised Edition, Dover Publications, New York, 2013.][D. W. Peaceman, H. H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, Journal of the Society for Industrial and Applied Mathematics 3 (1955) 28-41.][N. N. Yanenko, Fractional step methods for solution of multidimensional problems of mathematical physics [Metod drobnykh shagov resheniya mnogomernykh zadach], Nauka, Moscow, 1967, in Russian.][A. A. Samarskii, P. N. Vabishchevich (Eds.), Additive difference schemes for problems of mathematical physics [Additivnyye skhemy dlya zadach matematicheskoy fiziki], Nauka, Moscow, 1999, in Russian.][A. A. Samarsky, The theory of difference schemes, Marcel Dekker Inc., New York, 2001.][N. N. Kalitkin, Numerical methods [Chislennyye metody], Second Edition, BHV-Peterburg, Saint Petersburg, 2013, in Russian.][L. H. Thomas, Elliptic problems in linear differential equations over a network, Tech. rep., Columbia University, New York (1949).][A. A. Samarskii, P. N. Vabishchevich, Computational heat transfer, Vol. 1, John Wiley & Sons Ltd., Chichester, England, 1995.][L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming, Computational Science & Engineering, IEEE 5 (1) (1998) 46-55.][OpenMP Architecture Review Board, OpenMP application programming interface version 5.0 (November 2018). URL https://www.openmp.org/wp-content/uploads/OpenMP-API- Specification-5.0.pdf][HybriLIT group, Heterogeneous platform “HybriLIT” [cited 14.01.2019]. URL http://hlit.jinr.ru/en/][G. Adam, M. Bashashin, D. Belyakov, M. Kirakosyan, M. Matveev, D. Podgainy, T. Sapozhnikova, O. Streltsova, S. Torosyan, M. Vala, L. Valova, A. Vorontsov, T. Zaikina, E. Zemlyanaya, M. Zuev, IT-ecosystem of the HybriLIT heterogeneous platform for high-performance computing and training of IT-specialists, in: V. Korenkov, A. Nechaevskiy, T. Zaikina, E. Mazhitova (Eds.), CEUR Workshop Proceedings, Vol. 2267, 2018, pp. 638-644.][Intel corporation, Intel Xeon Gold 6154 Processor [cited 14.01.2019]. URL https://www.intel.com/content/www/us/en/products/ processors/xeon/scalable/gold-processors/gold-6154.html][Fermilab, CERN, Scientific Linux [cited 14.01.2019]. URL http://scientificlinux.org][A. Ayriyan, J. B. Jr., H. Grigorian, E. E. Donets, Solving the optimization problem for designing a pulsed cryogenic cell, Physics of Particles and Nuclei Letters 16 (5) (2019 (Accepted to print)) 300-309. doi:10.1134/S1547477119030026.][V. A. Tokareva, O. I. Streltsova, M. I. Zuev, Parallel realizations of locally one-dimensional difference schemes for solving the initial-boundary value problems for the multidimensional heat equation, in: A. V. Friesen, V. Chudoba (Eds.), Proceedings of the XX International Scientific Conference of Young Scientists and Specialists (AYSS-2016), 2016, pp. 142-147.][M. D. Schuster, The heat equation: high-performance scientific computing case study, Computing in Science & Engineering 20 (5) (2018) 114-127. doi:10.1109/MCSE.2018.05329820]