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Abstract. The article discusses a mathematical model and a finite-difference scheme for the heating process of
an infinite plate. The disadvantages of using the classical parabolic heat equation for this case and the rationale
for using the hyperbolic heat equation are given. The relationship between the hyperbolic thermal conductivity
equation and the theory of equations with the retarded argument (delay equation) is shown. The considered
mixed equationhas 2 parts: parabolic andhyperbolic. Difference schemesuse an integro-interpolationmethod to
reduce errors. The problemwith a nonlinear thermal conductivity coefficient was chosen as the initial boundary-
value problem. The heat source in the parabolic part of the equation is equal to 0, and in the hyperbolic part
of the equation sharp heating begins. The initial boundary-value problem with boundary conditions of the
third kind in an infinite plate with nonlinear coefficients is formulated and numerically solved. An iterative
method for solving the problem is described. A visual graph of the solution results is presented. A theoretical
justification for the difference scheme is given. Also we consider the case of the nonlinear mixed equation of
the fourth order.

Key words and phrases: hyperbolic-parabolic equation, delay equations, initial boundary-value problem, finite
difference schemes, equations of the high order

1. Introduction

In theV.N. Khankhasaev’s paper [1–3], which is bound upwith the problem ofmathematical modeling
of the process of switching off the electric arc in the flue gas flow, variousmathematical models bound
up with the hyperbolic equation of thermal conductivity (obtained by generalization of the Fourier
hypothesis [4]) were studied both analytically and numerically. In course of investigations bound up
with the transfer processes in the case of high-intensity influence of the gas, the earlier hypotheses
presuming the proportionality of the flow density to the vector of the potential gradient, which are
based on the known physics laws, lead to an infinite rate of distribution of the perturbations, what
contradicts to fundamental laws of nature.
The set known physics laws constructed on basis of the given theory includes the following laws:
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝜆 grad𝑇(𝑥, 𝑦, 𝑧, 𝑡) – the Fourier law; 𝜆 – thermal conductivity coefficient; 𝑞 – heat

flow density; 𝑇 – temperature;
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐷 grad𝐶(𝑥, 𝑦, 𝑧, 𝑡) – the Fick law;𝐷– diffusion coefficient; 𝑞 –flowdensity of diffusion;

𝐶 – concentration;
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐾 grad𝐻(𝑥, 𝑦, 𝑧, 𝑡) – the Darcy law; 𝐾 – filtering coefficient; 𝑞 – volume flow (or the

filtering rate); 𝐻 – pressure.
All these laws are written in the general form as follows:
𝑞(𝑥, 𝑦, 𝑧, 𝑡) = −𝐴 grad𝑈(𝑥, 𝑦, 𝑧, 𝑡), i.e. the generalized law of transfer, where 𝐴 is the transfer

coefficient; 𝑞 is the flow density; 𝑈 is the potential.
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The differential equation of transfer obtained from the given generalized law has the following
form in the one-dimensional case:

𝜕𝑈
𝜕𝑡 = 𝑎𝜕

2𝑈
𝜕𝑥2 .

It is sufficient to differentiate the fundamental solution of this equation with respect to variable 𝑡
and tend the time to zero to see that the rate of transfer of the potential at the initial time moment
equals to infinity. The approximation of solid medium used in above laws and presuming the absence
of its internal molecular structure implies that it is possible to undertake a limit transition in the
integral laws of conservation for this medium, when the volume tends to zero. Such a limit transition
allows one to obtain the equation of energy conservation in the differential form. Meanwhile, this
procedure – from the viewpoint of contemporary physics – is incorrect because the environment is
known to be composed of molecules. The environment has a discrete internal structure.
In order to avoid this paradox J.C. Maxwell [5], C. Cattaneo [6], P. Vernotte [7], who worked within

the frames of the theory of thermal conductivity, based his reasoning on the molecular-kinetic
conception, used the hypothesis of finiteness of duration of molecular collisions and proceeded from
a new conception of the molecules’ length of free path, obtained a new law of thermal conductivity.
There appeared an additional addend 𝜏 𝜕𝑞

𝜕𝑡
in the law, which took account of the discreteness of the

environment’s molecular structure and was responsible for the inertial character of heat. In this
addend, is the relaxation time, i.e. the time of reaching some thermodynamic equilibrium between
the heat flow and the temperature gradient. This generalized law of transfer may be written in the
following form:

𝜏𝜕𝑞𝜕𝑡 + 𝑞 = −𝐴 grad𝑈. (1)

In the process of solving the differential equation obtained from this law, observed was the first-
kind discontinuity of the potential, which distributes from the source. Therefore, law (1) describes
the appearance of waves in case of some high-intensity influence, which leads to some local system’s
non-equilibrium. These effects are most frequently observed when a body is impacted with short
energy impulses, in shock waves or under high temperature gradients. The local equilibrium, which
is obvious in cases of application of earlier physics laws, is valid for the time moments (intervals),
which are in excess of the relaxation time. Therefore, classical transfer theories are valid, when the
rate of processes is substantially smaller than the rate of distribution of perturbations in the medium
under scrutiny [8, 9].

2. The relationship between the hyperbolic thermal conductivity equation and the
theory of equations with the retarded argument (delay equations)

To the end of inference of the transfer differential equation in the one-dimensional case we have
used the equation of thermal balance:

𝜕𝑞
𝜕𝑥 = −𝑔𝜕𝑈𝜕𝑡 . (2)

Having substituted (1) into (2), we obtain:

𝐴𝜕
2𝑈
𝜕𝑥2 + 𝜏 𝜕

2𝑞
𝜕𝑥𝜕𝑡 = 𝑔𝜕𝑈𝜕𝑡 . (3)

Now, change the order of differentiation for the second addend in (3)

𝐴𝜕
2𝑈
𝜕𝑥2 + 𝜏 𝜕𝜕𝑡 (

𝜕𝑞
𝜕𝑥) = 𝑔𝜕𝑈𝜕𝑡 .

On account of (2) we obtain

𝐴𝜕
2𝑈
𝜕𝑥2 − 𝜏𝑔 𝜕𝜕𝑡 (

𝜕𝑈
𝜕𝑡 ) = 𝑔𝜕𝑈𝜕𝑡 .

Finally, we obtain the following:
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𝜏𝜕
2𝑈
𝜕𝑡2 + 𝜕𝑈

𝜕𝑡 = 𝐴
𝑔
𝜕2𝑈
𝜕𝑥2 . (4)

Equation (4) belongs to the class of linear hyperbolic partial differential equations because it
contains the second derivative with respect to time. If internal sources of perturbations are taken
into account, then equation (2) assumes the following form:

−𝑔𝜕𝑈𝜕𝑡 + 𝐹(𝑈) = 𝜕𝑞
𝜕𝑥 ,

Hence equation (4) writes as follows:

𝜏𝜕
2𝑈
𝜕𝑡2 + (1 − 𝜏

𝑔
𝑑𝐹
𝑑𝑈)

𝜕𝑈
𝜕𝑡 = 𝐴

𝑔
𝜕2𝑈
𝜕𝑥2 +

𝐹(𝑈)
𝑔 . (5)

Here 𝜕𝐹
𝜕𝑈 may have any sign.

While turning back to equation (1), one can see that −𝐴 grad𝑈 represents an expansion of the flow
into the Tailor series with respect to the powers of 𝜏, where taken are only the first two members of
the expansion. Hence if all the terms of the expansion are taken into account, then the series shall
have the following form:

𝑞 + 𝜏𝜕𝑞𝜕𝑡 +
𝜏2
2
𝜕2𝑞
𝜕𝑡2 + ... = −𝐴 grad𝑈. (6)

Having gathered the terms of series, we can rewrite expression (6) in the following form:

𝑞(𝑡 + 𝜏) = −𝐴 grad𝑈. (7)

Having replaced the variables 𝑡 + 𝜏 = 𝑡1 in (7), and, next, again transferring to variable t, we obtain:

𝑞(𝑡) = −𝐴 grad𝑈(𝑡 − 𝜏). (8)

The physics sense of expression (8) implies that the transfer process in the locally non-homogeneous
media possesses inertial properties: the system reacts to the influence not at the same time moment
but with a delay equal to the relaxation time 𝜏, i.e. the flow density retards from the gradient of
potential. From the technical viewpoint, expression (8), unlike that for (1), allows one to take account
of all the terms of the expansion with respect to 𝜏. While continuing the above inference technique
with the use of (8), one can easily obtain the following equation with the retarded (with respect to
time) argument[10–12]:

𝜕𝑈
𝜕𝑡 = 𝐴

𝑔
𝜕2𝑈(𝑥, 𝑡 − 𝜏)

𝜕𝑥2 .

Therefore, the linear hyperbolic thermal conductivity equation (5) represents the second, more
correct stage in the theory of mathematical modeling of heat transfer for the fast running processes
with high-intensity perturbations.
The investigation of thermal conductivity processes using the generalized Fourier law is most

relevant for rapidly occurring physical phenomena (for example, with nano- and fempto-second
laser pulses) in the study of high-intensity processes of heating bodies (plasma, laser processing of
materials, high-intensity heating of contact connections in electrical installations and etc.) [13, 14].

3. The nonlinear mixed equation of thermal conductivity

An unbounded plate is given in the form of an infinite strip, the size of which along the x axis is equal
to the segment [0, 𝑋], and the size along the y axis is equal to (−∞,∞). We consider the properties of
the plate along the y axis to be homogeneous and we will not mention y in the list of variables. The
initial temperature distribution in the plate is given by some function 𝑢(𝑥, 𝑇1) = 𝑢0(𝑥); at the plate
boundaries the temperature of the medium is constant. Heat exchange with the environment occurs
according toNewton’s law (boundary conditions of the third kind). The thermophysical characteristics
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𝑐𝑣, 𝜆, 𝜌, 𝛼, 𝑐 are specified – specific heat capacity, thermal conductivity coefficient, specific density,
heat transfer coefficient and heat output coefficient. It is required to find the temperature distribution
over the thickness of the plate, i.e. by variable 𝑥, at any time 𝑡 ∈ [𝑇1, 𝑇2]. The differential equation
and boundary conditions will then be written as:

𝑘(𝑥, 𝑡)𝑢𝑡𝑡 + 𝑐𝑣(𝑥, 𝑡) ⋅ 𝜌(𝑥, 𝑡)𝑢𝑡 = (𝜆(𝑢, 𝑥, 𝑡)𝑢𝑥)𝑥 + 𝑐(𝑥, 𝑡)𝑢 + 𝑓(𝑥, 𝑡). (9)

In the rectangular domain 𝐺 = [0, 𝑋]× [𝑇1, 𝑇2], 𝑇1 < 0 , 𝑇2 > 0. Furthermore, ∀(𝑥, 𝑡) ∈ 𝐺, 𝑘(𝑥, 𝑡) = 0,
𝑡 ≤ 0; 𝑘(𝑥, 𝑡) > 0, 𝑡 > 0; i.e. when 𝑡 ≤ 0 — the equation(1) is parabolic, and when 𝑡 > 0 — the
equation(1) is hyperbolic. Let us formulate the problem with the following experimental data [15].
The initial boundary-value problem. Find the temperature field in an infinite plate homogeneous

in variable 𝑦 with 𝑋 = 𝜋 and calculation time: 𝑇1 = −5, 𝑇2 = 20.
Initial condition and boundary conditions:

𝑢(𝑥, 𝑡)|𝑡=𝑇1 = 𝑢0(𝑥) = 10 sin(𝑥);

[∓𝜆(𝑢, 𝑥, 𝑡) 𝜕𝑢(𝑥, 𝑡)𝜕𝑥 + 𝛼0,𝐿(𝑥, 𝑡) 𝑢(𝑥, 𝑡)]
𝑥=0,𝐿

= {
𝑞0(𝑡),
𝑞𝐿(𝑡).

(10)

Coefficients: 𝑘(𝑥, 𝑡) = 0 for 𝑡 ≤ 0, 𝑘(𝑥, 𝑡) = 1 for 𝑡 > 0; 𝑐(𝑥, 𝑡) = 0; 𝜆(𝑢, 𝑥, 𝑡) = 0.5 ⋅ 𝑢2 + 2;
𝑐𝑣(𝑥, 𝑡) ⋅ 𝜌(𝑥, 𝑡) = 𝑎(𝑥, 𝑡) = 672; 𝑞0(𝑡) = 5; 𝑞𝐿(𝑡) = 10; 𝛼0(𝑥, 𝑡) = 3.5; 𝛼𝐿(𝑥, 𝑡) = 3.5.
Heat sources 𝑓(𝑥, 𝑡) change over time. In the parabolic part 𝑓(𝑥, 𝑡) = 𝑓1(𝑥, 𝑡) = 0 and in the

hyperbolic part 𝑓(𝑥, 𝑡) = 𝑓2(𝑥, 𝑡) = 100000 sin(𝑥) sin(𝑡).
In the quasi-linear scheme, the coefficients 𝜆 are calculated from the temperatures 𝑈𝑖,𝑗 of the

previous time layer 𝑗, while in the essentially non-linear scheme, which is being implemented now:

𝑘(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)
𝑢𝑖,𝑗+1 − 2𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

𝜏2 + 𝑎(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)
𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗

𝜏 =

= (𝜆 (𝑢𝑖+ 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)

𝑖+ 1
2

𝑢𝑖+1,𝑗+1 − 𝑢𝑖,𝑗+1
ℎ −

− 𝜆 (𝑢𝑖− 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)

𝑖− 1
2

𝑢𝑖,𝑗+1 − 𝑢𝑖−1,𝑗+1
ℎ ) 1ℎ+

+ 𝑐(𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)𝑢𝑖,𝑗+1 +∫
𝑡𝑗+1

𝑡𝑗

∫
𝑥𝑖+1/2

𝑥𝑖−1/2

𝑓(𝑥, 𝑡)𝑑𝑥𝑑𝑡. (11)

The coefficient 𝜆 is calculated as follows:

𝜆(𝑢𝑖± 1
2
,𝑗+1, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏) =

[𝜆(𝑢𝑖±1,𝑗, (𝑖 ± 1) ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏) + 𝜆(𝑢𝑖,𝑗, 𝑖 ⋅ ℎ, 𝑇1 + 𝑗 ⋅ 𝜏)]
2 .

It is clear that the resulting system of equations is nonlinear, so to solve this system we will use
the simple iteration method. This method is as follows—at each time step we will determine the
temperature field until it stops changing with changes:

max
𝑖
|𝑢𝑖,𝑠+1 − 𝑢𝑖,𝑠|

max
𝑖
|𝑢𝑖,𝑠+1|

< 𝜖, (12)

where 𝑠 is the iteration number, 𝜖 is the calculation accuracy. When condition (12) is satisfied, then
𝑢𝑖,𝑠+1 = 𝑢𝑖,𝑗+1. The following can be considered as an initial approximation: 𝑢𝑖,𝑠=0 = 𝑢𝑖,𝑗.

It can be seen that the system (11) is already linear with respect to 𝑢𝑖,𝑠+1, which makes it possible to
use the sweep method and determine the unknown temperature field. But in this case the system is
solved until the temperature field ceases to differ [16]. In such a scheme, the volume of calculations
increases compared to a quasi-linear scheme, since at each time step it is necessary to solve the
system of difference equations by the sweepmethod not once, but 𝑠max times. However, the nonlinear
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scheme gives a smaller error in the numerical solution of the original problem (9), (10) than the
quasilinear one [17]. This is explained by the fact that the coefficients in the expressions for the
grid analogues of heat flows are calculated at the same time as the temperatures. To reduce the
error of a quasilinear scheme, the step size should be reduced, i.e., the number of time steps in the
considered interval should be increased. Therefore, in many cases it turns out to be more profitable,
even from the point of view of computer time costs, to use a nonlinear scheme and take larger time
steps, performing several iterations at each [18].

The fields of temperatures for the scrutinized process have been obtained at various timemoments
(fig.1) in the environment of Mathcad-15 having a comfortable graphic interface. Similar to the
works[19, 20] the following theorems is proved:

Theorem 1. Let function 𝑐(𝑥, 𝑡) < 0 is sufficiently large with respect to the modulus,

2𝑎 − |𝑘𝑡| ⩾ 𝛿 > 0.

Hence for any function 𝑓 ∈ 𝑊 1
2 (𝐺) there exists a unique solution 𝑢(𝑥, 𝑡) of the initial boundary-value

problem (9), (10) in space𝑊 2
2 (𝐺).

Figure 1. The result of the program solution

Theorem 2. Under the conditions of Theorem 1 the difference scheme (11) is stable, and
interpolations 𝑢𝜏ℎ(𝑥, 𝑡) of solutions of this difference scheme converge weakly in 𝑊 1

2 (𝐺) (when
ℎ → 0, 𝜏 → 0) to the solution 𝑢(𝑥, 𝑡) of initial boundary-value problem (9), (10) from space𝑊 2

2 (𝐺).

4. The nonlinear mixed equation of the fourth order

In bounded domain 𝐷 from 𝑅𝑛, consider the first boundary value problem for the fourth order
nonlinear mixed partial differential equation:

𝐿𝑢 ≡
𝑛+1
∑
𝑖=0

𝐿∗𝑖𝐴𝑖(𝑥, 𝑢, 𝑢𝑥1,… , 𝑢𝑥𝑛, 𝐾𝑢) = ℎ(𝑥), (13)

𝑢|𝛤 = 𝑓1(𝑥),
𝜕𝑢
𝜕𝜈 |𝛤/𝛤0 =

𝑛
∑
𝑖,𝑗=1

(𝑎𝑖,𝑗
𝜕𝑢
𝜕𝑥𝑖

𝜈𝑗)
|||𝛤/𝛤0

= 𝑓2(𝑥),

here: 𝐿∗ is an operator formally Lagrange conjugate to the operator 𝐿; 𝐿0 — identity operator; 𝐿𝑖 =
𝜕
𝜕𝑥𝑖

;
𝑖 = 1,… , 𝑛; 𝐿𝑛+1 — operator 𝐾 of the form:

𝐾𝑢 ≡
𝑛
∑
𝑖,𝑗=1

𝑎𝑖,𝑗(𝑥)𝑢𝑥𝑖,𝑥𝑗 +
𝑛
∑
𝑖=1
𝑏𝑖(𝑥)𝑢𝑥𝑖 + 𝑐(𝑥)𝑢

with sufficiently smooth coefficients, satisfying the inequality:

‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼1‖𝑢‖𝑊1
𝑟 (𝐷), 𝛼1 > 0, 𝑚 ⩾ 2, 𝑟 ⩾ 2, (14)

for any functions 𝑢(𝑥) from 𝐶𝐾 the class of twice continuously differentiable functions vanishing on
the boundary 𝛤 of the domain 𝐷, 𝛤0 is the characteristic part of the boundary of 𝛤 for the operator 𝐾,
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→
𝜈 = (𝜈1,… , 𝜈𝑛) is the vector of the internal normal to 𝛤:

𝛤0 = {𝑥 ∈ 𝛤 ∶ (
𝑛
∑
𝑖,𝑗=1

𝑎𝑖,𝑗𝜈𝑖𝜈𝑗) (𝑥) = 0} . (15)

As the operator 𝐾, we can take the linear hyperbolic-parabolic heat conduction operator described
above in (9).
Lemma 1. For any function 𝑢(𝑥) from 𝐶𝐾 we derive inequality (14) with parameters 𝑚 = 2 and

𝑟 = 2 if the condition is met:
2𝑎 − |𝑘𝑡| ⩾ 𝛿 > 0. (16)

Lemma 2. For any function 𝑢(𝑥) from 𝐶𝐾, if condition (16) is met, the following inequality with
parameter𝑚 = 2 is deduced:

‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼2
‖
‖‖
𝜕𝑢
𝜕𝑁

‖
‖‖𝐿2(𝛤)

. (17)

Let us define the Banach spaces𝐻+ and𝐻# with standards: ‖𝑢‖+ = ‖𝐾𝑢‖𝐿𝑚(𝐷); ‖𝑢‖⊕ = ‖𝐾𝑢‖𝐿𝑚(𝐷) +
‖𝑢‖𝑊1

𝑒 (𝐷), obtained by closing a set of functions from

𝐶𝐿 = (𝑢 ∈ 𝐶𝐾 ∶ 𝜕𝑢
𝜕𝑁

|||𝛤/𝛤0
= 0) .

From (14) it follows that these are indeed the norms and spaces𝐻+ and𝐻# are obviously separable.
With the help of the Clarkson’s inequalities is proved the next lemma.

Lemma 3. Spaces 𝐻+ and 𝐻# reflective.
From the embedding theorems for Sobolev spaces it follows that functions from the spaces 𝐻+

and 𝐻# vanish on the entire boundary of 𝛤. Equality (15) means that on 𝛤0 the derivative along
the conormal is the tangent derivative to the boundary 𝛤 and on functions from 𝐶𝐾 vanishes on 𝛤0,
therefore inequality (17) actually means

‖𝑢‖+ = ‖𝐾𝑢‖𝐿𝑚(𝐷) ⩾ 𝛼3
‖
‖‖
𝜕𝑢
𝜕𝑁

‖
‖‖𝐿2(𝛤/𝛤0)

.

After introducing a continuous trace operator based on inequality (17) of Lemma 2 on functions
from 𝐶𝐾 and extending it by continuity to the spaces 𝐻+ and 𝐻#, we find that for functions from 𝐻+
and 𝐻# the derivative with respect to the conormal vanishes in the space 𝐿2(𝛤/𝛤0).
Suppose that the functions 𝑓1(𝑥), 𝑓2(𝑥) admit continuation 𝑓(𝑥) inside the region 𝐷 from the space

𝑊 2
𝑚(𝐷) ∩ 𝑊 1

𝑘 (𝐷), where 𝑘 = max(𝑟, 𝑒). Then a collection of functions of the form 𝑢(𝑥) = 𝑧(𝑥) + 𝑓(𝑥),
where 𝑧(𝑥) from 𝐻+(𝐻#), forms the space 𝐻+(𝑓)[𝐻#(𝑓)].

Definition 1. Function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] let’s call it a weak generalized solution to problem
(13) if the identity holds:

𝑛+1
∑
𝑖=0

∫
𝐷
𝐴𝑖(𝑥, 𝑢, 𝑢𝑥1,… , 𝑢𝑥𝑛), 𝐾𝑢)𝐿𝑖𝜈, 𝑑𝐷 =

𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑖𝑢), 𝐿𝑖𝜈) = (ℎ, 𝜈),

∀𝜈(𝑥) ∈ 𝐶𝐿, 𝑗 = 0, 𝑛 + 1.

Definition 2. Function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] we call a strong generalized solution to problem
(13) if there is a sequence of functions 𝑧𝑖(𝑥) ∈ 𝐶𝐿 such that

lim
𝑖→∞

‖𝑧𝑖 + 𝑓 − 𝑢‖+[⊕] = lim
𝑖→∞

‖𝐿(𝑧𝑖 + 𝑓) − ℎ‖−[⊖] = 0,

where𝐻−(𝐷)[𝐻⊖(𝐷)] are the negative spaces to𝐻+(𝑓)[𝐻#(𝑓)], constructed with respect to the Hilbert
space 𝐿2(𝐷).
Let us present a number of assumptions for various equations of the form (13), which essentially

mean conditions on the behavior of nonlinear functions 𝐴𝑖(𝑥, 𝜉𝑗), 𝑖, 𝑗 = 0, 𝑛 + 1, 𝜉 ∈ 𝑅𝑛+1.
1. Conditions of limitation and continuity: 𝐿 ∶ 𝐻+(𝑓) → 𝐻−(𝐷).
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The functions 𝐴𝑖(𝑥, 𝜉𝑗), 𝑖, 𝑗 = 0, 𝑛 + 1 satisfy the Caratheodory conditions, i.e. for almost all 𝑥
from 𝐷 are continuous in the set of variables 𝜉𝑗, for all values 𝜉𝑗 are measurable in 𝑥 and satisfy the
inequalities:

𝐴𝑖(𝑥, 𝜉𝑗) ⩽ 𝛼4 (𝑎(𝑥) +
𝑛+1
∑
𝑗=0

|𝜉𝑗|𝑝𝑖𝑗) ,

where 𝑝𝑖,𝑗 are selected indicators.
2. Condition for coercivity of the operator 𝐿𝑢. For any function 𝑢(𝑥) from 𝐻+(𝑓)[𝐻#(𝑓)] the

following inequality holds:

𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑗𝑢), 𝐿𝑖𝑢) ⩽ 𝛼5‖𝑢‖𝑚+ − 𝛼6, 𝑗 = 0, 𝑛 + 1,

[
𝑛+1
∑
𝑖=0

(𝐴𝑖(𝑥, 𝐿𝑗𝑢), 𝐿𝑖𝑢) ⩽ 𝛼7(‖𝑢‖𝑚+ + ‖𝑢‖𝑒𝑊1
𝑒 (𝐷)

) − 𝛼8] .

3. Condition for the definiteness of the variation of the operator 𝐿𝑢. For any functions 𝑢(𝑥), 𝑣(𝑥)
from 𝐻+(𝑓)[𝐻#(𝑓)] the following inequality holds:

(𝐿𝑢 − 𝐿𝜈, 𝑢 − 𝜈) ⩾ 𝛼9‖𝑢 − 𝜈‖𝑚+ ,

[(𝐿𝑢 − 𝐿𝜈, 𝑢 − 𝜈) ⩾ 𝛼10(‖𝑢 − 𝜈‖𝑚+ + ‖𝑢 − 𝜈‖𝑒𝑊1
𝑒 (𝐷)

)].

Similar to the work of Dubinsky Yu.A. the following theorem is proved:
Theorem 3: If assumptions 1) – 3) are met, then the first boundary value problem (13) for any

function ℎ(𝑥) ∈ 𝐻−(𝐷)[𝐻⊖(𝐷)] is set correctly, the weak solution coincides with the strong one, i.e.
a mapping 𝐿𝑢 = ℎ(𝑥) ∈ 𝐻−(𝐷)[𝐻⊖(𝐷)] is a homeomorphism[21].

5. Conclusion

A program has been written to solve the mixed heat equation using the simple iteration method.
A calculation was carried out with similar boundary conditions. The results coincide with the results
of the first miscalculation.
There are other methods that have become widespread in practice for constructing an iterative

process for solving systems of nonlinear difference equations. For example, Newton’s method is
based on the linearization of equations and is usually used in the case when the dependences of the
coefficients on temperature are specified by analytical dependencies that can be differentiated. In
further work, this method will be used to solve essentially nonlinear equations of mixed type.
Along with numerous methods for solving inverse coefficient problems for linear and nonlinear

second order equations 𝐾(𝑢) = ℎ you can also use the one proposed by Yu.A. Dubinsky. approach
when this equation, which is generally unsolvable for an arbitrary right-hand side ℎ, is associated
with some 4th order equation 𝐾∗ 𝐾(𝑢) = 𝐾∗ℎ, which is always solvable. Then the equation 𝐾(𝑢) = ℎ
is solvable up to the kernel of the operator 𝐾∗.
This construction can also be considered as a technique for describing the range of values of

the mixed heat operator corresponding to an ill-posed problem with overdetermination. The
presence of these additional boundary conditions, taking into account the release of some of them
on the characteristic surfaces of the operator 𝐾(𝑢), is necessary for the numerical solution of the
well-posed Dirichlet problem for the equation 𝐾∗ 𝐾(𝑢) = 𝐾∗ℎ, if the operator 𝐾∗ 𝐾 implements
a homeomorphism.
Funding: The work was carried out with the financial support of the Russian Science Foundation grant No. 23-21-00269,
https://rscf.ru/project/23-21-00269.
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Численное решение нелинейного гиперболо-параболического
уравнения теплопроводности
В. Н. Ханхасаев1, 2, С. А. Баиров1

1 Восточно-Сибирский государственный университет технологий и управления,
ул. Ключевская, д. 40В, стр. 1, г.Улан-Удэ, 670013, Российская Федерация
2 Бурятский государственный университет имени Доржи Банзарова,
ул. Смолина, д. 24А, Улан-Удэ, 670000, Российская Федерация

Аннотация. В статье рассматривается математическая модель и конечно-разностная схема процесса
нагрева бесконечной пластины. Приводятся недостатки использования классического параболическо-
го уравнения теплопроводности для данного случая и обоснования для использования смешанного
уравнения. Показана связь гиперболического уравнения теплопроводности с теорией уравнений с запаз-
дывающим аргументом (уравнением с запаздыванием). В смешанном уравнении присутствуют 2 части:
параболическая и гиперболическая. В разностных схемах применяется интегро-интерполяционный
метод для уменьшения погрешностей. В качестве краевой задачи выбрана задача с нелинейным
коэфффициентом теплопроводности. Источник тепла в параболической части уравнения равен 0,
а в гиперболической части уравнения начинается резкий нагрев. Поставлена и численно решена
начально-краевая задача с краевыми условиями третьего рода в бесконечной пластине с линейны-
ми и с нелинейными коэффициентами. Описан итерационный метод для решения задачи. Представлен
наглядный график результатов решения. Дано теоретическое обоснование для разностной схемы. Также
рассмотрен случай нелинейного смешанного уравнения четвертого порядка.
Ключевые слова: гиперболо-параболическое уравнение, уравнения с запаздыванием, начально-краевая
задача, конечно-разностные схемы, уравнения высокого порядка


