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1. Introduction

At the present time, particle accelerators are widely used in a number of researching
fields both of the fundamental and applied science. However, the modern acceleration
mechanisms are limited in terms of the practically attainable acceleration gradients.
This limitation causes an enormous increase in accelerators length that is appearing
to be a significant challenge. It gives a reason to investigate and develop some possible
aproaches for channeled particles acceleration, alternative to conventional ones.

As early as at the end of the previous century a number of ideas for such alternative
acceleration technologies has emerged [1]. Among the basic concepts that should be
emphazised are the possibility to utilize a wave in plasma [2, 3], and diverse ways to
make use of superpower laser radiation [4,5]. The latter ones are namely the direct laser
acceleration (DLA) in a lens focus [6], and the acceleration in photonic crystals (both
two-dimensional [7] and three-dimensional [8]), and also the inverse free electron laser
(IFEL) acceleration [9–11]. A number of these ideas has been successfully implemented
in an experiment [12–14]. The approaches have in common the concept of creation
of an extremely high power accelerating field by some means or other. On the other
hand, these fields already exist within the crystal structures. It is concerned with the
channeling phemonena that hence can be used in a particle accelerator.

Channeling is a phenomena of guiding of a charged particle along the major crys-
tallographic directions called channels. Provided that the particle velocity is large
enough and an angle between the motion direction and the crystallographic planes,
or the atomic strings, is small enough (smaller than so called critical Lindhard an-
gle [15,16]), it experiences the multiple scattering from the crystallographic planes or
strings (in the cases of the planar or axial channeling, respectively). The particle inter-
action with the planes or strings of atoms in a crystal lattice nodes is described by the
continuous averaged Lindhard potential [15, 16]. A positively charged particle, being
channeled in a crystal, moves in a region of the minimal electron density, consequently
it penetrates at much larger distance than in the absence of the channeling.

An important feature of the channeling phenomena is the preserving of this motion
mode in a slightly bent crystal. Therefore one of the channeling applications is the
ability of the deviation of charged high energy particles with the help of the bent
crystals. Notably, the deflection angle achieved by such a way could be much larger
than its maximal possible magnitude enabled by the use of a magnetic field. The
concept was first proposed in [17]. Subsequent works have shown the capability of
this effect to be more widely used for the steering of the high energy particles beams,
namely the beams focusing, splitting, collimation, extraction from the accelerators
and even for the measurements of short-lived particle magnetic moments [18]. In the
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number of cases it is the only possibility to carry out the experiments in the collider
mode and with a fixed target as well.

The first concepts of the possibility to achieve any advantages in accelerators design
by means of the channeling features usage were also suggested as far back as in 80th
years of the last century [5, 19, 20]. Since a bent crystal may be used instead of a
magnetic field for the charged particle deflection, an idea to utilize a crystal with the
periodically bent channels as an undulator in a FEL have emerged rather long time
ago. The next step in this technique development appeared to be the acceleration on
the principle of IFEL with the aid of a crystalline undulator. That is exactly what has
been put forward in the Bogacz work [21]. He suggested to use an effect of particles
channeling in the periodically bent channels under the laser field having a polarization
transverse to a channel direction for the purpose of particles acceleration. This method
is based upon the laser pumpling of the particle transverse degree of freedom and its
subsequent transfer to the longitudinal one due to a crystal periodical bending.

Since the Bogacz paper [21] publication techniques of metacrystallic structures
production and utilizing have been developed extensively. In particular, a paradigm
of the crystalline undulators construction in the form of the crystals with the chan-
nels periodically bent by means of the mechanical stress has already been realized
experimentally [22] (it implies the deformation creating through the making use of the
regular tranches on the surface of a thin crystal silicium plate). Other schemes for the
obtaining of such structures are widely investigated [23]. Moreover, practically feasi-
ble magnitudes of the laser radiation power have increased significantly. In total, it
gives a convincing reason to continue the theoretical research of the subject in this
field.

In the Bogacz work [21] completely classical approach was used which is rather
applicable in the context of the heavy particle channeling. But for the light ones the
quantum effects, namely the transverse energy levels quantization, cannot be negliged
in the course of the transverse degree of freedom considering. Meanwhile, the energy
levels quantization may lead to the acceleration regimes discretization. The advantage
can be taken from this in order to produce the coherent particle beams. In the current
work a method of applying the quantum treatment for the transverse degree of freedom
and the classical approach for the longitudinal one is explicated. This method will
be used to examine a feasibility of the laser acceleration of a light charged particle
channeled in a crystal with the periodically bent channels, and also a possibility of
the particle filtering for the aid of the monochromatic beams extraction.

The work structure is as follows. In the section 2 the quantum-classical equations
describing a particle motion in a crystal with the periodically bent channels under the
complementary external laser field are derived from the Schrödinger equation. Next,
in the section 3 we obtain in terms of the two level approximation the solution to these
equations yielding a dependence of a particle acceleration on the parameters of the
laser field and a channel bending, and also on the initial conditions. This is followed
by the numerical calculation results illustrating the obtained theoretical estimations
in the section 4. The section 5 contains the numerical evaluations of the above-stated
acceleration parameters for the different kinds of particles and crystals. Also, the
relevant possibilities of the proposed method application are discussed. Finally, in the
conclusion the general summary is presented.

Atomic units will be used throughout the paper.

2. The quantum-classical approximation

The motion of a quantum particle is described by the Schrödinger equation

𝑖
𝜕Ψ(r, 𝑡)

𝜕𝑡
=

[︂
− 1

2𝑚
∇2 + 𝑈(r, 𝑡)

]︂
Ψ(r, 𝑡), (1)
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where Ψ(r, 𝑡) is the particle wavefunction and 𝑈(r, 𝑡) is a potential affecting it. The
latter consists of a crystal lattice potential and the external laser field summed

𝑈(r, 𝑡) = 𝑈0[𝜌− 𝜌0(𝑧)] + 𝑉 (𝜌, 𝑡), (2)

where 𝜌 denotes a transversal coordinate, 𝑧 being a longitudinal one, and 𝑈0(𝜌) is an
effective potential of a crystal channel, 𝑉 (𝜌, 𝑡) is a potential of the laser field, where
𝜌0(𝑧) is a position of the center of the channel bent for instance by a shear sound
wave. The potential might be rewritten as

𝑈(r, 𝑡) = 𝑈0(𝜌) + 𝑉 (𝜌, 𝑡) +𝑊 (𝜌, 𝑧), (3)

where 𝑈0(𝜌 − 𝜌0(𝑧)) − 𝑈0(𝜌) ≃ −d𝑈0

d𝜌 (𝜌)𝜌0(𝑧) ≃ −d2𝑈0

d𝜌2 (0)(𝜌0(𝑧) · 𝜌) is a potential

approximately linear over 𝜌.

Further, one can obtain the solutions to the stationary Schrödinger equation for
the transversal coordinates having the form

ℎ̂⊥𝜙𝑛(𝜌) = 𝜖𝑛𝜙𝑛(𝜌), where ℎ̂⊥ = − 1

2𝑚
∇2

⊥ + 𝑈0(𝜌)

is a transversal Hamiltonian, 𝜖𝑛 are the eigenenergies of the stationary transversal
states, and 𝜙𝑛(𝜌) are the wavefunctions of these states that may be used subsequently
for the deriving of the required quantities.

Next, a problem appraisal could be made for the purpose of achieving any sim-
plifications to the equation being solved. First, for the fast particles the quantum
effects are likely to appear only for the transverse degree of freedom. In contrast, for
the longitudinal one the wavelength magnitude is much less than the typical system
size gauge, namely the channel width. As a consequence, it makes a sense to handle
the longitudinal degree of freedom approximately. Specifically, it can be described in
terms of the Gaussian wavepacket. In order to obtain the motion equations in the clas-
sical approximation for the particle’s longitudal degree of freedom from the general
Schrödinger equation, one may use the Petrov-Galerkin approach.

First, let us assume a trial function for the solution of the Eq.(1) to be expressed
as

Ψ(r, 𝑡) =
1√︀
𝑎
√
𝜋

∑︁
𝑛

𝑐𝑛(𝑡) exp

⎡⎣𝑖𝑘𝑛(𝑡)[𝑧 − 𝑧𝑛(𝑡)]−
[𝑧 − 𝑧𝑛(𝑡)]

2

2𝑎2
− 𝑖

𝑡∫︁
0

𝐸𝑛(𝑡
′)d𝑡′

⎤⎦𝜙𝑛(𝜌).
Here amplitudes of transversal levels population denoted by 𝑐𝑛(𝑡), longitudinal posi-
tions of the wave packet center labelled as 𝑧𝑛(𝑡), average longitudinal packet momenta
written as 𝑘𝑛(𝑡) and effective energies 𝐸𝑛(𝑡) are the unknown parameters. In order to
evaluate them, the Petrov–Galerkin method will be applied. For this purpose, let us
introduce the test functions in the following way:

Φ𝑛0(r, 𝑡) =
1√︀
𝑎
√
𝜋
exp

⎡⎣𝑖𝑘𝑛(𝑡)[𝑧 − 𝑧𝑛(𝑡)]−
[𝑧 − 𝑧𝑛(𝑡)]

2

2𝑎2
− 𝑖

𝑡∫︁
0

𝐸𝑛(𝑡
′)d𝑡′

⎤⎦𝜙𝑛(𝜌);

Φ𝑛1(r, 𝑡) =

√︃
2

𝑎3
√
𝜋
[𝑧 − 𝑧𝑛(𝑡)]×
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× exp

⎡⎣𝑖𝑘𝑛(𝑡)[𝑧 − 𝑧𝑛(𝑡)]−
[𝑧 − 𝑧𝑛(𝑡)]

2

2𝑎2
− 𝑖

𝑡∫︁
0

𝐸𝑛(𝑡
′)d𝑡′

⎤⎦𝜙𝑛(𝜌).
The Petrov–Galerkin method is confined in the orthogonalization of the discrepancy
to the test function, namely⟨

Φ𝑛𝛼

⃒⃒⃒⃒
𝑖
𝜕

𝜕𝑡
−
[︂
−1

2

𝜕2

𝜕𝑧2
+ ℎ̂⊥(𝜌) + 𝑉 (𝜌, 𝑡) +𝑊 (𝜌, 𝑧)

]︂⃒⃒⃒⃒
Ψ

⟩
= 0; 𝑛 = 1, 2; 𝛼 = 0, 1.

(4)

Further, by collecting the terms before
𝑖√
2𝑎

in equations from (4) obtained through

the projection on Φ𝑛1, one arrives to

𝑧̇𝑛 = 𝑘𝑛.

In other words, as expected, the position of the wave packet ”‘center of mass”’ and its
average momentum are related to each other in the same manner as a position and a
momentum of a classical particle. Besides, the term containing 𝑐𝑛 which is given by
projection on Φ𝑛0 might be removed from equations on the assumption that

𝐸𝑛 = −𝑘
2
𝑛

2
+

1

4𝑎2
+ 𝜖𝑛.

Next, as mentioned above, the method is applicable only on the condition that the
positions of packets in the different transversal states are much less then the packet
width, namely (𝑧𝑛′−𝑧𝑛 ≪ 𝑎. Furthermore, the difference of momenta Δ𝑘𝑛′𝑛 = 𝑘𝑛′−𝑘𝑛
should also be small, viz Δ𝑘𝑛′𝑛/𝑘𝑛 ≪ 1. Consequently, the approximated expressions
for the potentials matrix elements can be obtained in this way:

𝑉𝑛𝑛′(z,k, 𝑡) = ⟨Φ𝑛0|𝑉 |Φ𝑛0⟩ ≃ ⟨𝑛|𝑉 |𝑛′⟩𝑒−𝑖
∫︀ 𝑡
0
𝜔𝑛′𝑛(𝑡

′)d𝑡′−𝑖(𝑘𝑛′𝑧𝑛′−𝑘𝑛𝑧𝑛);

𝑊𝑛𝑛′(z,k, 𝑡) = ⟨Φ𝑛0|𝑊 |Φ𝑛0⟩ ≃ ⟨𝑛|𝑊 |𝑛′⟩(𝑧𝑛𝑛′)𝑒−𝑖
∫︀ 𝑡
0
𝜔𝑛′𝑛(𝑡

′)d𝑡′−𝑖(𝑘𝑛′𝑧𝑛′−𝑘𝑛𝑧𝑛),

where the denotations 𝜔𝑛′𝑛(𝑡) = 𝐸𝑛′(𝑡)− 𝐸𝑛(𝑡) and 𝑧𝑛𝑛′ = (𝑧𝑛′ + 𝑧𝑛)/2 are used. In
turn, the expanding of 𝑊 (𝜌, 𝑧) and exp(𝑖Δ𝑘𝑛′𝑛𝑧) in Taylor series by 𝑧 up to the first
order yields the following:

⟨Φ𝑛1|𝑉 |Φ𝑛0⟩ ≃ 𝑖Δ𝑘𝑛′𝑛
𝑎√
2
⟨𝑛|𝑉 |𝑛′⟩𝑒−𝑖

∫︀ 𝑡
0
𝜔𝑛′𝑛(𝑡

′)d𝑡′−𝑖(𝑘𝑛′𝑧𝑛′−𝑘𝑛𝑧𝑛)

⟨Φ𝑛1|𝑊 |Φ𝑛0⟩ ≃

≃ 𝑎√
2

[︂
𝜕⟨𝑛|𝑊 |𝑛′⟩

𝜕𝑧
(𝑧𝑛𝑛′) + 𝑖Δ𝑘𝑛′𝑛⟨𝑛|𝑊 |𝑛′⟩(𝑧𝑛𝑛′)

]︂
𝑒−𝑖

∫︀ 𝑡
0
𝜔𝑛′𝑛(𝑡

′)d𝑡′−𝑖(𝑘𝑛′𝑧𝑛′−𝑘𝑛𝑧𝑛)

Having the terms of the same order of 𝑎 collected, one arrives to the system of equations

ċ = −𝑖[V(z,k, 𝑡) +W(z,k, 𝑡)]c, (5)

𝑧̇𝑛 = 𝑘𝑛, (6)

|𝑐𝑛|2𝑘̇𝑛 =
∑︁
𝑛′

𝑐*𝑛𝐹𝑛𝑛′(z,k, 𝑡)𝑐𝑛′ −
∑︁
𝑛′

𝑐*𝑛[𝑉𝑛𝑛′(z,k, 𝑡)+𝑊𝑛𝑛′(z,k, 𝑡)]𝑖(𝑘𝑛′ −𝑘𝑛)𝑐𝑛′ , (7)
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where

𝐹𝑛𝑛′(z,k, 𝑡) = −𝜕⟨𝑛|𝑊 |𝑛′⟩
𝜕𝑧

(𝑧𝑛𝑛′)𝑒−𝑖
∫︀ 𝑡
0
𝜔𝑛′𝑛(𝑡

′)d𝑡′−𝑖(𝑘𝑛′𝑧𝑛′−𝑘𝑛𝑧𝑛)

may be interpreted as a force affecting the particle due to the presence of the spatial
field 𝑊 .

The further problem simplification can then be achieved through the introducing
of the average longitudinal position and the momentum of the particle

⟨𝑧⟩ =
∑︁
𝑛

𝑐*𝑛𝑧𝑛𝑐𝑛, ⟨𝑘⟩ =
∑︁
𝑛

𝑐*𝑛𝑘𝑛𝑐𝑛.

Next, let us multiply the equation (6) by |𝑐𝑛|2 and subsequently perform the summa-
tion over 𝑛 in the Eq.(6) and the Eq.(7). Thereupon, considered that 𝑧𝑛 ≈ ⟨𝑧⟩ and
𝑘𝑛 ≈ ⟨𝑘⟩ in the right hand sides of equations (6) and (5), the final result is

ċ = −𝑖[V(𝑡) +W(⟨𝑧⟩, 𝑡)] · c;
˙⟨𝑧⟩ = ⟨𝑘⟩;

˙⟨𝑘⟩ =
∑︁
𝑛,𝑛′

𝑐*𝑛𝐹𝑛𝑛′(⟨𝑧⟩, 𝑡)𝑐𝑛′ ,
(8)

which appear to be much easier to solve than the common Schrödinger equation. Here
the coefficients of the wavefunction expansion in the terms of the transversal states
𝜙𝑛(𝜌) having a physical meaning of population amplitudes and denoted by 𝑐𝑛, the
wavepacket center position along the 𝑧 axis labelled as ⟨𝑧⟩, and ⟨𝑘⟩ standing for the
averaged longitudinal momentum of the particle are the system variables. Further,
the system contains the following values:

𝑉𝑛𝑛′(𝑡) = ⟨𝑛|𝑉 (𝜌, 𝑡)|𝑛′⟩𝑒𝑖𝜔𝑛𝑛′ 𝑡; (9)

𝑊𝑛𝑛′(𝑧, 𝑡) = ⟨𝑛|𝑊 (𝜌, 𝑧)|𝑛′⟩𝑒𝑖𝜔𝑛𝑛′ 𝑡 (10)

being the matrix elements of the summand potentials from (3) and

𝐹𝑛𝑛′(𝑧, 𝑡) = −𝜕𝑊𝑛𝑛′(𝑧, 𝑡)

𝜕𝑧
(11)

is the one of a longitudinal force 𝐹 defined as the force corresponding to the spatial
potential affecting the particle. Besides, 𝜔𝑛𝑛′ = 𝜖𝑛− 𝜖𝑛′ are the transition frequencies,
𝑛 and 𝑛′ stand for the stationary states wavefunctions 𝜙𝑛(𝜌) referred to above.

3. Analitycal solution by means of the two-level
approximation

Provided that the potentials (9,10,11) explicit form is specified, the solution of the
system (8) might be obtained. So, let us assume that

𝑉 (𝜌, 𝑡) = −ℰ0𝜌 sin(𝜔𝑡); (12)

𝑊 (𝜌, 𝑧) = −𝒟0𝜌 sin(κ𝑧), (13)

and also the fields amplitudes ℰ0 ↑↓ 𝒟0. Here 𝜔 denotes the external field frequency
and κ means the periodical spatial potential wavenumber. In this case
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𝑉𝑛𝑛′(𝑡) = −ℰ0𝑑𝑛𝑛′ sin(𝜔𝑡)𝑒𝑖𝜔𝑛𝑛′ 𝑡;

𝑊𝑛𝑛′(𝑧, 𝑡) = 𝒟0𝑑𝑛𝑛′ sin(κ𝑧)𝑒𝑖𝜔𝑛𝑛′ 𝑡;

𝐹𝑛𝑛′(𝑧, 𝑡) = −κ𝒟0𝑑𝑛𝑛′ cos(κ𝑧)𝑒𝑖𝜔𝑛𝑛′ 𝑡,

(14)

where 𝑑𝑛𝑛′ = ⟨𝜙𝑛|𝑥|𝜙𝑛′⟩ is the dipole transition matrix element, at that 𝑂𝑥 ↑↑ ℰ0.
On condition that the channel potential 𝑈0(𝜌) is even the diagonal element 𝑑𝑛𝑛 = 0.

Next, consider the particular case of 𝜔 = 𝜔21. Granted that ⟨𝑘⟩ is large and
changes rather slightly, true is the expression 𝑧 ≈ ⟨𝑘⟩𝑡+ 𝑧0. Thereupon, if ⟨𝑘⟩ = 𝑘𝑟𝑒𝑠,
where

𝑘𝑟𝑒𝑠 = 𝜔21/κ, (15)

then the 𝑧-dependent potential affects the particle with an effective frequency κ𝑘𝑟𝑒𝑠 =
𝜔21. In such instance the transitions between the levels 1 and 2 are the most probable,
hence it is possible to use the two-level approximation. When the quickly oscillating
parts of the matrix elements (14) are omitted one arrives to

𝑉21(𝑡) ≈
1

2𝑖
ℰ0𝑑21;

𝑊21(𝑘𝑟𝑒𝑠𝑡, 𝑡) ≈ − 1

2𝑖
𝒟0𝑑21𝑒

−𝑖𝛿0 ;

𝐹21(𝑘𝑟𝑒𝑠𝑡, 𝑡) ≈ −1

2
κ𝒟0𝑑21𝑒

−𝑖𝛿0 ,

where 𝛿0 = κ𝑧0 is the spatial potential initial phase. In that event, namely the two-
level approximation, the solution for the population amplitudes is obtained in the
form

𝑐1(𝑡) = cosΩ𝑡 cos 𝛿1 − sinΩ𝑡 sin 𝛿1𝑒
𝑖(𝛿2−𝛾);

𝑐2(𝑡) = − cosΩ𝑡 sin 𝛿1𝑒
𝑖𝛿2 − sinΩ𝑡 cos 𝛿1𝑒

𝑖𝛾 ,

where

Ω =
1

2
|(ℰ0 −𝒟0𝑒

−𝑖𝛿0)𝑑21|

is the Rabi frequency,

𝑒𝑖𝛾 =
ℰ0 −𝒟0𝑒

−𝑖𝛿0

|ℰ0 −𝒟0𝑒−𝑖𝛿0 |
𝑑21
|𝑑21|

is the effective potential phase factor, 𝛿1 stands for an initial phase of Rabi oscillations,
and 𝛿2 denotes an initial phase shift between the population amplitudes. In particular,
on the assumption that

ℰ0 = 𝒟0, (16)

and 𝛿0 = 0, the Rabi frequency Ω = 0. Consequently, the coefficients 𝑐1,2(𝑡) are
constant; therefore the longitudinal force

⟨𝐹 ⟩ =
∑︁
𝑛,𝑛′

𝑐*𝑛𝐹𝑛𝑛′(𝑘𝑟𝑒𝑠𝑡, 𝑡)𝑐𝑛′ = κ
𝒟0𝑑21

2
sin(2𝛿1) cos 𝛿2,

is constant too. It is easy to see that the maximal acceleration is achieved on the
condition that 𝛿1 = 𝜋/4 and 𝛿2 = 0, i.e., when 𝑐1 = −𝑐2.

Now turn back to the more general case of Ω ̸= 0. The force might be averaged by
time over a single Rabi period in the following manner:
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⟨𝐹 ⟩ = Ω

2𝜋

2𝜋/Ω∫︁
0

∑︁
𝑛,𝑛′

𝑐*𝑛𝐹𝑛𝑛′(𝑘𝑟𝑒𝑠𝑡, 𝑡)𝑐𝑛′ =

=
κ𝒟0𝑑21

4
sin 2𝛿1 [cos(𝛿2 + 𝛿0)− cos(𝛿2 − 𝛿0 − 2𝛾)] .

As long as the condition (16) is satisfied, 𝛾 = (𝜋 − 𝛿0)/2 and thus

⟨𝐹 ⟩ = κ𝒟0𝑑21
4

sin 2𝛿1 [cos(𝛿0 + 𝛿2) + cos 𝛿2] .

It is clear from the last expression that the average force is maximal in the event of
𝛿1 = 𝜋/4 and 𝛿2 = 𝛿0 = 0. Besides, its magnitude is equal to

⟨𝐹 ⟩max =
κ𝒟0𝑑21

2
.

In such a manner, the conditions of resonance (15) and amplitudes equality (16)
have been met, the equation for the particle momentum 𝑘 from the system under
consideration (8) can be derived in the form

𝑘̇ =
𝜔12

𝑘

ℰ0𝑑21
4

sin(2𝛿1) [cos(𝛿2 + 𝛿0) + cos 𝛿2] .

Its solution is

𝑘(𝑡) =
√︁
𝑘20 + 𝛼𝑡;

𝑧(𝑡) =
2

3𝛼
(𝑘20 + 𝛼𝑡)3/2 − 2

3𝛼
𝑘30 + 𝑧0,

where denotation 𝛼 = 𝜔12ℰ0𝑑21 sin(2𝛿1) [cos(𝛿2 + 𝛿0) + cos 𝛿2] /4 is used. From these
expressions one can obtain the momentum dependence on 𝑧 as follows:

𝑘(𝑧) =

[︂
𝑘30 +

3𝛼

2
(𝑧 − 𝑧0)

]︂1/3
.

In turn, it may be substituted to the resonance condition (15). Therefore, in order
to supply the resonance of the transversal transition with 𝑧–dependent potential its
“wave number” should be equal to

κ(𝑧) = 𝜔21

(︂
𝜅3 +

3𝛼

2
𝑧

)︂−1/3

,

where 𝜅 = 𝑘0 is the particle initial momentum. Thereat, instead of (13), the spatial
potential should have the form

𝑊 (𝜌, 𝑧) = −𝒟0𝜌 sin

⎛⎝ 𝑧∫︁
0

κ(𝑧′)𝑑𝑧′
⎞⎠ = −𝒟0𝜌 sin

𝜔21

𝛼

[︃(︂
𝜅3 +

3𝛼

2
𝑧

)︂2/3

− 𝜅2

]︃
, (17)

where now 𝜅 and 𝛼 denote the metacrystallic structure parameters. Besides, it is
easy to see that the parameter 𝛼 should meet the condition 0 < 𝛼 6 𝜔12𝒟0𝑑21/2 to
provide the acceleration of particles with the initial momentum 𝑘0 = 𝜅. Thuswise we
have obtained the potential yielding the resonance and, as a consequence, enabling
the acceleration.
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Now let us turn to the exploring of the resonance mode stability. To this end con-
sider the phase difference between 𝑧-dependent potential and transversal oscillations;
it might be expressed in this way:

𝛿0(𝑡) =
𝜔21

𝛼

[︃(︂
𝜅3 +

3𝛼

2
𝑧(𝑡)

)︂2/3

− 𝜅2

]︃
− 𝜔21𝑡 ≃

𝜔21𝑧0√
𝛼𝑡

=
𝜅√
𝛼𝑡
𝛿0(0).

So, as long as 𝛿0(0) is small enough to keep the acceleration during rather long time pe-
riod, 𝛿0 converges to zero and the acceleration becomes stable. Thus, the acceleration
mode is stable while 𝛿0 detunes slightly from zero.

Finally, the energy of the particle having the maximal acceleration is equal to

𝐸 = 𝐸0 +
ℰ0𝑑21𝜔12

2
𝑡.

Thuswise, the maximal energy increase per a distance unit, i.e. the accelerating gra-
dient, can be estimated as

d𝐸

d𝑧
=
𝑑21𝜔21√

8𝐸
ℰ0. (18)

4. Numerical calculations

In order to demonstrate the particle acceleration process, the system (8) was solved,
the potentials have been assumed to have the forms (12), (17) proved above to provide
the resonance mode. In the Fig.1 one can see the results of this numerical solution.
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Figure 1. The particle momentum dependence on time for the different initial
conditions: 𝛿1 = 𝜋/4, 𝛿0 = 𝛿2 = 0 (solid curve), 𝛿0 = 𝜋/2, 𝛿1 = 𝜋/4, 𝛿2 = 0 (dashed

curve), 𝛿0 = 0, 𝛿1 = 𝜋/4, 𝛿2 = 𝜋/2 (dotted curve), 𝛿0 = 𝜋/2, 𝛿1 = 𝜋/4, 𝛿2 = 𝜋/3
(dash-dotted curve), 𝛿0 = 𝜋/2, 𝛿1 = 𝜋/12, 𝛿0 = 𝛿2 = 0 (short dotted curve)

The system parameters used in the calculations are as follows: 𝑑12 = 1, 𝜔12 =
2𝜋/50, ℰ0 = 𝒟0 = 0.01, 𝜅 = 4𝜋, 𝛼 = 𝜔12ℰ0𝑑21/2 at 𝑘(𝑡 = 0) = 𝜅 and different
initial conditions specified by the phases 𝛿0, 𝛿1, 𝛿2. The choice of the constant 𝛼
standing for the nonuniformity of the spatial potential period provides the permanent
resonance with the accelerating force magnitude being 2 times less than its maximal
value. Therefore in the event of the initial conditions yielding the maximal force,
namely 𝛿1 = 𝜋/4, 𝛿0 = 𝛿2 = 0, the particle momentum periodically becomes larger
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than its resonance value, as a consequence the resonance vanishes and the particle
decelerates, whereat it enters back into the resonance mode. In sum, the acceleration
2 times less than the maximum possible is produced. The population density evolution
for this case is displayed in the Fig.2.
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Figure 2. The lower transversal level population dependence on time for the
case of the maximal accelerating force

It is apparent that in proximity of the resonance point the population density
curve nearly reaches the plateau, while at the momentum magnitude strongly different
from its resonance value it oscillates. The Fig.1 also presents the curves for several
sets of initial conditions yielding the average force magnitude equal to the half of its
maximal value. In other words, our choice for 𝛼 should enable the permanent resonance
observed, just as it is clear from the linearity of the momentum increase over time.
The plot shows as well the curve corresponding to the initial conditions producing
the average force magnitude equal to zero, i.e., as a consequence, the absence of the
acceleration. Hereby the acceleration mode stability has been ensured, besides it is
provided by the fact that the force magnitude is greater than some value corresponding
to the chosen 𝛼 at the initial acceleration stage.

The Fig.3 presents the dependence of the probability of the affecting at the initial
acceleration stage of the force ⟨𝐹 ⟩, such that ⟨𝐹 ⟩/⟨𝐹 ⟩max > 𝑓 . At that the distribution
over either of the phases 𝛿0, 𝛿1, 𝛿2 is assumed to be uniform. It is clear from the figure
that the particle entering the crystal is rather likely to get into the regime such that
the accelerating force magnitude would be close to the maximal possible value.

In the Bogacz work [21] the particle acceleration was investigated in the case that
it is allowable to use the harmonic approximation for the channel transverse potential
as well as the classical approach for the particle transverse motion. In terms of the
quantum mechanics it implies a cascade of transitions between a number of equidistant
transverse motion energy levels. In contrast, we examine the situation of the two-level
approximation applicability. Therefore in this case one should take into consideration
not only the resonance between the laser radiation and the periodically spatial po-
tential which always occurs at the certain particle momentum. Also the resonance of
the laser radiation with the frequency of the transition between the transverse levels
requires taking into account.

The fig.4 demonstrates the evolution of the momentum of the particle channeled
in a medium with a constant “wavelength” of the periodically spatial potential. At
that, the particle is assumed to have an initial momentum

𝑘𝑟𝑒𝑠 = 𝜔/κ, (19)
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Figure 3. The probability for the particle to be affected by the initial

conditions such that the normalized average accelerating force ⟨𝐹 ⟩/⟨𝐹 ⟩max > 𝑓

providing the resonance between the laser radiation and the periodically spatial po-
tential. Presented are curves corresponding to the various frequency 𝜔 detuning from
the frequency of the tranverse transition 𝜔12. The acceleration range width in the
frequency space is apparent to have the same order as the width of the resonance
broadening due to the acceleration itself.
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Figure 4. The accelerated particle longitudinal momentum dependence on time
in the presence of the resonance with the periodically spatial potential for the
different laser radiation frequency detuning from the frequency of the tranverse
transition: 𝜔 = 𝜔12 (thick solid curve), 𝜔 = 0.005𝜔12 (dashed curve), 𝜔 = −0.005𝜔12

(dotted curve), 𝜔 = −0.01𝜔12 (dash-dotted curve), 𝜔 = 0.1𝜔12 (dash-dot-dotted
curve), 𝜔 = 0.02𝜔12 (short dashed curve), 𝜔 = −0.02𝜔12 (short dotted curve)
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All the previous cases have been considered under the neglecting of both ionizing
and radiation energy losses of the particle travelling through the crystal. Meanwhile,
these losses are necessary to be regarded in the common crystals. The paper [24] gives
a half-emphirical dependence expression for the energy loss per the length unity for a
positron passing through the matter. The channeling losses are some less than in the
course of the propagation in a random direction. The value of the coefficient of the
stopping power reducing in the channeling mode has been shown to be roughly equal
to 0.7 [25]. So, in order to take the energy loss into account we have added in the last
equation of the system (8) the stopping power calculated by the formula from [24] and
additionally multiplied by 0.7.

The fig. 5 presents the accelerated particle longitudinal momentum dependence
on the longitudinal coordinate meaning with provision for the stopping power for the
constant “wavelength” of the periodically spatial potential and the different values of
the external laser field intensity.
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Figure 5. The accelerated particle longitudinal momentum dependence on the
longitudinal coordinate meaning with provision for the stopping power for the
different values of the external laser field intensity: ℰ0 = 1 (solid curve), ℰ0 = 1/2

(dashed curve), ℰ0 = 1/4 (dotted curve), ℰ0 = 1/8 (dash-dotted curve)

At that, the phases initial meanings have been set to grant the maximal laser
acceleration. It is clear that the laser acceleration can be observed only at very large
ℰ0 magnitudes yielding its efficiency greater than the stopping power. Besides, after
a number of momentum oscillations with respect to the resonance value at a certain
moment system inevitably transgress to the clean deceleration mode in cosequence of
the stopping power presence. For the case of the laser acceleration force less than the
stopping power this transgression occurs immediately. One may conclude that for the
small acceleration force, contrary to the apparent expectations, the laser acceleration
efficiency is not “substracted” from the stopping power, but simply disappears. This
effect arises as a consequence of the rapid departing out of the resonance with the
periodically spatial potential.

Further, in order to compensate the resonance vanishing by virtue of the stoping
power presence, the variable “wavelength” of the periodically spatial potential have
been introduced. This have been done in such a manner that the resonance would
nevertheless remain in the presence of the stopping power and the infinitesimal laser
field as well. That is, the periodically spatial potential “wavelength” decreases with
the 𝑧 increasing in such a way that if the particle entering the crystal had the resonance
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momentum meaning then the momentum decreasing due to the stopping power would
not result in the disappearance of the resonance with the periodically spatial potential.
The relevant accelerated particle momentum dependencies on the distance from the
crystal entering point for the different values of the external laser field intensity are
displayed in the fig. 6.
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Figure 6. The accelerated particle longitudinal momentum dependence on the
longitudinal coordinate meaning on the condition of the periodically spatial
potential “wavelength” providing the continuous resonance in the absence of

the laser field for the different values of the external laser field intensity:
ℰ0 = 0.125 (dotted curve), ℰ0 = 0.01 (dashed curve), ℰ0 = 0 (solid curve)

The plots have been obtained on the conditions that the periodically spatial po-
tential has a variable “wavelength” supporting the continuous resonance under the
absence of the laser field and also the stopping power is present. It is apparent that
for the ℰ0 values not leading to the crystal destroy (see the sec. 5) the laser acceler-
ation provides some increase in the particle penetration depth. However, since this
increase is extremely small, the idea of the monochromatic positrons producing by
means of the laser acceleration appears to be practically unrealizeable. Hereafter, for
rather large ℰ0 values (but still less than the meanings yielding the laser accelera-
tion efficiency exceeding the stopping power) the momentum oscillations with respect
to the resonance values arise, just as well as in the case of the constant periodically
spatial potential “wavelength” in the absence of the stopping power.

5. Estimations

Now it is necessary to discuss a matter of the practical aspects of the suggested
acceleration method implementation. It is known that the optical damage threshold
for a Si crystal for 1550 nm laser pulse lasting less than 1 ps is 𝐼𝑡ℎ ∼ 1011 W/cm2 [26],
that corresponds to ℰ0 = 1.7 × 10−3[a.u.]= 0.9 GeV/m. Next, let us assume the
transversal dipole transition matrix element to be |𝑑12| ∼ 1. For a nonrelativistic
proton in Si 𝜔0 ≃ 10−2 a.u. In the case of the proton energy value being equal to

𝐸 = 10 MeV the proton velocity is 𝑣 = 20 a.u., that yields
d𝐸

d𝑧
= 0.1 MeV/m. It

is negligible with regard to the stopping power of 10 MeV–protons that is on order
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of ∼ 10 GeV/m. Moreover, this quantity of
d𝐸

d𝑧
is small in comparison with the one

yielded by an usual linear accelerator, which acceleration rate may be estimated as
∼ 10 MeV/m.

For the channeled nonrelativistic positron 𝜔0 ≃ 1 a.u., and the velocity value equal
to 𝑣 = 20 a.u. (and, as a conqequence, the energy value of 𝐸 = 5.4 KeV) implies
d𝐸

d𝑧
= 10 MeV/m. Though the latter energy increment is much greater than that for

the proton case, it appears to be still unsufficient in terms of the direct application of
the considered effect for an accelerator designing on this framework.

Furthermore, the usage of carbon nanotubes instead of the Si crystals strongly
reduces the stopping power (due to much larger channel radius values). The effective
transversal potential of the tube can be approximated by a circular well potential. If
one considers the two lowest transversal states in the tube, its radius 𝑅 increase would
lead to the transition frequency 𝜔12 decreasing in accordance with 𝜔12 ∼ 1/𝑅2. On
the other hand, the dipole matrix element of the transition between thses states would
increase as 𝑑12 ∼ 𝑅. Thus, in sum the acceleration gradient (18) depends on the tube
radius as

d𝐸

d𝑧
∼ ℰ0
𝑚𝑣𝑅

.

However, since the stopping power is inversely related to the material density, true is
the following:

d𝐸

d𝑧

⃒⃒⃒⃒
𝑠𝑡𝑜𝑝

∼ − 1

𝑅
,

hence there is no possibility to make the accelerating efficiency larger than the stopping
power through the only increasing of the tube radius. Therefore the utilizing of the
periodically bent carbon nanotubes instead of the crystals has the only advantage of
the production easiness in contrast to a crystal with the periodically bent channels.

6. Conclusion

In this work we have studied an approach of the charged particles acceleration in a
crystal with the periodically bent channels through the use of the laser radiation field.
The concept has been originally suggested by Bogacz [21], and developed here for the
case of the transverse energy levels quantization being significant. The technique as
it stands have been demonstrated to be inefficient for the purpose of the particles
acceleration upon using either the Si crystals or the carbon nanotubes. This appeared
to be true at least for the laser radiation intensities meanings not causing a medium
destroy. The considered scheme turned out to be nonapplicable in terms of its usage
with the aim of the monochromatic particle beams obtaining as well.

Nevertheless, the scientific field of the particle acceleration, particularly using the
channeling special features, is widely researched at the time. It comprises a number
of perspectives and possibilities of its implementation. The development of particle
acceleration approaches, especially non-conventional innovative ones, appears to be
of crucial importance. So, further thorough investigations to the branch are greatly
desireable.
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Лазерное ускорение легких частиц, каналированных в
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Рассмотрен метод лазерного ускорения заряженных частиц, каналированных в перио-
дически искривлённых кристаллах, с учётом дискретности уровней поперечных энергий.
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