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Abstract. The article describes a method for calculating interpolation coefficients of expansion using Chebyshev
polynomials. The method is valid when the desired function is bounded and has a finite number of maxima and
minima in a finite domain of interpolation. The essence of the method is that the interpolated desired function
can be represented as an expansion in Chebyshev polynomials; then the expansion coefficients are determined
using the collocation method by reducing the problem to solving a well-conditioned system of linear algebraic
equations for the required coefficients. Using the well-known useful properties of Chebyshev polynomials can
significantly simplify the solution of the problem of function interpolation. A technique using the Clenshaw
algorithm for summing the series and determining the expansion coefficients of the interpolated function, based
on the discrete orthogonality of Chebyshev polynomials of the 1st kind, is outlined.
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1. Introduction

The construction of efficient numerical methods for solving differential and integral equations is
an important element in solving applied problems in various fields, such as aerospace engineering,
meteorology, physical oceanography, mechanical engineering, and nuclear energy. Taking this
into account, we will consider and analyze the efficiency of some spectral algorithms for function
interpolation, which are often used when solving equations of mathematical physics.

Spectral methods are a class of methods used in applied mathematics for the numerical solution of
certain differential and integral equations, sometimes using the fast Fourier transform [1–4]. The
idea is to present the desired solution 𝑢(𝑥) in the form of a finite sum of “basis functions” 𝜑𝑛(𝑥) with
subsequent choice of the coefficients in the sum that satisfy the specified equations.

𝑢(𝑥) ≈ 𝑢𝑁(𝑥) =
𝑁
∑
𝑛=0

𝑎𝑛𝜑𝑛(𝑥). (1)
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Substituting this expression into equation

𝐿𝑢(𝑥) = 𝑓(𝑥),

where 𝐿 is the operator of the differential or integral equation, results in the appearance of the so
called residual function

𝑅(𝑥; 𝑎0, 𝑎1, ..., 𝑎𝑁) = 𝐿𝑢𝑁(𝑥) − 𝑓(𝑥). (2)

The residual function 𝑅(𝑥; 𝑎0, 𝑎1, ..., 𝑎𝑁) is identically equal to zero, when 𝑢𝑁(𝑥) is an exact solution.
Therefore, the main goal of an algorithm for solving the problem studied is to minimize the residual
function by choosing the appropriate spectral coefficients 𝑎𝑛, 𝑛 = 0, 1, ..., 𝑁.
In the Galerkin–Petrov method, the solution is expanded in one basis, the coordinate functions,

and the orthogonality of the residual is required to another basis, the projection functions.
The choice of trial basis functions𝜑𝑛(𝑥) in Eq. (1) and the testing functions, the basis forminimizing

the residual (2), is the key feature that distinguishes spectral methods from the finite difference and
finite element methods. In the latter two methods, the trial/testing functions are local functions
with finite carriers. On the contrary, spectral methods use globally smooth functions as trial/testing
functions. The simplest basis functions are power functions — the monomials 𝜑𝑛(𝑥) = 𝑥𝑛 such that

𝑢𝑁(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + ... + 𝑎𝑁𝑥𝑁.

The most frequently used trial/testing functions are trigonometric functions or orthogonal
polynomials (usually, eigenfunctions of singular Sturm–Liouville problems), which comprise

Fourier spectral method 𝜑𝑘(𝑥) = 𝑒𝑖𝑘𝑥,

Chebyshev spectral method 𝜑𝑘(𝑥) = 𝑇𝑘(𝑥),

Legendre spectral method 𝜑𝑘(𝑥) = 𝐿𝑘(𝑥),

Laguerre spectral method 𝜑𝑘(𝑥) = 𝑳𝑘(𝑥),

Hermit spectral method 𝜑𝑘(𝑥) = 𝐻𝑘(𝑥).

Here 𝑇𝑘(𝑥), 𝐿𝑘(𝑥), 𝑳𝑘(𝑥) and 𝐻𝑘(𝑥) are Chebyshev, Legendre, Laguerre and Hermit polynomials of
the 𝑘-th power, respectively.
It is exactly the choice of the testing functions for calculating the residual that determines the

name of the methods for solving equations:
– Galerkinmethod. The main feature of the method is the coincidence of the trial basis and the

testing one.
– Petrov–Galerkinmethod. The trial basis and the testing one are different.
– Collocationmethod. For the grid points chosen in advance (collocation) from the search domain

it is required that the residual function is zero.

2. Variants of the colocationmethod for interpolation of functions

Let us study the collocationmethod for solving the interpolation problem, based on the representation
of the approximating function in the form of a finite sum (1) of its expansion in the Chebyshev
polynomials of the first kind. In this case, the Chebyshev functions of the first kind 𝜑𝑛(𝑥) = 𝑇𝑛(𝑥) are
considered as the orthogonal basis.
The approach to solving the problem of approximating 𝑓(𝑥) based on the collocation method

consists in choosing not only the finite-dimensional space of possible solutions (usually, polynomials
up to a certain power), but also the number and position of grid points in the solution’s search domain
(called collocation points). Then it is necessary to choose such coefficients 𝑎𝑛, 𝑛 = 0, 1, ..., 𝑁 of the
expansion of the solution in the basis polynomials, which provide (2) to be exactly satisfied at the
collocation points.
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𝑅(𝑥; 𝑎0, 𝑎1, ..., 𝑎𝑁) ≡
𝑁
∑
𝑛=0

𝑎𝑛𝑇𝑛(𝑥𝑖) − 𝑓(𝑥𝑖) = 0, 𝑖 = 0, ..., 𝑁. (3)

The expansion coefficients 𝑎𝑛, 𝑛 = 0, 1, ..., 𝑁 are conventionally found from the solution of
system (3), for the unambiguous solvability of which it is necessary that the Chebyshev matrix
determinant should be nonzero: det[𝑇𝑗(𝑥𝑘)] ≠ 0, 𝑗, 𝑘 = 0, ..., 𝑛. The choice of different grid points not
coincident with each other guarantees the nondegeneracy of the determinant and, thus, uniqueness
of the solution of (3) upon such a choice [3].
In the matrix form, the system of equations (3) can be written as

𝑻𝒂 = 𝒇,

where the elements 𝑇𝑗(𝑥𝑘) of the 𝑘-th row of matrix 𝑻 are Chebyshev polynomials of the first kind of
the 𝑗-th degree, 𝒂𝑇 = (𝑎0, 𝑎1, ..., 𝑎𝑁) is the vector of interpolation parameters, 𝒇𝑇 = (𝑓0, 𝑓1,…, 𝑓𝑁)𝑇 is
the vector of values of the interpolated function at the grid points (𝑥0, 𝑥1, ..., 𝑥𝑁).
Using the properties of the discrete orthogonality of the polynomials 𝑇𝑛(𝑥) on the Chebyshev–

Lobatto grid allows constructing an efficient algorithm for finding the interpolation coefficients.
Let us transform the system of residual equations (3) so that the SLAE matrix would be almost
orthogonal. For this purpose, multiply the first and the last equation in (3) by the factor 1/√2 to
obtain an equivalent “modified” system with the new matrix ̃𝑻 (instead of 𝑻) and vector ̃𝒇 instead of
𝒇. The new system’s advantage is that its matrix is “almost orthogonal”, and multiplying it from the
left by the transposed matrix ̃𝑻𝑇 we obtain the diagonal matrix:

̃𝑻𝑇 ̃𝑻 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑛 0 0 ... 0

0 𝑛
2 0 ... 0

0 0 𝑛
2 ... 0

... ... ... ⋱ ...

0 0 0 ... 𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The multiplication of the modified system (3) from the left by the transposed matrix ̃𝑻𝑇 leads to
a simple matrix equation with a diagonal matrix that determines the desired expansion coefficients

̃𝑻𝑇 ̃𝑻𝒂 = ̃𝑻𝑇 ̃𝒇, (4)

where ̃𝒇 = (𝒇0/√2, 𝒇1, ..., 𝒇𝑛−1, 𝒇𝑛/√2). In the right-hand side of Eq. (4), vector 𝒈 = ̃𝑻𝑇𝒇 is obtained.
In this notation, the coefficients of function 𝑓(𝑥) expansion in Chebyshev polynomials of the first
kind are easily written explicitly as

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

𝑎0 = 𝑔0/𝑛,

𝑎1 = 2𝑔1/𝑛,

𝑎2 = 2𝑔2/𝑛,

...

𝑎𝑛 = 𝑔𝑛/𝑛.

(5)

Thus, relations (5) unambiguously determine the expansion coefficients of the approximating
polynomial 𝑢𝑁(𝑥) = ∑𝑁

𝑛=0 𝑎𝑛𝑇𝑛(𝑥).
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The described approach to the solution of interpolation problem allows stable solution of both the
problem of reconstructing the approximating polynomial expansion coefficients and the problem
of calculating the interpolant values at an arbitrary point in the domain of definition of the desired
function. However, the speed of executing these operations still leaves much to be desired, even
though the use of the Gauss–Lobatto grid eliminates the need to solve a system of linear algebraic
equations (3) with completely filled matrix. The problem turned out to reduce to multiplying the
matrix ̃𝑻𝑇 by the vector ̃𝒇 and dividing the components of the resulting vector by the appropriate
elements of the diagonal matrix ̃𝑻𝑇 ̃𝑻.

The use of various modifications of the Clenshaw algorithm can significantly speed up the solution
of the interpolation problem.

3. Clenshaw algorithm – increasing the efficiency of calculating the Chebyshev series at
an arbitrary point in the approximation interval

Having the coefficients of the polynomial expansion of the desired function makes it possible to
calculate the values of the interpolating polynomial at arbitrary points of the approximation interval
𝑥 ∈ [−1, 1] directly as

𝑢𝑁(𝑥) = 𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥) + ... + 𝑎𝑁𝑇𝑁(𝑥). (6)

However, calculating the sum using Eq. (6) is not optimal [5]. Efficient and stable summation of
this series is possible based on the Clenshaw algorithm using the recurrent three-term relation.

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥).

This approach allows calculating the value of the next polynomial in the summable series from the
values of a pair of previous polynomials using simple multiplication and addition operations. First, it
is just necessary to calculate

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥.

and to launch the iteration process [5]. Detailed information on the algorithm and stability of the
summation process is presented in the paper by Fox and Parker [6].
Clenshaw’s algorithm generalizes not only to various types of Chebyshev polynomials; it applies to

any class of functions that can be defined by a three-term recurrence relation. Clenshaw’s algorithm
calculates the weighted sum of a finite series of functions 𝜑𝑘(𝑥):

𝑆(𝑥) =
𝑛
∑
𝑘=0

𝑎𝑘𝜑𝑘(𝑥),

where 𝜑𝑘(𝑥), 𝑘 = 0, 1, ..., 𝑛 is a sequence of functions satisfying three-term relations

𝜑𝑘+1(𝑥) = 𝛼𝑘(𝑥)𝜑𝑘(𝑥) + 𝛽𝑘(𝑥)𝜑𝑘−1(𝑥),

with pre-known coefficients 𝛼𝑘(𝑥) and 𝛽𝑘(𝑥).
The algorithm is most efficient when 𝜑𝑘(𝑥) are functions hard to calculate directly, whereas the

calculation of coefficients 𝛼𝑘(𝑥) and 𝛽𝑘(𝑥) is relatively simple. In the most widespread applications,
𝛼𝑘(𝑥) is independent of 𝑘 and 𝛽𝑘(𝑥) is a constant depending on neither 𝑥, nor 𝑘. In our case (6),
𝛼𝑘(𝑥) = 2𝑥 and 𝛽𝑘(𝑥) = −1.

To execute the series summation for a given sequence of coefficients𝛼0, 𝛼1, ..., 𝛼𝑛, it is first necessary
to calculate the values 𝑏𝑘(𝑥) of the auxiliary sequence using the “inverse” recurrence relation
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𝑏𝑛+1(𝑥) = 𝑏𝑛+2(𝑥) = 0,
𝑏𝑘(𝑥) = 𝑎𝑘 + 𝛼𝑘(𝑥)𝑏𝑛+1(𝑥) + 𝛽𝑘+1(𝑥)𝑏𝑛+2(𝑥).

(7)

It is important to note that to construct the sequence 𝑏𝑘(𝑥), 𝑘 = 𝑛, ..., 1 no calculation (and
knowledge) of 𝜑𝑘(𝑥) values is necessary. After determining the coefficients 𝑏2(𝑥) and 𝑏1(𝑥) only
two simplest values of 𝜑0(𝑥) and 𝜑1(𝑥) are enough to obtain the desired sum

𝑆(𝑥) = 𝑎0𝜑0(𝑥) + 𝜑1(𝑥)𝑏1(𝑥) + 𝛽1(𝑥)𝜑0(𝑥)𝑏2(𝑥).

Let us consider in more detail the Clenshaw summation method for fast and stable calculation
of the sum of series (6) — the recursive method for calculating a linear combination of Chebyshev
polynomials.

𝑢𝑛(𝑥) = 𝑎0 + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥) + ... + 𝑎𝑛𝑇𝑛(𝑥).

Let us take into account that the coefficients in the recurrence relation for the Chebyshev
polynomials are 𝛼(𝑥) = 2𝑥 and 𝛽(𝑥) = −1 and the initial polynomials are 𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥.
Then the “reverse” recurrent sequence for calculating coefficients 𝑏𝑘(𝑥) has the form

𝑏𝑘(𝑥) = 𝑎𝑘 + 2𝑥𝑏𝑘+1(𝑥) − 𝑏𝑘+2(𝑥), 𝑘 = 𝑛, 𝑛 − 1, ..., 1,

with zero “initial” coefficients
𝑏𝑛+1(𝑥) = 𝑏𝑛+2(𝑥) = 0.

Now we calculate the value of the desired sum using the “reverse” recurrence relation

𝑢𝑛(𝑥) = 𝑎0 +
𝑛
∑
𝑘=1

𝑎𝑘𝑇𝑘(𝑥) =
𝑛
∑
𝑘=1

(𝑏𝑘 − 2𝑥𝑏𝑘+1 + 𝑏𝑘+2)𝑇𝑘(𝑥) =

= 𝑎0 + 𝑏1𝑥 + 𝑏2(2𝑥𝑇1(𝑥) − 𝑇0(𝑥)) − 2𝑥𝑏2𝑇1(𝑥) +
𝑛
∑
𝑘=3

𝑏𝑘(𝑇𝑘(𝑥) − 2𝑥𝑇𝑘−1(𝑥) + 𝑇𝑘−2(𝑥)).

The last term turns into zero and the ultimate value of the sum of series 𝑢𝑛(𝑥) is determined by the
formula

𝑢𝑛(𝑥) = 𝑎0 + 𝑥𝑏1(𝑥) − 𝑏2(𝑥). (8)

Example 1. A program in pseudocode implementing the summation according to the Clenshaw
algorithm.

The simplest (using no Clenshaw algorithm) program for calculating the sum of series (6) at a fixed
point 𝑥 ∈ [−1, 1] can be presented directly as

Sum := a[0] + x * a[1]
t := x; t1 := 1; c := 2 * x
for k := 2 to n do
begin

t2 := t1; t1 := t;
t := c * t1 - t2;
Sum := Sum + t * a[k]

end
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On completion of the program operation, the variable Sum contains the desired 𝑆(𝑥) value. The
program uses 2𝑛 + 1multiplications and 2𝑛 − 1 additions.
Following Clenshaw and using the auxiliary “reverse” recurrence formula (7), we transform the

calculation program so that the number of multiplications reduces (practically by two times) to 𝑛 + 2
and the number of additions remains to be 2𝑛 + 1.
The subroutine pseudocode is

Sum := a[n]; b1 := 0; c := 2 * x;
for k := n - 1 downto 0 do
begin

b2 := b1; b1 := Sum;
Sum := a[k] + c * b1 - b2

end;
Sum := 0.5 * (Sum - b2)

Instead of the above “beautiful” version of the pseudocode, it is possible to use an alternative
version with even fewer operations, namely, 𝑛 + 1multiplications and 2𝑛 additions
Sum := a[n]; b1 := 0; c := 2 * x;
for k := n - 1 downto 1 do
begin

b2 := b1; b1 := Sum;
Sum := a[k] + c * b1 - b2

end;
Sum := a[0] + x * b1 - b2

4. Expanding the scope of application of the Clenshawmethod (calculation of
interpolant expansion coefficients)

The calculation of expansion coefficients {𝑐0, 𝑐1, ..., 𝑐𝑛} reduces to a solution of the system (4) of linear
algebraic equations. Themost laborious stage is the operation ofmultiplying the vectors of transposed
Chebyshev matrix ̃𝑻𝑇 by vector ̃𝒇 = (𝒇0/√2, 𝒇1, ..., 𝒇𝑛−1, 𝒇𝑛/√2)𝑇. It turns out that the structure of
the Chebyshev matrix 𝑻 allows efficient use of the Clenshaw algorithm for substantial reduction
of the number of operations compared to the conventional algorithm of multiplying a matrix by
a vector.

Let us present themodification of the Clenshaw algorithm simplifying the procedure ofmultiplying
the transposed Chebyshev matrix by the right-hand side vector 𝑻𝑻𝒇 when using the Gauss–Lobatto
grid.

𝑻𝑻𝒇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑇0,0 𝑇0,1 𝑇0,2 ... 𝑇0,𝑛
𝑇1,0 𝑇1,1 𝑇1,2 ... 𝑇1,𝑛
𝑇2,0 𝑇2,1 𝑇2,2 ... 𝑇2,𝑛
... ... ... ⋱ ...

𝑇𝑛,0 𝑇𝑛,1 𝑇𝑛,2 ... 𝑇𝑛,𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑓0
𝑓1
𝑓2
...

𝑓𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐0
𝑐1
𝑐2
...

𝑐𝑛

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

To get the value of a particular 𝑗-th component of the vector of coefficients, it is necessary to
multiply the 𝑗-th row of matrix 𝑻𝑻 by the vector 𝒇.
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𝑐𝑗(𝑥) =
𝑛
∑
𝑘=0

𝑓𝑘𝑇𝑗(𝑥𝑘) = 𝑓0𝑇𝑗(𝑥0) + 𝑓1𝑇𝑗(𝑥1) + 𝑓2𝑇𝑗(𝑥2) + ... + 𝑓𝑛𝑇𝑗(𝑥𝑛).

To simplify the calculation of the desired sum, the product of the row of Chebyshev transposed
matrix by the vector on the right-hand side, we use the representation of a Chebyshev polynomial of
the first kind of the 𝑗-th order in the trigonometric form:

𝑇𝑗(cos 𝜃) = cos(𝑗𝜃)

𝑥𝑘 = cos(𝑘𝜋/𝑛), 𝑘 = 0, 1, ..., 𝑛.

Each 𝑗-th row of the transposed Chebyshev matrix contains the values of a Chebyshev polynomial
of the 𝑗-th order at the Gauss–Lobatto grid points 𝑥𝑘 = cos(𝑘𝜋/𝑛), 𝑘 = 0, 1, ..., 𝑛.
Let us execute the change of variables

𝑦𝑗 = 𝑗𝜋/𝑛, 𝑗 = 0, 1, ..., 𝑛.

𝑇𝑗(𝑥𝑘) = cos(𝑘𝑦𝑗).

This change allows using the identity 𝑇𝑗(𝑥𝑘) = cos(𝑗(𝑘𝜋/𝑛)) = cos(𝑘(𝑗𝜋/𝑛)) = 𝑇𝑘(𝑥𝑗) for a transition
to the conventional Clenshaw scheme of calculating the product of the transposed (symmetric)
Chebyshev matrix by the vector of the right-hand side. That is, the product of coefficients 𝑓𝑘,𝑘 =
0, 1, ..., 𝑛 by the corresponding values of the polynomial of the 𝑗-th order 𝑇𝑗(𝑥𝑘) at the grid points 𝑥𝑘,
𝑘 = 0, 1, ..., 𝑛 for calculating the interpolant expansion coefficient 𝑐𝑗(𝑥) can be replaced with a product
of the same coefficients by the corresponding values of the polynomials of the 𝑘-th order 𝑇𝑘(𝑥𝑗) at one
point 𝑥𝑗 of the grid with the number corresponding to that of the calculated interpolant expansion
coefficient.

𝑐𝑗 =
𝑛
∑
𝑘=0

𝑓𝑘𝑇𝑗(𝑥𝑘) = 𝑓0𝑇𝑗(0 ⋅ 𝑦𝑖) + 𝑓1𝑇𝑗(1 ⋅ 𝑦𝑖) + 𝑓2𝑇𝑗(2 ⋅ 𝑦𝑖) + ... + 𝑓𝑛𝑇𝑗(𝑛 ⋅ 𝑦𝑖).

Denoting
𝜃 = 𝑗𝜋/𝑛,

we arrive at a formula for calculating the 𝑗-th expansion coefficient of the desired interpolant in the
reduced form:

𝑐𝑗 =
𝑛
∑
𝑘=0

𝑓𝑘𝑇𝑗(𝑥𝑘) =
𝑛
∑
𝑘=0

𝑓𝑘 cos(𝑘𝜃), 𝑗 = 0, 1, ..., 𝑛.

To calculate each expansion coefficient 𝑐𝑗, 𝑗 = 0, 1, ..., 𝑛 using the Clenshaw scheme, two approaches
are possible.
In the first of them, it is possible to use the three-term recurrence relation expressing cosines of

multiple angles cos𝑛𝑥 through two cosines of preceding multiplicities cos((𝑛 − 1)𝑥), 𝑐𝑜𝑠((𝑛 − 2)𝑥)
and the value of cos(𝑥):

𝑐𝑗 =
𝑛
∑
𝑘=0

𝑓𝑘 cos(𝑘𝜃), 𝜃 = 𝑗𝜋
𝑛 , 𝑗 = 0, 1, ..., 𝑛.

The second approach leads to using the variant of Clenshaw scheme (7)–(8) already studied above.

𝑐𝑗 =
𝑛
∑
𝑘=0

𝑓𝑘𝑇𝑗(𝑥𝑘), 𝑗 = 0, 1, ..., 𝑛.
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It is known that the coefficients of the three-term recurrence relation for the Chebyshev polynomials
of the first kind are

𝛼(𝑛, 𝑥) = 𝛼(𝑥) = 2𝑥, 𝛽(𝑛, 𝑥) = 𝛽(𝑥) = −1,

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥)

and the polynomials of the 1-st and the 2-nd order have the form

𝑇0(𝑥) = 1, 𝑇1(𝑥) = 𝑥.

Having summed over the specified coefficients 𝑐0, 𝑐1, 𝑐2, ..., 𝑐𝑛, we calculate the values 𝑏𝑘(𝑥) using the
“reverse” recurrence formula:

𝑏𝑛+1(𝑥) = 𝑏𝑛+2(𝑥) = 0,

𝑏𝑘(𝑥) = 𝑐𝑘 + 2𝑥𝑏𝑘+1(𝑥) − 𝑏𝑘+2(𝑥), 𝑘 = 𝑛, 𝑛 − 1, ..., 1.

Then
𝑐𝑘 = 𝑏𝑘 − 2𝑥𝑏𝑘+1(𝑥) + 𝑏𝑘+2(𝑥), 𝑘 = 𝑛, 𝑛 − 1, ..., 1.

Now we substitute these coefficients into the series sum formula

𝑝𝑛(𝑥) =
𝑛
∑
𝑘=0

𝑐𝑘𝑇𝑘(𝑥) = 𝑐0 + 𝑏1𝑥 − 𝑏2.

To get rid of using the value of argument in the ultimate formula for the sum of the truncated
Chebyshev series, it is possible to continue the loop process by one additional step and to calculate
the zeroth coefficient of the reverse sequence by the formula

𝑏0 = 𝑐0 + 2𝑥𝑏1 − 𝑏2,

which allows calculating the product 𝑏1𝑥 =
𝑏0 − 𝑐0 + 𝑏2

2 ,
Substituting the calculated value of 𝑏1 x into the sum expression, we get an alternative variant of

the formula for the sum of products of indexed coefficients by the Chebyshev polynomials of the first
kind of the appropriate degree:

𝑝𝑛(𝑥) = 𝑐0 + 𝑏1𝑥 − 𝑏2 = 𝑐0 +
𝑏0 − 𝑐0 + 𝑏2

2 − 𝑏2 =
1
2[𝑐0 + 𝑏0 − 𝑏2].

The ultimate value of the desired sum depends only on the coefficient 𝑐0 of the series sought for
and two coefficients 𝑏0, 𝑏2 obtained as a result of running the reverse recurrence sequence.

5. Conclusions

Clenshaw described an algorithm that allows calculating the final sum of the Fourier series in terms of
sines and cosines. Clenshaw’s algorithm is a recursive method for summing a linear combination of
Chebyshev polynomials [5, 6]. The method was published by CharlesWilliam Clenshaw in 1955. This
is a generalization of Horner’s method for summing a linear combination of monomials. Although
thismethod is named afterWilliamGeorgeHorner, it has been known for a long time –Horner himself
attributed it to Joseph–Louis Lagrange. But the method was described and used many hundreds of
years ago by Chinese and Persian mathematicians. After the advent of computers, this algorithm
became fundamental for efficient calculations with polynomials.
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The use of many well-known useful properties of Chebyshev polynomials can significantly improve
the software implementation of the function interpolation algorithm based on the Clenshaw method.
In future, the authors intend to use the outlined interpolation technique for a stable implementation
of algorithms for calculating definite integrals, derivatives of functions using matrices of spectral
Chebyshev differentiation and finding antiderivative functions using integration matrices.
For example, to calculate definite integrals, it may be useful to calculate the sums of modified

series of Fourier type — only even or only odd terms of the series.
With the rapid development of modern technology, many types of interpolationmethods have been

proposed, including piecewise constant, linear, polynomial and spline interpolation methods [2, 7, 8].
Among them, interpolation based on Chebyshev polynomials is of great interest, which has been
shown to be one of the important methods in the literature [9–15], since this type of interpolation
polynomials eliminates the problem of the Runge phenomenon [16, 17].
Function approximation based on Chebyshev polynomial interpolation and discrete cosine

transform is discussed in many papers [1, 2, 18–20]. In these methods, the points of a non-uniform
grid corresponding to the roots or extremals of the Chebyshev polynomials are first obtained, and
then the approximation coefficients are calculated at these points using collocation methods. The
results showed that the use of Chebyshev polynomials provides almost optimal accuracy for solving
problems of interpolation, differentiation, and integration of smooth functions.
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Алгоритм Кленшоу в задаче интерполяции методом Чебышевской
коллокации

К. П. Ловецкий, А. А. Тютюнник, Ду Нашсименту Висенте Феликс Жозе,
Тейшейра Боа Морте Селмилтон

Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская Федерация

Аннотация. В статье описан метод вычисления интерполяционных коэффициентов разложения по по-
линомам Чебышева. Метод справедлив, когда искомое функция ограничена и имеет конечное число
максимумов и минимумов в конечной области интерполирования. Суть метода состоит в том, что ин-
терполируемая искомая функция может быть представлена в виде разложения по полиномамЧебышева;
затем коэффициенты разложения определяются по методу коллокаций сведением задачи к решению
хорошо обусловленной системы линейных алгебраических уравнений относительно искомых коэффи-
циентов. Использование известных полезных свойств полиномов Чебышева позволяет значительно
упростить решение задачи интерполяциифункций. Изложенаметодика использования алгоритма Клен-
шоу для суммирования рядов и определения коэффициентов разложения интерполируемой функции,
основанная на дискретной ортогональности полиномов Чебышева 1-го рода.

Ключевые слова: интерполяция функций методом Чебышевской коллокации, алгоритм Кленшоу
ускорения вычислений


