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Abstract. The problem of identifying deterministic cause-and-effect relationships, initially hidden in accumulated
empirical data, is discussed. Statistical methods were used to identify such relationships. A simple mathematical
model of cause-and-effect relationships is proposed, in the framework of which several models of causal
dependencies in data are described - for the simplest relationship between cause and effect, for many effects of
one cause, as well as for chains of cause-and-effect relationships (so-called transitive causes). Estimates are
formulated that allow using the de Moivre-Laplace theorem to determine the parameters of causal dependencies
linking events in a polynomial scheme trials. The statements about the unambiguous identification of cause-
and-effect dependencies that are reconstructed from accumulated data are proved. The possibilities of using
such data analysis schemes in medical diagnostics and cybersecurity tasks are discussed.
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1. Introduction

The simplest idea of a causal relationship is given by the functional dependence y = f(x), in which x is
the cause of the appearance of the consequence y, if their dependence is described by the functional
relationship f. In this simplest example, the determinism of the appearance of an effect is expressed
when a cause appears and a known f. However, the mechanism of generating an effect from a cause is
not always known, but this does not reduce the importance of causality in solving practical problems.
Therefore, the task arises of searching for cause-and-effect relationships using statistical methods
in some limited conditions. There are many probabilistic models and ways to restore\reconstruct
cause-and-effect relationships with some confidence [1]. To a large extent, these models and methods
are associated with various practical applications of cause-and-effect relationships [2]. Let’s look at
some of them.

Judea Pearl’s causal inference model [3, 4] can be expressed in its simplest form by the ratio
y = f(x,u), where, in addition to the initial definition of causality, an argument u of randomness is
added. Then all calculations related to the causal effect are better expressed in terms of mathematical
statistics. This is due to the fact that, as a rule, nothing is known about the distribution of the random
component and statistical estimates are used in practice.
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This model, among other things, allows us to formulate and solve problems of the influence of
therapeutic effects of drugs on patients with a certain disease. Here, u plays the role of individual
patient characteristics that affect the effectiveness of treatment with the drug in question.

Another interpretation of this model is that the degree of lesion in a certain diagnosis depends not
only on the underlying cause of the disease, but also on the individual characteristics of a particular
patient. These features form a random component of the depth of the patient’s lesion [5].

Let’s turn to the practical procedure of making a diagnosis in a medical study. As a rule, there
are a large number of parameters that the doctor considers when making a diagnosis. Each value
of these parameters defines a property that can carry information about a possible diagnosis, but
may not affect the diagnosis at all. Based on experience, the doctor identifies properties that have
a causal relationship with a possible diagnosis. Then, in the collected analyses and other auxiliary
data, we are talking about the consequences of the cause, which is determined by the property of
diagnosis (disease) and manifests itself in the consequences observed by the doctor.

In this paper, we consider a model of deterministic causation in the presence of a significant
number of properties that are not related to the causal effect of some properties on others. Despite
the simplified nature of the model, it manages to describe an important case of the appearance of
some properties that can enhance or weaken the degree of damage when exposed to the underlying
cause (confounding [6, 7]). This case is described in the article with the help of a complex cause,
when several properties form a cause, as a result of which a consequence property appears.

Another class of applications of the models of the appearance of deterministic cause-and-effect
relationship considered in the article against the background of a sequence with other properties that
are not directly related to the desired causality is the search for traces of an insider in the observed
sequences of data monitoring user actions in banking applications [8, 9]. In the considered task,
several possible scenarios of insider actions were analyzed, the properties of which could manifest
themselves in the monitoring data. These properties were tracked in Big Data monitoring, which
made it possible to successfully solve operational information security tasks. The desired properties
appear in the monitoring data as inclusions of effect properties, where the cause is not the observed
actions of an insider. This scheme is transferred to interspersed anomalies arising from causes
caused by failures of software and hardware systems.

The problem of trust in the results of computer data analysis in diagnostic tasks and critical
calculations is important. The scheme proposed in the article can be used to increase confidence in
the results of complex computer calculations. For example, we highlight a number of input and output
parameters that consistently belong to input and output data clusters. If consistency is maintained in
the next iteration of calculations, then this fact increases confidence in the results of calculations. If
there are contradictions in the consistency of input and output data, then it is necessary to look for
the reasons\causes for such a mismatch. At the same time, the remaining input and output data do
not participate in such control and are considered random noise [10]. The explicability of the formed
conclusions is most often realized with the help of causal relationships identified in the analyzed
data [11].

2. Asimple mathematical model of cause-and-effect relationships

Let A = {x,, ..., x,} be the set of observable properties of the data. Let’s consider the simplest case,
when the data is a random sequence of properties. Randomness is introduced using a polynomial
scheme of M trials with known probabilities p(x;) = p, where k = 1,..., n. After the implementation of
the polynomial scheme trials, deterministic appearances of consequences are additionally embedded
in the sequence, the causes of which appeared randomly in the sequence under consideration, and
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the consequences increase the total length of the sequence M by an amount equal to the number of
appearances of causes. The constructed model will be called the information space.
First, let’s consider the following schemes of cause-and-effect relationships.

1) The scheme “a — b” is determined when property a arises, then property b arises
deterministically.

2) The scheme “a — b & a — ¢” occurs when property a has several consequences of b and c.

3) The scheme “a - b & b — ¢” is defined as a sequence of causal relationships: a entails the
appearance of b and b entails the appearance of c. This scheme is also called transitive cause a
for effect c.

In scheme 1), the effect should appear after a fixed ¢ steps from the cause. At t = 1, the effect
immediately follows the cause. In scheme 2) each consequence arises with its own interval ¢, or ¢,.
In the future, we will change the models in accordance with approximations to real conditions.

3. Statistical identification of cause-and-effect relationships in a simple model

Under the conditions of the constructed model, it is possible to statistically determine cause-and-effect
relationships. For the original polynomial scheme trials

pij = p(x;, ;) = p(x) p(x;).

If (x;, x;) are connected by a causal relationship, then after ¢ steps after x; the next property x; is
embedded in the polynomial trial sequence.

Suppose that M is large enough so that the relative frequencies of properties in a polynomial scheme
trials with a sufficient degree of confidence uniquely identify the various unequal probabilities of
this scheme. Let’s denote v(i) the frequency of occurrence x; in a polynomial sequence of outcomes
of length M. If (x;, x;) are causally related, then the length of the sequence M* increases from M by
(i), and the frequency of x; occurrence increases and will be equal to v*(j) = v(i) + v(j). Then

It follows first of all that the property x; is a consequence of some cause. If there is only one cause
X; in the observed sequence, then

M*—M (i)

"M
which uniquely determines the cause x; in the event that the probability value p(x;) differs from any
other probabilities of the polynomial scheme trials. If there are several such probabilities, then each
occurrence of a cause in a random sequence deterministically entails the appearance of x; exactly
after ¢ steps. The random repetition of this distance from other properties to x;, having a probability
equal to p(x;), decreases exponentially, which makes such a possibility unlikely with a sufficiently
large occurrence of v(i). In particular, the requirement of a priori knowledge of t is used to simplify
the scheme. It is sufficient to assume the existence of such a t because, when potential variants of
the cause are identified, the statistics of the distances between (x;, x;) will dominate and uniquely
determine ¢. Thus, the following theorem is proved.

Theorem 1. With a well-known polynomial scheme trials of length M and assuming the existence of one
causal relationship that generates an effect always through the same number of sequence steps, such a causal
relationship is uniquely identified.
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It is possible that with known probabilities of a polynomial scheme trials, its true length M is
unknown. Let’s consider this case. Let’s calculate the frequency of occurrence of all outcomes of the
observed sequence of properties {v(k), k = 1,...,n}. According to the de Moivre-Laplace theorem [12]
for each {v(k),k = 1, ..., n} for large M* we have the following estimates

_ V) _
M= 5 = M + o(ln MY M).
then D +) _ -, Mp(x) -
V() +v(J _ D(X;
p(—xj) =M+ p(x]) +O(1nM M) >Mk7

which is the most of all My for k # j. Thus, in this case, the consequence is identified. Using a fixed
distance between (x;, X;), as shown above, we establish the cause x;.

Let’s consider the simplest case of Scheme 2). In this case x;, the cause has two effects x; and
X, which appear at distances t; and ¢, from the cause. If all the probabilities of the polynomial
scheme trials are known and the length of the polynomial sequence is M, then the length of the
sequence with included consequences is M* = M + 2v(i). From here we find v(i) and for sufficiently
large M we find p(x;). If there are no other similar probabilities, then we find the cause. If there are
more probabilities p(x;), then the frequencies v*(j) = v(i) + »(j) and v*(k) = v(i) + v(k) allow us to
reconstruct the effects and by the distances ¢, and ¢, we find the true cause. Here it is also sufficient
to allow constant distances between cause and effect x;. The values ¢; and ¢, are easily calculated
from the repeatability of each cause-effect pair.

If Mis unknown, then the method proposed for Scheme 1) can be used to identify each consequence.

Scheme 3) is equivalent to the two simplest Schemes 1). In this case, there are two causes x; and
x,, each of which has a corresponding effect x; or x; with fixed distances ¢; and t, to the causes. For
a known M, the real length M* = M +v(i) + v(v). For an increased frequency of v*(j) = v(i) + »(j) and
v*(k) = v(v) + v(k) we are recovered effects in the investigation. We find the causes by the distances.
Here it is also possible to abandon a priori knowledge of the values ¢, and t,, but only assume the
constancy of these values. In the case of a transitive cause differs in that if (x;, x;, x) are connected
by a transitive causal relationship, then v*(k) = v(i) + v(j) + v(k).

If the parameter M is unknown, the effects of various causes can be determined using the method
for Scheme 1). Then, using the distances ¢; and t,, we find both causes.

Let’s consider a case where there are two causes with the same effect. Let the effect x; be a common
consequence of each of the two causes x; and x;. Then, using the method described above, we find
the consequence x; and the frequency of its occurrence v*(j) = v(i) + v(j) + v(k). If the distances t,
and t, are known, then it is easy to find the causes. From each encountered x;, we select two elements
at distances ¢; and t,. The set of selected elements will also include (x;, x;) and random elements
with polynomial probabilities. Let’s calculate the frequency of occurrence of each of the encountered
elements. It will be shown further that the two highest frequencies corresponding to the causes and
the causes themselves are uniquely distinguished from them.

We will carry out the proof for the most difficult case, when M is unknown and only the constraints
t; < tand ¢, < t are known. From each encountered x;, we select all the elements on the left at
a distance t. The random component of occurrence X; is equal to (j). By the de Moivre-Laplace
theorem

w(j) = Mp(x)) + o(ln MV M),
where the parameter M is unknown, but i
M

M>——.
-3
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An error in determining the causes may occur due to the accidental coincidence of conditions of
the same distance from x; a large number of randomly appearing properties. The largest number of
identical random elements does not exceed v(j). Such a random sequence can be located at a distance
from each x; at a distance t* with a probability of 1/t. If this is a property x, then the probability of
a random occurrence of a long sequence of length

Ig}ig{p(xi), p(x;), p(xi )M

M** = s
2

is estimated by the value

=2

which is significantly less than the probability estimates in the de Moivre-Laplace theorem. Given
that ¢ and the number of properties are limited, we obtain the following theorem.

Theorem 2. With a well-known polynomial scheme trials of length M and assuming the existence of
two causal relationships that generate a common consequence always through the same number of steps in
the resulting sequence, such a causal relationship is uniquely identified. Moreover, it can be assumed that
only M* is known, which includes the length of the random part of the sequence and the number of all the
consequences of the desired causes.

4. Causalrelationships in several information spaces

Let’s consider a finite set of information spaces (IS) [13], which we will denote as IS* = {IS,, ..., IS}.
Each IS has its own set of properties A;. Randomness is determined using polynomial scheme from
M trials and with known probabilities, but the probabilities of polynomial schemes trials for different
IS; are different. If a belongs to IS;, and b belongs to IS, and a is the cause of the deterministic
appearance of consequence b, then if there is a connection from IS; to IS, that allows initiating
the consequence, property b appears in the sequence of properties of IS, at the same moment (the
sequences in all IS are synchronized), and from this moment the remaining part of the sequence in
IS, is shifted by 1. These shifts do not interfere with finding synchronous pairs in IS, and IS,, since
the number of shifts each time is equal to the number of occurrences in IS, of the cause candidate
minus one.

If cause a generates consequences in several different IS, then the scheme of the appearance of
consequences a is such as described above.

For simplicity, let’s first consider the case of two spaces IS; and IS,. The task is to statistically
identify cause-and-effect relationships. Let A; = {xy, ..., X,,} — are properties in IS;, Ay = {y1, ..., Y} -
are properties in IS,.

The probabilities of random synchronous pairs are equal to p(x;, y;) = p(x;)p(y) If x; is the cause
of occurrence y;, then the probability of occurrence of such a pair is equal to p(x;).

Let’s denote the frequencies of the properties in IS, by v, and the frequencies in IS, by u. If x; is
the cause of occurrence yj, then the resulting frequency of the property

wrp) = v(x) + u(y).

Hence, as before, we conclude that y; is a consequence of the cause of IS;. The restoration of the
cause is reduced to calculating the statistics of properties from IS;, which are located in IS, at the
moments when properties y; appear in the sequence of IS,.



218 DCM&ACS. 2024, 32 (2), 213-221

By the de Moivre-Laplace theorem

1) = Mp() + o(ln MV M),
v(x;) = Mp(x;) + o(ln MY M).

Let 9(x;) be the frequency of occurrence of properties x; from IS;, which are located in IS, at the
moments when properties y; appear in the sequence of IS,. If the inequality

p(x)p(yy) < p(xy),
holds for any k # i, then the estimate

9(xi) = Mp(y)p(xi) + o(ln MVM) < v(0),
is valid for any k # i and completely determines the cause for sufficiently large M.

Theorem 3. With known polynomial scheme trials of length M in IS, and IS, and under the assumption

p(xi)p(y) < plxp), k#1,

if there is one connection by which a cause belonging to IS,, through this connection generates an effect in
IS, always simultaneously with the appearance of the cause, such a causal relationship is uniquely identified
for sufficiently large M.

If a given property in IS; has several consequences located in different IS, then for large M these
cause-and-effect relationships are determined in the same way as it is done for two IS.

Similarly, an algorithm is built to identify a transitive causal relationship in Scheme 3), when causes
and effects are located in different IS.

5. Complex causes

In practice, there is often a situation where the cause is complex. Let (x;, ;, zx) be properties that
form causal relationships as follows. A property x; from IS, is not the cause of an effect z; from IS;,
and a property y; from IS, is not the cause of an effect z; from IS;. However, if, with the simultaneous
appearance of x;,y; in IS, and IS, and the presence of their connection with IS, an effect z; appears
in IS;, then the cause constructed in this way is called complex.

The task is to identify the only complex causal relationship in IS™.

If IS; x IS, is known, then the number of occurrences of the cause for the effect z is distributed
according to a polynomial law with probabilities p(x;) p(3)).

If we denote the frequency of occurrence of a pair (x;, ;) in the probability space IS; XIS, as v(x;, ;),
then as a result of the occurrence of the cause for the effect zy, the statistics v(z;) will increase by
v(x;, ;). From which it follows that z is a consequence of any cause, it is established as before. If
IS; X IS, is known, then the cause is determined in the same way as for one information space. If
IS, X IS, is unknown, then it is necessary to identify the spaces in which the parts of the cause are
located.

To identify spaces in which parts of the cause are present, you can use the procedure for
disconnecting links between information spaces. At the first stage, it is necessary to create a sequence
of properties in each IS according to a polynomial scheme trials of length M. At the second stage, for
each individual IS that may have a connection with IS;, a procedure is used to turn on the connection
between them and a frequency of z; change is considered. In the absence of a frequency change, the
connection of the next IS with the IS; is disabled and the same experiment is performed with the
next IS.
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If all IS that could have a connection with IS; did not lead to a change in the frequency of the
property, then the pairs of included connections are also sorted out. In the case under consideration,
the IS; X IS, pair will give the desired frequency of z; change. This means that there is a complex
reason for this pair. There are a couple of implementations of synchronous polynomial schemes in the
IS, X IS, space. Consequently, as noted above, they generate a new polynomial scheme IS, = IS; XIS,
of length M with probabilities p(x;, ;) = p(x;)p(y;). Using the methods described earlier, there is
a complex cause.

6. Conclusion

The paper considers the simplest case of identifying deterministic cause-and-effect relationships in
the presence of random properties that do not carry information about causes and effects.

To identify cause-and-effect relationships, information is used on the occurrence of causes and the
time of occurrence of consequences after the appearance of causes. First, the consequences of some
unknown causes are revealed, and then additional information allows you to identify the causes of
the found consequences themselves.

This model roughly corresponds to the search for additional information in medical diagnostics
and information security. The analysis of the above model allows you to find new ways to obtain
additional information in search tasks.

In the future, it is supposed to investigate the model in conditions of striving for infinity of
parameters M and n. Another area of further research is to increase the size of causes and effects to
sets containing several properties.
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CTaTUCTUYECKUU aHanu3 NMPUYUNHHO-CNIeACTBeHHbIX cBA3en
A. A. Tpymo®?, H. A. Tpymo!, M. 1. 3a6exatino!, K. E. Camyiinos?, E. E. Tumonunal 2
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AnHoTaums. PaccMoTpeHa po6ieMa BBISBIEHUS 1€ TEPMUHUPOBAHHBIX IPUYUHHO-CI€ACTBEHHbIX CBsI3eH,
M3HAYaJIbHO CKPHITHIX B HAKOTIJIEHHBIX SMIIMPUYECKUX JAHHBIX. [/ BBIBJIEHH TaKUX CBs3el NCII0Ib30Ba-
JIMCh CTaTUCTHUYECKHe MeTo/ibl. IIpezyioskeHa MpocTas MaTeMaTHIecKast MOZieIb IPUYUHHO-CJIeJCTBEHHBIX
OTHOILIEHUH, B paMKaxX KOTOPOH OIIICAHO HECKOJIbKO MOJIeJIel IPUYUHHO-CIeICTBEHHBIX CBSI3eH B JaHHBIX —
JJIs1 IPOCTEHIINX OTHOIIEHUH MeX/y PUYUHOMN U CIeICTBHEM, [JIT MHOTHX CIeACTBUI OZHON IIPUINHEL,
a TakKe JJIg Lielel MPUYNHHO-CIeACTBEHHBIX CBSI3eH (TaK HasblBa€MbIX TPAH3UTUBHBIX IpU4IUH). ChopMy-
JINPOBAHBI OLIEHKH, II03BOJIIOLINE C IIOMOLIbI0 TeopeMbl MyaBpa-Jlamaca onpeneanTs IapaMeTpbl MO,
CBsI3BIBAIONINE COOBITHS B UCIIBITAHUAX IIOIMHOMUAIBHOM cXeMbl. OG0CHOBAaHbI yTBEP)KAEHUS 00 OLHO3HAY-
HOH NleHTU(UKAIIUY IPUINHHO-CJIeICTBEHHBIX CBsI3el], KOTOpble BOCCTAHABIMBAIOTCS 110 HAKOIIEHHBIM
naHHBIM. O6GCY)KAAI0TCsT BOSMOXKHOCTH MICIIOIb30BaHUS TAKUX CXeM aHaIM3a JaHHBIX B 3ala4aX MeAULIMHCKOM
OUarHOCTUKY U Kubep6e30macHOCTH.
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