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It is shown that it is possible to describe motions in a relativistically covariant way in
terms of the coordinate time without using the notion of the proper time. For completeness

we consider motions of Galilean and Einsteinian both subluminal and superluminal particles.
The presented approach can easily be generalized to more general models of spacetime.
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Introduction

In Special Relativity [1], motions of mass points are customarily described in terms
of the notion of the proper time 7 related to the coordinate time ¢ by the relation

()

dr =14/1 dt,

where ¥(t) is the velocity of the considered mass point. In spite of the fruitfullnes of
such an approach the use of the proper time formalism has also a serious disadvantages:
first, for nonnuniform motions (in particular for oscillatory changing velocities) the
proper time does not provide a parameter which uniformly increases with coordinate
time and second, the proper time does not allow to use it for many particle systems
because the proper times for each particle are different. In addition, the proper time
for nonuniform motions coincide with the coordinate time in continuously changing
inertial reference what makes it difficult to visualize the motion.

It is also clear that the proper time approach cannot be applied to tachyons because
for superluminal speeds the proper time becomes imaginary and consequently it cannot
be used as a parameter labelling the position of the tachyon on its trajectory.

In the present paper we shall show how to describe relativistic motions using only
the coordinate time without any reference to the proper time. The clue to this goal is
the velocity tensor introduced in [2]. For simplicity, we restrict here the considerations
to the two-dimensional spacetime only. The passage to higher dimensional spacetimes
is straghtforward but technically more involved and will be described in a separate
paper.

The paper is organized as follows. First, we recapitulate the basic properties of the
velocity tensors. Then, we shall explicitly construct such tensors for the Galilean an
Minkowskian space times. In the later case we shall consider both the subluminal and
superluminal motions. Finally, we shall consider the dynamical equations of motions
which directly generalize the standard Newton dynamical equation.

1. Basic properties of the velocity tensors

In the formalism described in [2] the velocity tensors V' (¥) are used as functions
of the standard three-dimensionl velocity ¥. In terms of this tensors the standard

kinematic relation
di = vdt (1)

is written in the covariant form as
VI (¥)dx" =0, (2)
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where dz” (v = 0,1,2,3) denote the infinitesimal displacements along the trajectory
of the particle.

The general construction of the velocity tensors goes as follows. First, we use the
tensorial transformation rule for the matrix V' with matrix elements V}* given by the
components of the velocity tensor. This rule reads

V(@) = SV (7)S~, (3)

where S is the matrix with matrix elements S# fixed by the transformation rule for
spacetime coordinates
dz'* = Stda”.

Second, we use the additional conditions for the matrix V' of the form [2]
TI']'V =0 (4)

for j = 1,...n, where n is the dimension of spacetime and Tr; denote the sums of the
diagonal minors of order j of the matrix V. Conditions (4) ensure that all eigenvalues
of the matrix V' are equal to zero because under the conditions (4) the characteristic
equation for the eigenvalues A reduces to the simple equation

A" =0.

The eigenvalue equation (2) provides then an unique eigenvector da*. Third, we
assume that matrix elements of V(¢) are form-invariant functions of the velocity ¢

and therefore
V'(7) = V(0).

This relation together with (3) provides us functional equations for finding the
matrix elements of V. These functional equations obviously have the form

V(7)) = SV(7)S™ . (5)
We shall now illustrate this method on the examples of the Galilean and Einsteinian

two-dimensional spacetimes. The generalization to four dimensional spacetime is
straightforward but a little bit more tedious.

2. Examples of velocity tensors
The Galilean transformations of spacetime coordinates
=t o =x+ut

lead to the following form of the matrix S:

sat) =, 1)

where u is the relative velocity of the observer tight to the primed reference frame
with respect to the observer tight to the unprimed reference frame. Then (5) gives
the functional equation

Vg(’U + u) = Sg(u)VG(U>SEl(u) = Sg(u)VG(”U)Sg(—u).
Taking the unprimed reference frame as the rest frame for the particle we must put

v =0 and we get
Va(u) = Sa(u)Ve(0)Se(—u). (6)



Kapuscik Edward On the Description of Relativistic Motions in Terms of Co. . . 139

Finally, renaming the velocity u as v we get

Va(v) = Sa(v)Va(0)Sa(—v). (7)

In the rest frame equation (2) gives two equations
V(0)dt + VP (0)dz = 0

and

Vo (0)dt + V7' (0)dx = 0.
But in the rest frame of the particle along its trajectory da = 0 for arbitrary d¢ and
therefore
V5'(0) = V5 (0) = 0. (8)
The conditions (4) for the two-dimensional spacetime reduce to only two conditions
Tr V(v) =0

and

det V(v) = 0.

From these conditions and (8) we get then that also V{}(0) = 0. Below we shall see
that it is convenient to normalize the remaining free matrix element V°(0) to —1.

Thus we have
0 -1
Ve =1{o o

and from (6) we finally get the Galilean velocity tensor in the form
v -1
v = (s ). )

’U2 —v

Clearly with such velocity tensor the standard equation (1) follows from the equa-
tion (2).

In the case of the Einsteinian two-dimensional spacetime from the standard Lorentz
transformations

v t—i—c%:c’ s x4+ ut
u? u?
ez ez
we have . |
_ 2
SL(U) o w2 (u 1)
e

and from equations (5) for the Einsteinian velocity tensor Vg we get the functional
equation

Vi (1“ +jj;> — S1(w)Vi()S7 (—u).
T

Again, assuming that the unprimed reference frame is the rest frame of the particle

we get the relation (7) with S (v) replaced by Sp(v). In the rest frame the velocity

tensor Vg (0) is exactly the same as in the Galilean case because the same conditions

must be satisfied as for the Galilean case. Thus finally we get

V) = 1 (5 L) (10)

v —v

c2
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It is easy to check that with such velocity tensor from (2) equation (1) also follows.

The presented formalism may also be applied to motions with superluminal speeds.
The physics of tachyons is relatively poorely developed. The main reason for that is
the widely spread but erroneous opinion that the existence of tachyons contradicts
the main principles of Special Relativity. Such opinions are based on the unjustified
statement that the speed of light is the maximal speed allowed by Special Relativity [3].
As a matter of fact the speed of light is only the invariant speed respected by all inertial
observers [4].

The physics of tachyons began with the paper by G. Feinberg [5] who formally
introduced the imaginary mass in standard relativistic expressions for momentum and
energy for objects moving with superluminal speeds. Although G. Feinberg argued
that the existence of tachyons does not contradict Special Relativity the fact that they
enter physics through complex numbers infected their life from the very beginning.

Fortunately, recently [6,7] we have shown that there exists a quite natural way to
introduce both sub- and superluminal objects into the framework of Special Relativity.
The new approach is based on the most general linear transformations which preserve
the invariant magnitude of the velocity c. In the present paper we shall however not
follow this approach but we shall argue in the framework of the standard Special
Relativity based on the Lorentz transformation.

To construct the velocity tensor for tachyons we must use the Lorentz transforma-
tion between the reference frame in which the tachyon moves with an infinite speed
and the reference frame in which its speed is equal to w. This transformation leads to
the following form of the matrix S(w) [6,7]

2

&

|
| —_

%

/N
g ‘Om =
= g~
N——

The tachyonic velocity tensor therefore satisfies the functional equation
wiwa + c? 1
Vi——— | = S(wl)V(wg)S (’U}l) = S(wl)V(wg)S(—wl).
w1 + w2
In the limit we — 0o we get
V(w) = S(w)V(c0)S(—w).

In the reference frame in which the tachyon moves with an infinite speed from (2) we

have
V(00)dt + VP (co)dz =0 (11)

and
Vi (00)dt + Vit (00)dz = 0. (12)

Tachyons with infinite speeds in any finite time pass infinite distances. Therefore,
equations (11) and (12) may be satisfied only for

Vi (00) = Vi (00) = 0.
From the traceless condition for velocity tensors we get then also that

V) (00) = 0.
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Normalizing V' (c0) = +1 we finally get

el = (1 )- (1

With such velocity tensor in the reference frame where tachyons move with infinite
speeds the time stops along their trajectories because from (12) it follows that

dt =0.
With Vp(o0) of the form (13) the tachyonic velocity tensor Vp(w) has the form
1 (L -
e G (1)

w2

This tensor also gives equations (1).

As it was shown in [6,7] the main difference between subluminal and superluminal
objects consists just in the existence of rest frames for the former objects and the
nonexistence of such frames for the latter.

3. Dynamical equations

The dynamical equation of motion we shall write in the form
o Vi(v) =1, (15)

where I, describes the influence of the environment on the moving object. It is clear
that (15) is the only covariant form which generalize the standard Newton equation

dit) 1

F

where M is the mass of the particle and F (t) is the acting force. Below, we shall
elaborate the meaning of the notion of I, and its relation to the standard force F'(¢).

For this purpose we shall apply the dynamical equation (15) using the velocity
tensors derived above. We begin with the Galilean velocity tensor (9) with the time
dependent velocity v(t). Since the components of the velocity tensor depends only on
the time coordinate equation (15) reduces to two equations

do(t) _

W ) (16)
and

I(t) = 0.

From equation (16) it is clear that the time component of the influence is related to
the customary force F'(t) in the form

Io(t) = 3 F(0),

where M is the mass of the particle.
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For the relativistic subluminal particles with the velocity tensor (10) equation (15)

gives
¢ (1_“)()> 0 (1)

and the corresponding equation for the space component

d 1
Sy

In the simplest case of constant in time Iy(¢) = I we can integrate equation (17) and
solve the result with respect to v(t). In this way we get

144Dy ATt +T
o(t) = Y G CLARY (18)

=c = <c
2(It +T ’
(It +T) 14 /1 + 20D
where v
I =—", It
-

and vy is the initial velocity at time to. It is easy to see that v(t) is always less than
the speed of light and in the limit ¢ — oo we get v(t) — +¢, where the sign depends
on the sign of I. This result is to be compared with the case of a standard relativistic
particle moving under the influence of a constant force [1] for which we have

Ft/M
Ft\2
L+ (37¢)
Here M is the mass of the particle, F' the standard nonrelativistic force and the initial

condition is such that I' = 0 (i.e. at tp = 0 we put vy = 0). For large values of ¢
formulas (18) and (19) coincide for I' = 0 provided I = F/2M.

Vper (1) = (19)

Finally, we pass to the motion of tachyons for which the velocity tensor has the
form (14) and equation (15) gives

i () -a) = 0

4 (=a)-0

This time for a constant in time Io(t) we get

and

14 /1+4c2(It +T)2
21t +1)

w(t) = C,

where w

0
wZ_a T
wi — ¢

I =

and wy is the initial velocity at time #g.
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Conclusions

The main result of the present paper consists in the proof that in the framework
of Special Relativity motion may be described exactly in the same way as it is done in
the Galilean physics. The formalism is fully covariant under corresponding relativity
groups and maximally simple. The extension of the customary description of motion
to tachyons is possible because we do not use the notion of a proper time which is
necessary in the standard formalism of Special Relativity but which for nonuniform
motions is physically very difficult to measure due to its interpretation as time in
continuously changing reference frames. Moreover, proper time is meaningless for
superluminal motions. Our formalism uses only coordinate time in the reference frame
in which the motion is described.

The presented approach can easily be extended to motions in spacetimes with
symmetries given by more general transformations than the described above. As a
matter of fact, there is no restriction on the transformation matrices S in (3) so the
formalism may be applied also in the framework of General Relativity.

It is also worth to note an interesting application of the presented formalism to
particle physics [8].
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VIIK 533
06 OIIMCaHUHM PEJIATUBUCTCKUX rZ[BI/I}KGBHI/II';'I B TeépMHHax
KOOpAMHATHOI'O BpeMeHun

9. Kanycruuk

Buvicwas eymanumapnas u cCmomamono2uneckas wroaa umenu Asvppeda Meticcrepa
2. Yemponw, Ioavwa

ITokasbiBaeTCs1, ITO MOXKHO OIMCHIBATD JBUXKEHUS PEJISTUBUCTCKN-KOBAPUAHTHBIM 00pa3oM
0e3 MCIOIb30BaHUs COOCTBEHHOrO BpeMmeHU. s MOJTHOTHI MBI pacCMaTPUBaeM TraJjIuJIeeBO-
VHBapUAHTHBIE U PEJISTUBUCTCKUA-UHBADUAHTHBIE JIBUKEHUS KAK JOCBETOBBIX, TAK M CBEPX-
CBeTOBBIX 4acTull. IIpenoyKeHHbIH OAX0M MOXKeT OBIThH JIETKO PACIPOCTPAHEH M Ha OoJiee
00IIMe MOJIE/IN IIPOCTPAHCTBA-BPEMEHHN.

KurouyeBbie cjioBa: cOOCTBEHHOE BpeMsi, KOOPJUHATHOE BPEMsI, IMPOCTPAHCTBO-BPEMSsI
MunkoBcKorO.





