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1. Introduction

Analytical approach to the solution of an optimal control problem and method
of determining control actions providing stable programmed motion of a rocket are
considered [1]. Practical value of the problem is associated with the design and real-
ization of a best autonomous space guidance, one of the prioritized problems of space
flight and depends on the characteristics of the trajectory solutions [2, 3]. Numeri-
cally integrated trajectory solutions used in guidance problem are very sensitive to
the initial conditions and do not always allow for the design of simple and reliable
laws of autonomous guidance due to existence of convergence problems, unknown ini-
tial Lagrange multipliers and unknown sequence of thrust arcs on the trajectory [4].
Therefore, for the successful solution of the guidance problem, it is suggested to de-
velop an analytical approach to the optimal control problem which would allow us to
design a nominal trajectory without the convergence problems and the uncertainties
mentioned above. In this paper, the optimal control problem is formulated, the first
and second differentials of the performance index are analyzed, the condition of finite-
ness of the solutions to the Riccati equation and Jacobi condition on conjugate points
are considered [5]. The classes of optimal thrust arcs are determined by the Legendre
condition tests. The presented analytical method can serve as a tool of extracting the
reference trajectories for the guidance problem.

Ref. [6] contains the solution to the problem of determining the mass law for a
point which corresponds to a motion according to a given law or trajectory. Various
statements for the inverse problems of dynamics of mechanical systems and methods
of stabilization of constraints have been investigated in Ref. [7–11]. Reactive forces
generated due to the change of rocket’s mass and exhaust velocity allow us to realize
its motion corresponding to the solution of Mayer’s variation problem and to provide
stability of motion with respect to the trajectory or law of motion [8].
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2. Optimal Control Problem

Let the center of mass (CM) of a spacecraft at any time can be determined by
vector-function x = (𝑥1, 𝑥2, . . . , 𝑥𝑛), x(𝑡) ∈ ℜ(𝑛), the components of which are as-
sumed continuous and absolutely differentiable on a time interval [𝑡0, 𝑡1], but their
derivatives may have discontinuities. Here 𝑡0 and 𝑡1 are the initial and final times of
motion. Then the equations of motion are given as

�̇�𝑖 = 𝑓𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛, 𝑢1, 𝑢2, . . . , 𝑢𝑘), (1)

The vector-function u = (𝑢1, . . . , 𝑢𝑘), u(𝑡) ∈ ℜ(𝑘) is called as control vector, and its
components 𝑢𝑟 (𝑟 = 1, ..., 𝑘) are defined on [𝑡0, 𝑡1] and considered piecewise continuous
functions [12]. The functions 𝑓𝑖 possess continuous partial derivatives of sufficiently
high order with respect to all components of x and u. Assume that the following
equations are satisfied:

Ψ𝑙(𝑥01, 𝑥02, ..., 𝑥0𝑛) = 0, 𝑙 = 1, ..., 𝑞1, 𝑞1 6 𝑛. (2)

𝐹𝑚(𝑥11, 𝑥12, ..., 𝑥1𝑛, 𝑡1) = 0, 𝑚 = 1, ..., 𝑞2, 𝑞2 < 𝑛+ 1. (3)

Φ𝑠(𝑢1, 𝑢2, ..., 𝑢𝑘, 𝛼1, 𝛼2, ..., 𝛼𝑑) = 0, 𝑠 = 1, ..., 𝑝 < 𝑘 𝑑 6 𝑘, (4)

where 𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑑) and 𝛼 ∈ ℜ(𝑑) are considered as auxiliary controls. Here and
below the subscripts “0” and “1” will mean initial and final values of the variables. It
is required to find x(𝑡) and u(𝑡) so, that (1-4) are satisfied, and the functional

𝐽(𝑥1,𝑞2+1, 𝑥1,𝑞2+2, ..., 𝑥1,𝑛, 𝑡1) +

𝑡1∫︁
𝑡0

𝑔(𝑥, 𝑢, 𝑡)d𝑡. (5)

is minimized. All functions Ψ𝑙, 𝐹𝑚, Φ𝑠, 𝐽 and 𝑔 are continuous and possess continuous
partial derivatives of sufficiently high order with respect to all their components.

3. Differentials of Extended Functional

Consider the extended functional of the form:

𝐾(x0,x1,u,𝜇,𝜈,𝛾,𝛼, 𝑡1) = 𝐺+

𝑡1∫︁
𝑡0

[𝐻 − 𝜆𝑇 ẋ]d𝑡. (6)

where
𝐻(x,u,𝜆,𝛼,𝛾, 𝑡) = 𝜆𝑇 f + 𝛾𝑇Φ+ 𝑔, (7)

𝐺(x0,x1,𝜇,𝜈, 𝑡1) = 𝐽 + 𝜇𝑇Ψ+ 𝜈𝑇F, (8)

u = (𝑢1, 𝑢2, ..., 𝑢𝑘+𝑑), 𝛼 = (𝛼1, 𝛼2, ..., 𝛼𝑑),

Ψ = (Ψ1,Ψ2, ...,Ψ𝑞1), F = (𝐹1, 𝐹2, ..., 𝐹𝑞2), Φ = (Φ1,Φ2, ...,Φ𝑝),

𝜇 = (𝜇1, 𝜇2, ..., 𝜇𝑞1), 𝜈 = (𝜈1, 𝜈2, ..., 𝜈𝑞2), 𝛾 = (𝛾1, 𝛾2, ..., 𝛾𝑝),

the vectors 𝜇, 𝜈 and 𝛾 are considered as unknown multipliers, and 𝜇 and 𝜈 are
assumed to be constants.

It can be shown that by accepting the notation 𝜕(·)
𝜕𝑥 = (·)𝑥, the first and second

differentials of the extended functional (6) are of the form:

d𝐾 = (𝐺𝑥0 + 𝜆𝑇0 )d𝑥0 + (𝐺𝑥1 − 𝜆𝑇1 )d𝑥1 + (𝐺𝑡1 +𝐻1)d𝑡1+
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𝑡1∫︁
𝑡0

[(𝐻𝑥 + �̇�𝑇 )𝛿x+𝐻𝑢𝛿u+ (𝐻𝜆 − ẋ𝑇 )𝛿𝜆]d𝑡. (9)

d2𝐾 = [𝛿x𝑇1 d𝑡1]

[︃
𝐺𝑥1𝑥1 Ω𝑇𝑥1

Ω𝑥1 Ω′

]︃ [︂
𝛿x1

d𝑡1

]︂
+ 𝛿x𝑇0𝐺𝑥0𝑥0𝛿x0+

+

𝑡1∫︁
𝑡0

[𝛿x𝑇 𝛿u𝑇 ]

[︂
𝐻𝑥𝑥 𝐻𝑥𝑢

𝐻𝑢𝑥 𝐻𝑢𝑢

]︂ [︂
𝛿x

𝛿u

]︂
, (10)

where
Ω = 𝐺𝑡1 + 𝑔 + 𝛾𝑇Φ+𝐺𝑥1f , Ω′ = Ω𝑡1 +Ψ𝑥1 ẋ1.

Analysis of the condition, d𝐾 = 0 allow us to obtain the first-order necessary condi-
tions of optimality for weak extremals:

ẋ𝑇 = 𝐻𝜆, �̇�𝑇 = −𝐻𝑥, (11)

𝐻𝑢 = 0, 𝐻𝛼 = 0, (12)

Ψ = 0, F = 0, 𝜆0 = −𝐺𝑇𝑥0
, 𝜆1 = 𝐺𝑇𝑥1

, 𝐻1 = −𝐺𝑡1 . (13)

These conditions can be used to determine 2𝑛 + 𝑘 + 𝑑 unknowns 𝑥𝑖, 𝜆𝑖, 𝑢𝑟 (𝑟 =
1, ..., 𝑘+𝑑) together with 2𝑛 constants. 2𝑛 constants, 𝑞1 variables 𝜇𝑙 (𝑙 = 1, ..., 𝑞1), 𝑞2
variables 𝜈𝑚(𝑚 = 1, ..., 𝑞2) and the time 𝑡1 can be determined using 𝑞1 conditions (2),
𝑞2 conditions (3) and 2𝑛+ 1 conditions (13). Besides that, if x, u represent an opti-
mal trajectory, then the Weierstrass and Legendre–Clebsch conditions are satisfied on
this trajectory [13]:

𝐻(x, ũ,𝜆,𝛾, 𝑡) 6 𝐻(x,u,𝜆,𝛾, 𝑡), 𝐻𝑢𝑢 > 𝑞0, (14)

where ũ is an admissible control vector [1].

Using the analysis of the auxiliary optimization problem, it can be shown that d2𝐾
is positive definite if the conditions (11), (12), (13), 𝐻𝑢𝑢 > 0 and D > 0 are satisfied,
and the matrix �̄� is finite on [𝑡0, 𝑡1). Here

D = [𝑑𝑎𝑏], [𝑑𝑖𝑗 ] = [Ξ]𝑖,𝑗 , [𝑑𝑞𝑟] = [�̄�+𝐺𝑥0𝑥0
]𝑞,𝑟,

Ξ = −Ξ−1
2 Ξ1, Ξ1 =

𝜕Ψ

𝜕𝑞𝑠
, Ξ2 =

𝜕Ψ

𝜕𝑞𝑘
, 𝑑𝑒𝑡[Ξ2] ̸= 0,

𝑎, 𝑏 = 1, 2, ..., 𝑛; 𝑖, 𝑗 = 1, ..., 𝑞1; 𝑞, 𝑟 = 𝑞+1, ..., 𝑛; 𝑠 = 𝑞1+1, ..., 𝑛; 𝑘 = 1, ..., 𝑞1. The
elements of the matrix �̄�𝑄 are the known functions of the elements of 𝑅:

�̄� = 𝑅− 𝑉 𝑇𝑄−1𝑃𝑇 ,

where �̄�, 𝑉 and 𝑄 satisfy the Riccati equation and the two conditions [13]:

�̇� = 𝐶 −𝐴𝑇𝑅−𝑅𝐴+𝑅𝐵𝑅, �̇� = (𝑅𝐵 −𝐴𝑇 )𝑉 𝑇 , �̇� = 𝑉 𝐵𝑉 𝑇 . (15)

Here 𝐻𝑢𝑢 > 0, and

𝐴 = 𝑓𝑥 − 𝑓𝑢𝐻
−1
𝑢𝑢𝐻

𝑇
𝑥𝑢, 𝐵 = 𝑓𝑢𝐻

−1
𝑢𝑢 𝑓

𝑇
𝑢 , 𝐶 = (𝐻𝑥𝑢𝐻

−1
𝑢𝑢𝐻

𝑇
𝑥𝑢 −𝐻𝑥𝑥).
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4. Conjugate Points

Let 𝛿x0 = 0 and 𝐻𝑢𝑢 > 0. Then at some time instance, 𝑡 = 𝜏, (𝜏 ∈ (𝑡0, 𝑡1])
the matrix �̄� is not finite, then from 𝛿x = �̄�−1𝛿𝜆 it follows that 𝛿x(𝜏) = 0. The
corresponding trajectory point at 𝜏 is said to be conjugate to the trajectory point at
𝑡0 [5, 13]. It was shown that the finiteness of the matrix �̄� on [𝑡0, 𝑡1] means absence
of the conjugate points on (𝑡0, 𝑡1] with respect to the initial point at 𝑡0. The absence
of the conjugate points on (𝑡0, 𝑡1) is known as the classical condition of Jacobi. When
𝐻𝑢𝑢 > 0, the condition 𝛿x ̸= 0 (or 𝛿𝜆 ̸= 0) allows us to determine the presence of the
conjugate points on thrust arcs using the analytical solutions, if such solutions exist.

Let the equation of an extremal, (12) contain 𝑚( 6 2𝑛) constants of integration.
If 𝑐 is one of the constants, then its variation provides the family of solutions, x =
x(𝑡, 𝑐), 𝜆 = 𝜆(𝑡, 𝑐), u = u(𝑡, 𝑐). By varying ẋ = f(x,u), it can be shown that

𝛿𝑥𝑖 =
𝜕𝑥𝑖
𝜕𝑐

, 𝛿𝜆𝑖 =
𝜕𝜆𝑖
𝜕𝑐

. (16)

As the necessary conditions of optimality, (11), (12) and (13) are linear and of the
order 2𝑛, their solutions on the optimal trajectory can be written by employing the
principle of superposition in the following form:

𝛿𝑥𝑖 =

2𝑛∑︁
𝑗=1

𝑁𝑗
𝜕𝑥𝑖
𝜕𝑐𝑗

, 𝛿𝜆𝑖 =

2𝑛∑︁
𝑗=1

𝑁𝑗
𝜕𝜆𝑖
𝜕𝑐𝑗

, 𝛿𝑢𝑟 =

2𝑛∑︁
𝑗=1

𝑈𝑗
𝜕𝑢𝑟
𝜕𝑐𝑗

, (17)

where 𝑐𝑗 , (𝑗 = 1, ...,𝑚) are the constants of integration in the solutions to the problem
described in the equations (1)–(5), and 𝑁𝑗 , 𝐿𝑗 , 𝑈𝑗 are the constants. If the constants
𝑐𝑗 are defined in the solution process, then 𝛿𝑥𝑖(𝑐𝑗 , 𝑡), 𝛿𝜆𝑖(𝑐𝑗 , 𝑡) and 𝛿𝑢𝑟(𝑐𝑗 , 𝑡) will
represent the analytical solutions of the auxiliary optimization problem, which can
satisfy the necessary conditions of optimality. This in turn means that the first two
equalities of (17) can be used to determine the presence of the conjugate points on the
extremals.

5. On Satisfaction of Legendre–Clebsch Condition

The problem of optimizing the trajectory with limited power may be formulated
in the context of the optimal control problem stated above [12]:

v̇ = g(r) +
2𝑃

𝐼𝑠𝑝𝑚𝑔0
e, ṙ = v, �̇� = − 2𝑃

𝐼2𝑠𝑝𝑔
2
0

(18)

Φ1 = 𝑒21 + 𝑒22 + 𝑒23 − 1 = 0, Φ2 = 𝑃 (𝑃max − 𝑃 )− 𝛾2 = 0,

Φ3 = (𝐼𝑠𝑝,max − 𝐼𝑠𝑝)(𝐼𝑠𝑝 − 𝐼𝑠𝑝,min)− 𝜂2 = 0, (19)

where g(r) and 𝑔0 are the vector of gravitational acceleration and its magnitude mea-
sured on a sea level, r, v, 𝑚 are the radius-vector, velocity vector and mass respec-
tively, 𝜂 and 𝛾 auxiliary control variables, 𝐼𝑠𝑝 is the specific impulse, 𝑃 is the power,
which can be determined by the formulae, 𝑃 = 1

2𝛽𝐼
2
𝑠𝑝𝑔

2, 𝛽 is the mass-flow rate. The

control vector is given as u = [𝑃, 𝐼𝑠𝑝, 𝑒1, 𝑒2, 𝑒3, 𝛾, 𝜂]
𝑇
.

As it was shown above, one of the sufficient conditions for d2𝐾 > 0 is expressed by
the conditions of strict positiveness of all main minors of the matrix 𝐻𝑢𝑢. Consider the
elements of the matrix 𝐻𝑢𝑢. If 𝜇2 = 0, 𝜇3 ̸= 0, or 𝜇2 ̸= 0, 𝜇3 = 0, then 𝐻𝛾𝑢 = 0
or 𝐻𝜂𝑢 = 0. This will mean that all main minors of 𝐻𝑢𝑢 are equal to zero, indicating
the extremality of the trajectories for the cases 𝛾 ̸= 0, 𝜂 = 0 and 𝛾 = 0, 𝜂 ̸= 0.
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If 𝜇2 = 0, 𝜇3 ̸= 0, then 𝛾 ̸= 0, 𝜂 = 0, which corresponds to the case with
0 < 𝑃 < 𝑃max, 𝐼𝑠𝑝 = 𝐼𝑠𝑝,min or 𝐼𝑠𝑝 = 𝐼𝑠𝑝,max, that is the motion with constant 𝐼𝑠𝑝
and variable power. If 𝜇2 ̸= 0, 𝜇3 = 0, then it can be shown that 𝛾 = 0, 𝜂 ̸= 0,
meaning that 𝑃 = 𝑃max or 𝑃 = 0 and 𝐼𝑠𝑝,min < 𝐼𝑠𝑝 < 𝐼𝑠𝑝,max, that is the motion with
variable 𝐼𝑠𝑝 and 𝑃max. In both cases 𝐻𝑢𝑢 = 0.

If 𝜇2 ̸= 0, 𝜇3 ̸= 0, then the strict positiveness of all main minors of 𝐻𝑢𝑢 is
provided by appropriate determination of the multipliers 𝜇,𝜆 and e. It should be
noted that the complete solutions of the canonical system of equations corresponding
to this case are remaining unknown. From 𝐻𝑢 = 0 it follows that 𝛾 = 0, 𝜂 = 0, which
mean a motion with 𝑃 = 𝑃max, 𝐼𝑠𝑝 = 𝐼𝑠𝑝,min or 𝐼𝑠𝑝 = 𝐼𝑠𝑝,max [14]. Consequently, in
the optimal control problem given by (2),(3), (5), (18) and (19) with constraints on
power and specific impulse, the optimal thrust arcs are those on which 𝑃 = 𝑃max and
𝐼𝑠𝑝 = 𝐼𝑠𝑝,min or 𝐼𝑠𝑝 = 𝐼𝑠𝑝,max.

In the case of motion with 𝑃 = 𝑃max, 𝐼𝑠𝑝 = 𝐼𝑠𝑝,min or 𝐼𝑠𝑝 = 𝐼𝑠𝑝,max, the following
conditions are true: 𝛽 = 𝑐𝑜𝑛𝑠𝑡 and 𝑚 = 𝑚0 − 𝛽𝑡. It follows from these analysis that
the satisfaction of the Legendre–Clebsch condition allows us to obtain optimal thrust
arcs, but at the same time, it shrinks the domain of the problem parameters.

6. Class of Extremals with Free Time

The case of motion with 𝑃 = 𝑃max and 𝐼𝑠𝑝 = 𝐼𝑠𝑝,min (or 𝐼𝑠𝑝 = 𝐼𝑠𝑝,max) corresponds
to a case of a maximum thrust arc. It was shown that the newtonian field can be
approximated by a linear central field (g(r) = −𝑘2r), if 𝜙 ≈ 0 and (𝑟− 𝑟0)/𝑟0 ≪ 1 [3].
Here 𝑘2 = 𝜇/𝑟30, where 𝜇 is the gravitational parameter, 𝑟0 is the radius of a reference
orbit and 𝑟 is the radius vector of a center of mass. Assume that these conditions
are satisfied. Then it can be shown that if the final time is not fixed (𝐶 = 0) and
𝒥 = 𝑚0 −𝑚1, then from the transversality condition it follows that 𝜆𝜃1 = − 𝜕𝒥

𝜕𝜃1
= 0,

where the subscript “1” means the final time. The analysis of the equations (18) show
that the condition 𝜆𝜃1 = 0 is associated with the cases of motion, where 𝜙 = 0 and
𝜙 ̸= 0.

The first case, where (𝜙 = 0) corresponds to a motion with tangential thrust, and
although it represents a practical interest, it is not considered in this paper. It can
be shown that in the second case, 𝜓 = 𝜓0, 𝜆 = 𝑎 sin(𝑘𝑡+ 𝛼), where 𝜓0, 𝑎, 𝛼 are the

constants. The equality �̇� = 0 means that the hodograph of the basis-vector is the
straight line and the thrust direction is inertially fixed.

In the case of a free flight time and it is required to minimize the final mass, the
analytical solutions of (18) for the given case are written in the form [3]:

𝑣1 = 𝑟 [𝑘 cot(𝑘𝑡+ 𝛼) + �̇� tan𝜙] ,

𝑣2 = −𝑎𝐶2𝑘
sin𝜙

cos(𝑘𝑡+ 𝛼)
+
𝜒𝛽

𝑎𝑘

2 cos2 𝜙

𝑎𝐶2 sin 2(𝑘𝑡+ 𝛼)
,

𝑟 = 𝑎𝐶2
sin(𝑘𝑡+ 𝛼)

cos𝜙
, 𝜃 = 𝜙+ 𝜓0 −

𝜋

2
, 𝑚 = 𝑚0 − 𝛽𝑡,

𝜆𝑣1 = 𝑎 sin(𝑘𝑡+ 𝛼) sin𝜙, 𝜆𝑣2 = 𝑎 sin(𝑘𝑡+ 𝛼) cos𝜙,

𝜆𝑟 = −𝑎𝑘 cos(𝑘𝑡+ 𝛼) sin𝜙, 𝜆𝜃 = 0, 𝜆𝑚 = 𝑎𝑐𝑚2
0

[︂
sin(𝑘𝑡+ 𝛼)

𝑚0 − 𝛽𝑡

]︂
− 𝜒+ 𝜆𝑚0,

(20)

where

𝑥 =
𝑘𝑚0

𝛽
− 𝑘𝑡, 𝑥0 =

𝑘𝑚0

𝛽
, 𝛼0 = 𝛼+

𝑘𝑚0

𝛽
,
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tan𝜙 =
tan𝛼 tan𝜙0

tan(𝑘𝑡+ 𝛼)
+
𝜒𝛽

𝑎𝑘

1

𝑎𝐶2𝑘
+

𝑐𝑠

𝑎𝐶2𝑘 tan(𝑘𝑡+ 𝛼)
,

𝜒 = −𝑎𝑘𝑐
𝛽

[𝐹1(𝑥0, 𝑥) sin(𝛼0) + 𝐹2(𝑥0, 𝑥) cos(𝛼0)],

𝐹1 = 𝐹1(𝑥0, 𝑥) = 𝑆𝑖(𝑥)− 𝑆𝑖(𝑥0), 𝐹2 = 𝐹2(𝑥0, 𝑥) = 𝐶𝑖(𝑥)− 𝐶𝑖(𝑥0),

𝑆𝑖(𝑥) =

∞∑︁
𝑖=1

(−1)𝑖+1𝑥2𝑖−1

(2𝑖− 1)(2𝑖− 1)!
, 𝐶𝑖(𝑥) = 𝐶0 + 𝑙𝑛(𝑥) +

∞∑︁
𝑖=1

(−1)𝑖𝑥2𝑖

(2𝑖)(2𝑖)!
,

𝐶0 = 0.577216 is the Euler-Maskeroni constant, 𝑆𝑖(𝑥) and 𝐶𝑖(𝑥) are the integral sinus
and cosinus, and 𝜙0 is a new constant of integration. Note that these solutions are
true in the case of a limited mass-flow rate and consequently, they do not describe an
instantaneous change of velocity. As it was mentioned in Ref. [3], the assumption about
the instantaneous change of velocity is not adequate to a real flight conditions in solving
the guidance problem. The last expression (20) can be investigated for description of
an approximate guidance law (thrust program) in a realistic gravitational field. This
approach to a guidance law is the development of the idea of application of the linear-
tangential law which is a consequence of the analysis of motion in a constant gravity
field.

Let’s test the presence of the conjugate points on MT arcs found above. The
constants are 𝑐1 = 𝑎, 𝑐2 = 𝛼, 𝑐3 = 𝜓0, 𝑐4 = 𝜙0, 𝑐5 = 𝑚0, 𝑐6 = 𝜆𝑚0, 𝑐7 = 𝐶2. It can
be shown that

𝛿𝑥=

7∑︁
𝑖=1

𝜕𝜃

𝜕𝑐𝑖
=

𝜕𝜃

𝜕𝑐3
= 1, 𝛿𝑥5 =

7∑︁
𝑖=1

𝜕𝑚

𝜕𝑐𝑖
=
𝜕𝑚

𝜕𝑐5
= 1.

The equalities show that the solutions for the MT arcs do not satisfy the conditions

𝛿𝑥2(𝑡0) = 𝛿𝑥2(𝑡
′) = 0, 𝛿𝑥5(𝑡0) = 𝛿𝑥5(𝑡

′) = 0, ∀𝑡′ > 𝑡0.

Consequently, the MT arcs do not contain the conjugate points.

7. Stability of Programmed Motion

Dynamics of a rocket with variable mass, 𝑚 in the central Newtonian field, where
g = −𝜇/𝑟3r, in spherical coordinates, 𝑟1 = 𝑟, 𝑟2 = 𝜃, 𝑟3 = 𝛿, is described by the
equations:

�̇�𝑖 = 𝑣𝑖, �̇�𝑖 = 𝑎𝑖 + 𝛽𝑏𝑖𝑗𝑒𝑗 , 𝑖, 𝑗 = 1, 2, 3, �̇� = −𝛽,

𝑎1 = 𝑟
(︁
𝜃2 cos2 𝛿 + �̇�2

)︁
− 𝜇𝑟−2,

𝑎2 = 2𝜃�̇�𝑡𝑔𝛿 − 2�̇�𝜃𝑟−1, 𝑎3 = −𝜃2 sin 𝛿 cos 𝛿 − 2�̇��̇�𝑟−1,

𝑏11 = 𝑐𝑚−1, 𝑏22 = 𝑐 (𝑚𝑟 cos 𝛿)
−1
, 𝑏33 = 𝑐𝑚−1𝑟−1, 𝑏𝑖𝑗 = 0, 𝑖 ̸= 𝑗,

(21)

where 𝜇 is the gravitational parameter, 𝛽 is the mass-flow rate, 𝑐 is the exhaust velocity,
𝑒1 = 𝑒𝑟, 𝑒2 = 𝑒𝜃, 𝑒3 = 𝑒𝛿 are the components of the unit thrust vector e. In Eqs. (21)
it is assumed the summation operations over the same indices. By considering e and
𝛽 as control variables, one can represent the program of the motion by the constraint
equations:

𝑓𝜅
(︀
𝑟𝑖, 𝑡

)︀
= 0, 𝑓𝜅𝑖 𝑣

𝑖 + 𝑓𝜅𝑡 = 0, 𝑓𝜌
(︀
𝑟𝑖, 𝑣𝑗 , 𝑡

)︀
= 0, (22)

𝑓𝜅𝑖 =
𝜕𝑓𝜅

𝜕𝑟𝑖
, 𝑓𝜅𝑡 =

𝜕𝑓𝜅

𝜕𝑡
, 𝜅 = 1, ..., 𝑘, 𝜌 = 𝑘 + 1, ..., 𝑠.𝑠 ≤ 3.
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In a particular case, Eqs. (22) can describe a law of motion of the rocket’s center of
mass which would correspond to the solution of the optimal control problem. The
controls must be determined such that Eqs. (22) are satisfied for all 𝑡 > 𝑡0, if they are
satisfied at initial time, 𝑡0:

𝑟𝑖 (𝑡0) = 𝑟𝑖0, 𝑣𝑖 (𝑡0) = 𝑣𝑖0. (23)

Obviously, the exact satisfaction of Eqs. (22) in the numerical solution process of
Eqs. (21) may not be possible and the functions 𝑚 and 𝑒𝑖 must be determined in
compliance with the conditions of stability of the constraints, Eqs. (22) [9,11]. For the
stabilization of the constraints, the auxiliary variables, 𝑥𝑘, 𝑦𝑘, 𝑦𝑝, which represent
deviations from Eqs. (22), are introduced:

𝑥𝜅 = 𝑓𝜅
(︀
𝑟𝑖, 𝑡

)︀
, 𝑦𝜅 = 𝑓𝜅𝑖 𝑣

𝑖 + 𝑓𝜅𝑡 , 𝑦𝜌 = 𝑓𝜌
(︀
𝑟𝑖, 𝑣𝑗 , 𝑡

)︀
, (24)

the change of which is determined by the system of equations of the perturbed con-
straints:

d𝑥𝜅

d𝑡
= 𝑦𝜅,

d𝑦𝜎

d𝑡
= 𝑘𝜎𝜈𝑥

𝜈 + 𝑐𝜎𝜂𝑦
𝜂, (25)

𝑘𝜅𝜈 = 𝑘𝜅𝜈
(︀
𝑟𝑖, 𝑣𝑗 , 𝑡

)︀
, 𝑘𝜌𝜈 = 0, 𝑐𝜎𝜂 = 𝑐𝜎𝜂

(︀
𝑟𝑖, 𝑣𝑗 , 𝑡

)︀
,

𝜈 = 1, ..., 𝑘, 𝜎, 𝜂 = 1, ..., 𝑠.

The trivial solution 𝑥𝑘 = 0, 𝑦𝜎 = 0 of Eqs. (25) corresponds to Eqs. (22). For the
constraint stabilization it is necessary to determine such controls 𝛽 and 𝑒𝑖, which
provide asymptotic stability of the trivial solution of Eqs. (25). For description of
the corresponding conditions as the Lyapunov functions, one can use positive-definite
quadratic form with constant coefficients:

2𝑉 = 𝑎𝜅𝜈𝑥
𝜅𝑥𝜈 + 2𝑏𝜅𝜎𝑥

𝜅𝑦𝜎 + 𝑐𝜎𝜂𝑦
𝜎𝑦𝜂, 𝜈 = 1, ..., 𝑘, 𝜎, 𝜂 = 1, ..., 𝑠.

The derivative �̇� of 𝑉 , computed using Eqs. (25), is also of a quadratic form:

�̇� = 𝑎′𝜅𝜈𝑥
𝜅𝑥𝜈 + 2𝑏′𝜅𝜎𝑥

𝜅𝑦𝜎 + 𝑐′𝜎𝜂𝑦
𝜎𝑦𝜂,

𝑎′𝜅𝜈 = 𝑏𝜅𝜎𝑘
𝜎
𝜈 , 𝑏′𝜅𝜎 = 𝑎𝜅𝜎 + 𝑏𝜅𝜂𝑐

𝜂
𝜎 + 𝑐𝜎𝜂𝑘

𝜂
𝜅, 𝑎𝜅𝜌 = 0,

𝑐′𝜎𝜂 = 𝑏𝜂𝜎 + 𝑐𝜎𝜃𝑐
𝜃
𝜂, 𝑏𝜌𝜎 = 0,

𝜅, 𝜈 = 1, ..., 𝑘, 𝜌 = 𝑘 + 1, ..., 𝑠, 𝜎, 𝜂, 𝜃 = 1, ..., 𝑠.

The trivial solution of Eqs. (25) is asymptotically stable, if the function 𝑉 is positive
definite function with respect to 𝑥𝑘, 𝑦𝜎, and its derivative is negative definite, and
the functions 𝑥𝑘, 𝑦𝜎, determined by Eqs. (24) and the function 𝑉 admit infinitely
small supreme limit. The conditions of asymptotic stability can be satisfied by an
appropriate selection of the coefficients of the quadratic form 𝑉 and the right hand
sides of Eqs. (25). In particular, they can be considered constants. The existence of
infinitely small supreme limit of the functions in Eqs. (24) depends on the functions
in Eqs. (22) which provide the program of motion.

8. Determination of Control Actions

If the coefficients 𝑘𝜎𝑣 , 𝑐
𝜎
𝜂 of Eqs. (25) are determined, then for 𝑒𝑖 and 𝛽 one can

differentiate 𝑦𝜎 = 𝜑𝜎(𝑟𝑖, 𝑣𝑗 , 𝑡) taking into account Eqs. (21) and (25), and the expres-
sions

𝜑𝜅(𝑟𝑖, 𝑣𝑗 , 𝑡) = 𝑓𝜅𝑖 𝑣
𝑖 + 𝑓𝜅𝑡 , 𝜑𝜌(𝑟𝑖, 𝑣𝑗 , 𝑡) = 𝑓𝜌(𝑟𝑖, 𝑣𝑗 , 𝑡). (26)
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The computations yield the system of linear algebraic equations with respect to 𝛽𝑒𝑖:

𝑠𝜎𝑖𝛽𝑒𝑖 = 𝑠𝜎, 𝑠𝜎𝑖 = 𝜓𝜎𝑗 𝑏
𝑗𝑖, 𝑠𝜎 = 𝑘𝜎𝜈𝑥

𝜈 + 𝑐𝜎𝜂𝑦
𝜂 −

(︀
𝜙𝜎𝑖 𝑣

𝑖 + 𝜓𝜎𝑗 𝑎
𝑗 + 𝜙𝜎𝑡

)︀
, (27)

𝜓𝜅𝑗 = 𝑓𝜅𝑗 , 𝜓𝜌𝑗 =
𝜕𝑓𝜌

𝜕𝑣𝑗
,

𝑥𝜅 = 𝑓𝜅
(︀
𝑟𝑖, 𝑡

)︀
, 𝑦𝜅 = 𝑓𝜅𝑖 𝑣

𝑖 + 𝑓𝜅𝑡 , 𝑦𝜌 = 𝑓𝜌
(︀
𝑟𝑖, 𝑣𝑗 , 𝑡

)︀
,

𝜙𝑘𝑖 = 𝑓𝜅𝑖𝑗𝑣
𝑗 + 𝑓𝜅𝑖𝑡, 𝜙𝜌𝑖 =

𝜕𝑓𝜌

𝜕𝑟𝑖
, 𝜙𝑘𝑡 = 𝑓𝜅𝑖𝑡𝑣

𝑖 + 𝑓𝜅𝑡𝑡, 𝜙𝜌𝑡 =
𝜕𝑓𝜌

𝜕𝑡

(28)

The solution to Eqs. (27) is determined depending on the number 𝑠 of constraint
equations. The following cases may take place:
1. 𝑠 = 1. Eqs. (27) can be satisfied by the solution:

𝛽 =
(︀
𝑠𝜎𝑖𝑒𝑖

)︀−1
𝑠𝜎

This means that the stable motion can be provided only by the change of 𝛽 for
any admissible components of the thrust vector e.

2. 𝑠 = 2. The general solution of Eqs. (27) takes the form:

𝛽𝑒𝑖 = 𝑒0𝑠𝑖 + 𝑠𝑖𝜎𝑠
𝜎,

where 𝑒0 is an arbitrary quantity, 𝑠𝑖 is computed as a determinant
𝑠𝑖 = 𝑑𝑒𝑡(𝛿𝑖, 𝑠

1𝑖, 𝑠2𝑖), consisting of the unit vector 𝛿𝑖 and rows of the matrix of
coefficients 𝑆 =

(︀
𝑠𝜎𝑖
)︀
of Eqs. (27). The multipliers 𝑠𝑖𝜎 represent the elements of

the matrix 𝑆+ = 𝑆𝑇 (𝑆𝑆𝑇 )−1, pseudoinverse to the matrix 𝑆. The control law de-
pends on two parameters, for which the law of mass change 𝛽 and one parameter
determining the thrust direction can be selected.

3. 𝑠 = 3. Eqs. (27) have the solution:

𝛽𝑒𝑖 = 𝑠𝑖𝜎𝑠
𝜎, (𝑠𝑖𝜎) = 𝑆−1.

The control law depends on three parameters, one of which can be selected as 𝛽.

9. Conclusions

The optimal control problem of determining optimal trajectories of rocket center of
mass and the stability of trajectories are considered. By testing the Legendre–Clebsch
conditions, the classes of active arcs which can be optimal. It has been shown that
the formulas for determining the existence of conjugate points on thrust arcs can be
driven using the analytical solutions for these arcs. The proposed method can serve
as an instrument of extraction of extremal trajectories for the guidance problem. The
laws for mass-flow rate, corresponding to a stable programmed motion in the central
newtonian field, have been determined.
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