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The effective and stable algorithms for numerical solution with the given accuracy of the
parametrical two-dimensional (2D) boundary value problem (BVP)are presented. This BVP
formulated for self-adjoined elliptic differential equations with the Dirichlet and/or Neumann
type boundary conditions on a finite region of two variables. The original problem is reduced
to the parametric homogeneous 1D BVP for a set of ordinary second order differential equa-
tions (ODEs). This reduction is implemented by using expansion of the required solution
over an appropriate set of orthogonal eigenfunctions of an auxiliary Sturm-Liouville problem
by one of the variables. Derivatives with respect to the parameter of eigenvalues and the cor-
responding vector-eigenfunctions of the reduced problem are determined as solutions of the
parametric inhomogeneous 1D BVP. It is obtained by taking a derivative of the reduced prob-
lem with respect to the parameter. These problems are solved by the finite-element method
with automatical shift of the spectrum. The presented algorithm implemented in Fortran 77
as the POTHEA program calculates with a given accuracy a set ~ 50 of eigenvalues (po-
tential curves), eigenfunctions and their first derivatives with respect to the parameter, and
matrix elements that are integrals of the products of eigenfunctions and/or the derivatives of
the eigenfunctions with respect to the parameter. The calculated potential curves and ma-
trix elements can be used for forming the variable coefficients matrixes of a system of ODEs
which arises in the reduction of the 3D BVP (d = 3) in the framework of a coupled-channel
adiabatic approach or the Kantorovich method. The efficiency and stability of the algorithm
are demonstrated by numerical analysis of eigensolutions 2D BVP and evaluated matrix el-
ements which apply to solve the 3D BVP for the Schrédinger equation in hyperspherical
coordinates describing a Helium atom with zero angular momentum with help of KANTBP
program.
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1. Introduction

Mathematical models of few-body systems in molecular, atomic and nuclear physics,
as well as physics of semiconductor nanostructures are described by boundary value
problems (BVPs) for the multidimensional equation of Schrodinger type in configura-
tion space R, for example: spectral and optical characteristics of excited states of a
Helium-like atom [1-16], photoionization and recombination of opposite charged par-
ticles (positrons, antiprotons) in the magnet-optical trap [17, 18], optical absorption
in quantum wells, quantum wires [19], and quantum dots [20], channeling of likely
charged particles in thin doped films [21] and resonance tunneling of composite sys-
tems through repulsive barriers [22,23].

Efficient and stable algorithms for the numerical solution of such a class of BVPs
[24] are based on its reduction to a system of ordinary second-order differential equa-
tions (ODEs) with respect to one of the variables by the Kantorovich method (KM) [25].
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It is quite natural to use the parametric eigenfunctions of an auxiliary parametric BVP
in an appropriate region of configuration space R4~! as the basis for the expansion of
the unknown (required) solution. It was shown that an efficient application of the KM
requires the development of a set of symbolic-numerical algorithms for computing the
following quantities to a prescribed accuracy:

1) parametric eigenvalues and eigenfunctions of the auxiliary parametric BVP;

2) derivatives with respect to the parameter of the eigenvalues and eigenfunctions,
and matrix elements (integrals of the eigenfunctions multiplied by their derivatives
with respect to the parameter);

3) asymptotics in the parameter of the eigenfunctions and of the matrix elements that
appear as variable matrix coefficients in the system of ODEs by the variable;

4) asymptotics of the solutions to the system of the ODEs for small and large values
of the variable;

5) solutions of BVP for the system of ODEs and numerical analysis of convergence of
solutions with an increased number of equations.

The problems 1), 2), and 3) for a parametric 1D BVP were considered in [26-28]
while 4) and 5) ones in [29-31]. However, the problems 1), 2), and 3) even for a
parametric 2D BVP with weakly singular and long-range potentials of the Coulomb
type have been discussed for a long time, for example, in [1-11], but have not been
exhaustively solved till nowadays [12-14].

In this paper, we present the effective and stable algorithms of solving the problems
1) and 2) for the parametric 2D BVP for elliptic partial differential equations with
boundary conditions of Dirichlet and/or Neumann type in a finite two-dimensional re-
gion which arise in the reduction of the 3D BVP (d = 3) to a system of ODEs using
the KM. We seek the solution of the parametric 2DBVP in the form of expansion in
the basis eigenfunctions of the auxiliary Sturm-Liouville problem for the ODE with
respect to one of the variables. The coefficients of the expansion are the parametric
vector-functions which are eigensolutions of the parametric homogeneous 1D BVP for
a system of ODEs obtained by averaging the original problem over the basis eigen-
functions. The required parametric derivatives of eigenvalues and the corresponding
vector-eigenfunctions are calculated as a solution of the parametric inhomogeneous 1D
BVP which is obtained by taking a derivative of the above parametric homogeneous
1D BVP with respect to the parameter.

The main goal of this paper is the following. The finite element method (FEM)
[32,33] is used to discretize both the homogenous and nonhomogeneous parametric
problems and to construct numerical schemes for calculation of eigenfunctions and
their derivatives with respect to the parameter within accuracy of the same order of
O(hPT1), and also the eigenvalues and the matrix elements within accuracy of the same

order of O(h?P) in step h of a finite element grid. Choice of the order of approximation
p depends on the smoothness of the desired solutions. An auxiliary algorithm to
calculate the lower bound of the smallest eigenvalue of the parametric generalized
algebraic eigenvalue problem is presented and tested. This algorithm allows one to
determine automatical shift of the spectrum and to save iterations in the calculation of
a set of eigensolutions by the iterations in a subspace using the routine SSPACE [33].

The efficiency of the algorithm is demonstrated by numerical analysis of solutions
of the parametric 2D BVP including evaluation of matrix elements applied to reduce
the 3D BVP for the Schrodinger equation of a Helium atom with zero total angular
momentum in the body-fixed hyperspherical coordinates to the 1D BVP for the ODEs
with respect to the hyperradius by the Kantorovich method [10]. The corresponding
benchmark calculations with a given accuracy of the ground state energy and first
exited state energy of a Helium atom and their convergence versus both the number
of the basis vector-eigenfunctions and the number of their components are presented.

The structure of the paper is the following. In Section 2, we present the statement
of the problem and reduction of the parametric 2D BVP to the parametric 1D BVPs.
In Section 3, the formulation of the parametric algebraic eigenvalue problems by the
FEM is given. In Section 4, the benchmark calculations of matrix elements and the
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eigenenergies of a Helium atom are presented. In Section 5, we discuss the results and
perspectives.

2. Statement of the Problem

Let us consider the parametric 2D BVP for a self-adjoined second order elliptic
differential equation in a two-dimensional region €2,y = (Tmin, Tmax) X (Ymin, Ymax)

19, 0 1 1 9, 0 N
<_f1(y)ny(y)c?y_J%(y)]i(ac)(%cfs(x)&v+U(x’y’z) gi( ))Bz( ;2)=0 (1)

with the Dirichlet and/or Neumann type boundary conditions

a-B’L » Y5
lim fZ(y)M =0 or Bi(xaymin;z> = 07 T € (xminvxmax)7

Y—>Ymin ay
aBz » Y5
lim f2(y) (x Y Z) =0 or Bi(xaymax;z) =0,z ¢ (:L'minyxmax)»
Y—Ymax 8y (2)
: 9B;(z,y; 2)
m—lgzg}m, f5 (LI?) Oz =0 or Bi(xmina Y; Z) =0,y¢€ [ymina ymaxL
9Bi(z,y; 2)
I_lgglnax f5($) 89[: =0 or Bi(xmaxa Y; Z) - 07 Yy € [ymina ymax]-

Here z € Q, = [Zmin, Zmax| i a real-value parameter; the functions fi(y) > 0, fa(y) >
0, f3(y) >0, f4(.’E) >0, f5($) >0, and any(y)? aa:f5<x)v U(xay; Z)v 32U(377y§ Z) are
continuous on the (z,y) € Q,,. Also assume that the parametric BVP (1), (2) has
only a discrete spectrum.

The main goal is realized by the following algorithm.

In Step 1 algorithm calculates a set of jiyax smallest eigenvalues €1(z) < e2(z) <
... <en(2),and e1(z) > a(z), and the corresponding eigenfunctions { B;(z, y; 2) }}L, €
F, ~ Ly(Qy,), satisfying the orthogonality and normalization conditions

Ymax Tmax
/ dy f1(y) / de fa(2) By, y: 2) By (. y: 2) = b5, 3)

Ymin ZLmin

where ¢;; is the Kronecker symbol and a(z) > —oo is the lower bound of the smallest
eigenvalue of €1(%).

In Step 2 algorithm computes a set of partial derivatives of eigenvalue de;(z2)/0%
and partial derivatives of eigenfunctions 0B;(z,y; z)/0z with an accuracy of the same
orders achieved for eigenvalues and eigenfunctions of the BVP (1)—(3), respectively.

In Step 3 algorithm computes matrix elements defined by the integrals

Ymax ——
Hy(2) = (o) = [ i) [ ao g 22 r 2 OB

Ymin Tmin
Ymax Tmax <4)
J (IE, Y; Z)

@2 = Q2 == [ ayhi(w) [ defi@)Biteys ) IS,

Ymin Tmin

with an accuracy of the same order achieved for the corresponding eigenvalues of the
BVP (1)-(3).
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The calculated eigenvalues €;(z) and matrix elements H;;(z), Qi;(z) can be used for
solving the bound state and multichannel scattering problems for a system of coupled
ODEs with respect to the variable z with the help of the KANTBP programs [29-31].

2.1. Reduction of the Parametric 2D BVP to the Parametric 1D BVPs

The partial wave function B;(x,y; z) is expanded over the orthonormal basis func-
tions {1 (2)}}29 (jmax — 00) in the conventional (C) form

]tnax

Bi(w,y;2) = Y ;(2)€ (55 2), (5)

=1
or {¢(z;y, z)}] (Jmax — 00) in the Kantorovich (K) form

]max

Bi(w,yi2) = Y bz, 2)E (y; 2). (6)

7j=1

: (i) (i) g
In Eq. (5), the vector-functions € (y; z) = ( Yy 2), ., 8 (v )) =&,(y;2) =

max

(&1i(y;2), - Ejmani (U5 2))" are unknown. The functions 1j(z) are determined as so-
lutions of the following eigenvalue problem in the C form:

( f1 e ) 5 T U@ )> ¥;(@) = Ajv;(2),

() dz
w—ljglzf:r,lmn f5 (m)%ﬁm) = O or 1/&' (xmin) - O, (7)
w%hgrlm f5(x) dl/)(ig(;a?) =0 or j(@max) =0,

where Up(z) is a known function and

/mm@wwwm:%- (8)

Tmin

The functions 1 (z;y, z) are determined as solutions of the following eigenvalue prob-
lem in the K form:

<_1df5(m)£c + U (; y,Z)) V(@ y, 2) = Aj(y; 2)v5 (33, 2),

fa(z) dx
x_ljgﬁn f5($)w =0 or vY;j(Tmin;y,2) =0, (9)
lim f5 (:U)M =0 or Yj(Tmax;y,2) =0,

T—>Tmax

where U(z,y; z) is a known function of the original problem (1) and

/ dz fa(z)Yi(2;y, 2)Yi (25 y, 2) = 4. (10)

ZLmin
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Note, these problems can be numerically solved with a given accuracy by mens of the
ODPEVP program [28].

After minimizing the Rayleigh—Ritz variational functional, and using the expansion
(5), the parametric BVP (1)—(3) is reduced to a finite set of jya.x ODEs the C or K
forms

(D(y;2) = 2i(z) D€V (y2) =0, Dy 2) = —fiyﬂgyfg(y)(fy FW(z), (1)
,dm fz(y)(%(i(;;y;z) =0 or €D (ymax;z) =0,
Iij = 0ij = yfxdy A1) (69 Z))Tﬁ(j)(y; 2), (13)

Ymin

Here I and W (y; z) are the symmetric matrices of dimension jpax X jmax in the C
form

Wil 2) = 57 20+ [ o fita o) (U - 20wyt

or W(y; z) = W(y, 0y; z) are the self-adjoint matrix differential operator of dimension
Jmax X Jmax in the K form

Wij(y:2) = Al z)f:(;)](y’ Z)(Sij + ;ig; Hij(y; 2)+
1 (9 (e f2(y) 9
+ o (@] ) + 2y 2, (19
Hij(y;2) = Hij(y; 2) = / dz fu(x) 6wi(;;yy, 2) 3%(;;24, 2)
Qij(y:2) = —Qiily;2) = = / dz fu(x) %(:C;y,z)(W.

Taking a derivative of the boundary problem (11)—(13) with respect to parameter

z, we get that azs(”(y; z) can be obtained as a solution of the following parametric
inhomogeneous BVP:

06" (y; 2 9 i

D) o) BT = 10wy o] 0w, 9)

P2eD (y;2) FE (Yumins 2)

yilglmn 2(v) 020y 0 or 0z =90, (16)
92¢@ (- (2) .

Y= Ymax 020y 0z
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The parametric BVP (15), (16) has a unique solution if and only if the conditions
are fulfilled

Ymax

)" 6 (%)
(@) (4. gs <)
[ i) (€9wn)" 252 —0, (1)
Ymin
osiz) [ T OW(y:2)
ci\z) _ () (- Y 2) ¢y,
5= [ an) (9w) e i, (18)
Ymin
In this case the required matrix elements (4) are represented by the integrals
06V ()| 06”35 2)
3 & 3 &
Hij(z) = Hji(z) = /dyfl(y)< 8zy ) 8zy :

Ymin (19)

Qij(2) = —Qji(2) = - /dy 1) (69(:2)

Ymin

T 99 (y; 2)
0z

2.2. Continuity Conditions for the Eigenfunction B;(z,y; 2)

Since the problems (1)—(3) and (11)—(13) are homogeneous, it is necessary to use

an additional condition to support the continuity of the vector-functions & @ (y; z) and

matrix elements (19) with respect to the parameter z on the interval Q. = [2min, Zmax)-

We used the following additional condition:

1) At the first point z = 2; € 2., find a value y = yp, in which the eigenfunction
Bi(x0,yo; 21) reached absolute maximum value and fix the sign of the value of the
eigenfunction B;(xo,yo; 21). Here 2o € [Zmin, Tmax) is & fixed point and at least one
of the functions 1, (x) in expansion (5) is not equal zero.

2) At the next points z € €2, compute the value of the eigenfunction B;(zg, yo; 2) and
compare its sign with the sign of the previous one. If they are different, change the
sign of B;(xo,yo0; z) and again find a new value y = yo, in which the eigenfunction
Bi(x,yo; 21) reached absolute maximum value, and fix the sign of the value of the
eigenfunction B;(zo, yo; 2)-

Note that if the grids of €2, are dense, the above algorithm works well.

3. Formulation of Parametric Algebraic Eigenvalue
Problems by the FEM

Let us consider a numerical algorithm for the calculation of the vector-eigenfunctions

€@ (y; 2) of the parametric boundary problem (11)-(13) and their derivative with re-
spect to the parameter z. Computational schemes of the high order of accuracy are
derived from the Rayleigh—Ritz variational functional

Ymax jmax dgl, (y;z) 2 jmax ) )
j (; Rlw) (22Y 1 85 1) Wi 16 z>> dy
R(g,g) _ Ymin v= V=

, (20)

Ymax Jmax

I > )&y z)dy

Ymin v=1

on the basis of the FEM. The general idea of the FEM in one-dimensional space is
to divide interval [Ymin, Ymax] into many small domains called elements. The size of
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elements can be defined very freely so that physical properties or quality behavior of
solutions can be taken into account.

The interval A = [Ymin, Ymax] 15 covered by a system of n subintervals A; =
[yj—1,y5] in such a way that A = [J7_; A;. In each subinterval A; the nodes
P h;
Yjr =Yj—1 T ;7", hj =vy; —yj-1, r=0,p, (21)
and the Lagrange elements {goir(y)}f 0

o= ] ) (22)

P P
=0, istr (yj,r - yj,i)

are determined. By means of the Lagrange elements gpiT(y), we define a set of local
functions N;(y) as follows:

eloly),  ye, 0
07 ygAh o
V4

cpj,r(y)v y e Ajv o . T

{O’ ygA], l—r—i—p(]—l),r—l,p—l,

NP(y) = sog,p(y), y €A, (23)

Oir10)s Y E Aj, l=jp,j=1,n—1,
07 ygAJUAJ-‘rlv
b oY),y €A, I
07 y¢An, 7np

The functions {N?(y)},, L = np, form a basis in the space of polynomials of the
p-th order. Now, each component of the vector-functions &(y; z) € F2 ~ H'(Qp,) is
approximated by a finite sum of local functions N/ (y)

L

Eoly;z) = &(y;2) NP (y), (24)

=0

i.e. the vector-function &(y;z) has a generalized first-order partial derivative and
belongs to the Sobolev space H'(Qp,,) [32].

After substituting expansion (24) into the variational functional (20) and minimiz-
ing it [32,33] we obtain the generalized eigenvalue problem
APeh = chBreh, (25)
Here AP is the stiffness matrix; BP is the positive definite mass matrix; &€" is the

vector approximating solution on the finite-element grid; and €” is the corresponding
eigenvalue. The matrices AP and BP have the following form:

AP = Za?, B? = Zn:bg, (26)
j=1
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where the local matrices a? and b? are calculated as

+1
B I 4 def (y) def, (y)
PR Ty dy

+ (W)W (y, 2)¢5 ()¢5 . (y) } %dn,
(BV)2, = 0,0 / 1) (0%, () e, (27)

y=yj—1+05h;(1+n), ¢, =0,p.

Integrals (27) are evaluated using the Gaussian quadrature formulae

- 4 d det, h;
(aﬁ)’” :Z{ ;wf2(yg) SOjdqy(yg) gp]ély(yg) + 1 (Yg) Wi (Y. 2)80] q(yg)QOJ r(yg)} g
g=0
P W
(b;;)qr =0 Z S (yg)sog,q(yg)@?,r(yg)ijg, (28)

9=0

where y, = y;j—1 + 0.5h;(1 4+ 1g4), ny and wy, g = 0,p are the Gaussian nodes and
Welghts related to the orthogonal polynomial of order p 4+ 1. Note in this approach
maximum value of a half-band of matrices AP and BP? is small compared to their
dimension and is not greater than jmax X (p+ 1).

Let D(y, z) be a continuous and bounded positively defined operator on the space
H' with energy norm, €,(2), &;(y; z) € H? are the exact solutions of (11)—(13), and

el(2), 517 (y;z) € H! are the corresponding numerical solutions. Then the following
estimates are valid [32]:

lej(y) — b < erh®, €W (y;2) — €9]o < c2hPT, 1 > 0, 2 > 0, (29)

where €D (y;2)[)2 = [P dyf1(y) (€7 (y;2))T€ (y; 2), h is the grid step, p is the

m]n

order of finite elements, j is the number of the corresponding eigensolution, and the
constants c¢; and ce do not depend on step h. It is necessary to mention that the
second estimate of Eq. (29) is valid also for solution 0¢* (y; 2)/dz of problem (15)—
(17). This fact guarantees the same accuracy for eigenfunctions and their derivatives
within the present method.

In order to solve the generalized eigenvalue problem (25), the subspace iteration
method [32,33] elaborated by Bathe [33] for the solution of large symmetric banded
matrix eigenvalue problems has been chosen. This method uses a skyline storage mode
which stores components of the matrix column vectors within the banded region of the
matrix, and is ideally suited for banded finite element matrices. The procedure chooses
a vector subspace of the full solution space and iterates upon the successive solutions
in the subspace (for details, see [33]). The iterations continue until the desired set
of solutions in the iteration subspace converges to within the specified tolerance on
the Rayleigh quotients for the eigenpairs. If matrix AP in Eq. (25) is not positively
defined, problem (25) is replaced by the following problem:

AP ot =" BP¢", AP = AP — aBP. (30)

The number « (the shift of the energy spectrum) is chosen in such a way that matrix
AP is positive defined. The eigenvector of problem (30) is the same, and " = &" + a.
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3.1. Calculations of Parametric Derivative of the Eigenfunctions and
Matrix Elements

The boundary problem (15)—(17) is reduced to the linear system of inhomogeneous
algebraic equations

o¢" _ p__ _hpp 8£h_ B OAP 9"\ L

The normalization (13) , orthogonalization (17) and additional conditions (18) read
as

r o\ " oe T oA
(¢") Bre" =1, <(§) B =0, = (¢") TMeh @)

From here, the potential matrix elements H;;(z) and Q;;(z) have the form

T
_ (%) g2 (e %
Hij(z) - (az> B Ej Qij(z) = - (£z> B g (33)
Since " is an eigenvalue of (25), matrix L in Eq. (31) is degenerate. In this case

the algorithm for solving Eq. (31) can be written in three steps as follows:

Step k1. Calculate solutions v and w of the auxiliary inhomogeneous systems of
algebraic equations

Lv=b, Lw=d, (34)

with non-degenerate matrix L and right-hand sides b and d

= Ley, (s=9)(s—5)#0,
Lss’ — { 558/’ (S _ S)(S/ _ S) — O, (35)
6 o bS7 5#57 d . LSS7 8#57
710, s=35, 710, s=S5,
where S is the number of the greatest absolute value element of vector deJh.
Step k2. Evaluate coefficient ~
y=— T =V 5 = wTBE", Dy = (B%€")s. (36)
(Ds —2)
Step k3. Evaluate vector 9¢" /92
h — S
% — Vs ’sz, S # ’ (37>
0z v, s= 5.

From the consideration above it is evident, that the derivative computed has the same
accuracy as the calculated eigenfunction.

Theorem 1. Let D(y, z) be a continuous and bounded positively defined operator
on the space H' with energy norm. Also 9, W (y; z) is continuous and bounded in each
value of the parameter z. Then for exact values of solutions €,(z), 0,e;(z), Hi;(2),
Qi (2); &(y;2) € H2, 0.€,(y;2) € H? and the corresponding numerical values el (z),
d.el(2), Hl5(2), Q(2); £ (y;2) € HY, 0.€0(y;2) € H' the following estimates are
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valid: .
Oei(z)  Oel(2) op ||9€i(y;2)  0& (y;2)
— 2 < P A4 _ L\ < p+1
0z 0z | = cah™ 0z 0z S cah (38)
’Qij(z) — Z(Z)‘ é C5h2p, |Hij(z) — HZ(Z)’ < CGhQP, (39)

where h is the mazimal step of the finite-element grid, p is the order of finite-elements,
i, J are the number of the corresponding solutions, and constants cs, c4, c5 and cg do
not depend on step h.

Proof is straightforward following the proof scheme, in accordance with [32,34].

3.2. Finding the Lower Bound for the Lowest Eigenvalue of the
Generalized Eigenvalue Problem

In the general case, the boundary value problem (11)-(13) has both negative and
positive eigenvalues because we did not require the positive definiteness of matrix
W (y, z) providing non-negative eigenvalues of 0 < e1(2) < e2(2) < ... < en(2).
Because of this fact, the stiffness matrix A? = AP(z) in the general case is not positive
defined.

Therefore, it is difficult to get a close enough lower estimate o = a(z) < £f(2)
of the smallest eigenvalue £1(z) for the problem (25), for example, using the known
theoretical estimates of Gershgorin disks [35], for each real value of the parameter
z from a given interval €),. Based on the known properties of the decomposition of
F = LDL” for symmetric matrices F: for symmetric positive defined matrix F all
elements of the diagonal of the matrix D are positive defined [36], we proposed and
tested the following algorithm:

Step 1. Calculate LD LT factorization of A? — oBP.

Step 2. If some elements of the diagonal matrix D are less than zero

then put @« = o — 1 and go to Step 3, else go to Step 5.

Step 3. Calculate LD LT factorization of AP — aBP.

Step 4. If some elements of the diagonal matrix D are less than zero

then put @« = o — 1 and go to Step 3, else put « = a — 0.5
and go to Step 8.

Step 5. Put a = a + 1 and calculate LD LT factorization of AP — aBP.

Step 6. If all elements of the diagonal matrix D are greater than zero, then repeat
Step 5 .

Step 7. Put a = a — 1.5.

Step 8. End.

After using the above algorithm one should find the lower bound for the lowest
eigenvalue, and always €1(z) — a < 1.5.

The initial approximation a(z) = «aq in the algorithm (1-8) is given a priori, for
example, ag = 0, or with known asymptotic estimates of oy < £1(2).

In carrying out this algorithm (1—8), we obtain a lower estimation of the smallest
eigenvalue of (25), and always 1(z) — a* < 1.5, i.e. the resulting matrix AP — a*B?
is positive defined. As a result, (25) reduces to

(AP — o*BP) " = ch BPy", &t =" 4 o, (40)

which has positive eigenvalues 0 < &7(2) < ... < &k (2).

Thus, the algorithm (1-8) allows one to automatically determine the shift a* of
the spectrum of problem (25) and save the number of iterations in the calculation of
the solution set by the iteration in the subspace using the routine SSPACE [33] for
any value of the parameter z of a given interval 2,. To solve the sequence of BVPs

n this step misprint of paper [26,28] is corrected
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(11)—(13) on the grid O, [Zmin, Zmax] = {Z1 = Zmin, Zi+1 = 2i + R4, Zip,., = Zmax} With
a sufficiently small step variable h;, the values of a(z;+1) can be estimated by the
formula a(z;11) = el(2;) + (0l (2:) /02 — |0 (2:) /02| — 2B:)hi /2, Bi 2 1, calculated
in the previous step z;, not using an algorithm (1-8). In this case, the algorithm
(1-8) is used, for example, only when the value of z = zyin O 2 = Zmax-

The above algorithms have been implemented in Fortran 77 as a program complex
POTHEA [31].

4. Benchmark Calculation of the Eigenenergies of a Helium
Atom

Time-independent Schrédinger equation for a helium atom with zero total angular
momentum in the body-fixed hyperspherical coordinates z = R € [0,400), y = a €
[0, 7], x =¥ € [0, 7] can be written as a BVP for the following 3D-elliptic equation in
atomic units [10]:

1 0 0 4
( 9 g

R5OR 8R+R2( (19aR)+V(19aR))+2E>\IJ(R,a,z9)_0, (41)

L (0, 0 1 D 9
H(9,0;R) = - sin? a(@a a8a+81n(19)829 1n(§)819>’

R 2 2 !
V(0,0;R) = 2 <_sin(a/2) ~ cos(a/2) * 1 — sin(«) cosﬂ) '

The total wave function U (R, «r, ) satisfies the following boundary conditions:

fim g 009 RU(R,a,9) =0,
R—0 OR R—o0 (42)
., OU(R,a,9) . OU(R,a,9)
2,22 T P St At S/
0(1_1%1’7T sin” «v 50 0, 19141>I(I)1,7r sin (1) 50 0,
and is normalized by the condition
/dRR5/da sin2a/d198in19\112(R,a,19) =1. (43)

4.1. Reduction of the 3D BVP to the 1D BVP: Kantorovich Expansion

Consider formal expansion of the solution of Eqs. (41)—(43) over a set of two-
dimensional parametric basis functions {B;(a, ¥; R)}Y., (N — o00):

U(R,a,V) ZBJ (9, a; R)x;(R). (44)

7=1

In Eq. (44) the functions x(R) = (x1(R), x2(R), ..., xn(R))" are unknown, and the
adiabatic functions B(¢, o; R) = (B1(«,9; R), Bo(¥,; R), ..., BN (9, «; R))T form an
orthonormal basis for each value of hyperradius R which is treated here as a slowly
varying adiabatic parameter.

After minimizing the Rayleigh—Ritz variational functional, and using the expansion
(44), 3D BVP (41)—(42) is reduced to a finite set of N ordinary second-order differential
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equations for x(R)

1 . d 1 dR°Q(R)
—1¢pS U B (SO ) -
< dRR dR FUBR) +QRGE+ 5 ag x(R) =0, )
im X o mi(R) = 0.
R—0 dR ’ R— o0
Here I, U(R) and Q(R) are the matrices of dimension N x N
gi(R)+¢;(R
Lij = dij,  Uij(R) = Uji(R) = 2%% + Hij(R)
7 7 0B; (Y, a; R) 0B; (Y, a; R)
H;;(R) = H;i(R) = /dasln a/dﬁblnﬁ 3R I R , (46)
0 0
Qij(R) = —Q;i(R) = /dasm a/dﬁsmﬁB (9, a; R)w.
0 0

This problem can be solved by FEM at values R belonging to the Gauss nodes of a
finite element grid 2z with help of KANTBP programs [29-31]. In the KM [24, 25]
the parametric basis functions B; (¥, a; R) are determined as solutions of the following
parametric BVP:

[— - 12 (8 sin’ aai—l— L 851n198>+V(19,a; R) —e;(R)|Bi(9,a; R) =0, (47)

sin® o \ O sin ¥ 00 oY
lim sin2 o250 R) o n 2B B
a—0,m o 9—0,7 o
™ ™ (48)
/dasm a/dﬁsmﬁB (¥, ; R)B;(¥, 05 R) = ;5.
0 0

4.2. Reduction of the Parametric 2D BVP (47)—(48) to the Parametric
1D BVP

Consider the following expansion of adiabatic surface function in the C form:
B;(a,9; R):

]max

Bi(¥,; R) = ij 9)ED (; R). (49)

Here v;(¥) = Pj_1(cos¥) is the normalized Legendre polynomial:
L) y
_ R AN i1
s ao S0 gy T A W) A =i =),

. (50)
d;00) _ / 0 sin i ()1 () = dij.-

0

S sin(d) =3 5=

After minimization of the variational functional we get that the eigenfunctions

€9 R) = (6(a ), 68" (@ R), .. €10

Jmax

T
(a R)) and the eigenvalues ¢;(R) satisfy
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the following eigenvalue problem for a set of jy.x ordinary differential equations:

1 - - )
<—I8 sin? aﬁ + W(a; R) — &;(R) I) €9 R) =0,

sin? o O O | (51)
o 960 (aR)
lim sin®“a———— =0.
a—0,7 Oa
Here I, W (a; R) are the symmetric matrices of dimension jmax X Jmax
~ 7 . T .
Ii; =0i; = /da sin? o <§(l)(o¢; R)) 5(])(04; R),
0 (52)
XN+ R 2 2 R
Wiij(R) = | —=2 + = | - - dij + Wi P (a),
i(os ) [251n2a+ 2 ( sin(a/2) cos(oz/2)>] it 2 Y (@)
™ 1
Pi_1(cos 9)Pj_1(cos ¥ Py ()P
WP () = / dosiny DD alcosd) [ g PoaBa() g
J V1 —sinacosd V1= (sina)n
e

0

Because of the symmetry of matrix elements, W;;(a; R) = W;j(m — a; R), with
respect to o = /2, problem (51)-(53) will be considered for a € [0,7/2] with the
following boundary conditions for the ground and first exited states:

@) (-
lim sin2 aw =0
a—0,7/2 o

The 1D weak singular integral (53) was conventionally calculated analytically using
the Clebsch-Gordan coefficients [8,9]. But this approach gives big numerical errors
at large numbers ¢ and j because of calculations of the factorial of large numbers
(required factorials of numbers up to 4jmax — 3). After the change of the variable

in (53)

tan(a/2)

2 (1_C2)+Ca CG [_171]? o€ [037/2]7

n=n(a,q) =

we obtain the nonsingular integral, W;:"(a) = WP (1 — a),

1

/ APy (70 0)) P (n(0,C)) -

1

Wi (@) = cos(a/2)

ij

The last 1D integral calculated by means of the 96-order Gauss—Legendre quadrature
and this approach give results with accuracy < 107 at ¢, j < 50, i.e. with the double
precision accuracy.

The potential curves 4R~2(g;(R) + 1), radial diagonal and nondiagonal matrix
elements H;;(R), and radial matrix elements Q;;(R) as functions of hyperradius R
are displayed in Figure 1. As can be seen from Figure 1, our algorithm for continuity
conditions from Sec. 2.2 for the eigenfunction B;(«,¥; R) works well.

The numerical experiments show a strict correspondence with the theoretical esti-
mations for the eigenvalues, eigenfunctions of (29) and their derivatives with respect
to the parameter (38). In particular, we calculated the values of the Runge coefficients
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]

AR?(e(R)+1)

]

H (R)

Figure 1. Potential curves 4R *(g;(R) + 1) (top-left), radial diagonal (top-right)
and nondiagonal (bottom-left) matrix elements H;;(R), and radial matrix
elements Q;;(R) (bottom-right) plotted vs hyperradius R

alh—ah/Q
B =logs |5 lh/4 , l=1=+6. (54)
o —0

with absolute errors on four twice condensed grids for their eigenvalues, their deriva-
tives, and matrix elements, respectively:

9" (R)y ot

ot =1} () —<fl. of = SRR
€)% (0; R)  0€!(a; R) (55)
ol = 1€}/ (0 B) ~ €1 (0; R) o, ai’:“ SR " aR |
0

of = |H{[*(R) — H;(R)|. o} =|Q1/"(R) - Q1(R)

From (54) we obtained numerical estimations of the convergence order of proposed
numerical schemes, i.e. theoretical estimations equal to 5; = p+1 for [ = 3,4 and §; =
2p otherwise. For the chosen approximation order p = 4 for their eigenvalues, their
derivatives, and matrix elements we obtain numerical estimations of Runge coefficients
within 7.5+7.8, and for their eigenfunctions and their derivatives in the range 4.6+-4.8,
which corresponds to the theoretical error estimates at fixed number j,,4. of equations
(51). The calculations (55) were performed with a specified accuracy of ~ 10712 by

means of POTHEA program at relative error tolerance e¢; = 4 - 10716 of calculated
eigenvalues (30) on computer 2 x Xeon 3.2 GHz, 4 GB RAM, using the Intel Fortran
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77 and the data type of real*8, which provides 16 significant digits. The running time
for this example is 2 seconds for jnax = 12, N = 6 and 1000 seconds for ja.x = 50,
N = 50.

A convergence study of several matrix elements with respect to number j,.x =
12,28, 40, 50, 60, 70, 80, 100, 120 of the Legendre polynomials and the number of finite
elements, No; = 6, 12,18, 24, 30, 36, of the grid Q, = {0(N¢;)7/2} and their order p = 4
are presented in Tables 1-4. One can see that the potential curves 2R~2(e;(R)+1) and
the matrix elements H;;(R) converge monotonically from above, with the increasing of
the numbers Ne; and jmax. The absolute values of the matrix elements @Q;;(R) converge
monotonically from above with increasing jnax and from below with increasing N.;.

Table 1
Convergence of potential curves 2R ?(e3(R) + 1), 2R 2(e5(R) + 1) at R =7.65 as a
function of maximum number of Legendre polynomials j,.x and numbers of
finite elements N.; of order p =4

Jmax | Ner | 2R72(e3(R) +1),107! | 2R %(e5(R) +1),107¢
12 6 | —6.179 614 071 1009 | —3.717 091 841 269 3
12| 12| —6.179 614 958 562 6 | —3.717 092 590 328 6
12| 18 | —6.179 614 963 052 6 | —3.717 092 593 788 5
12 | 24 | —6.179 614 963 229 4 | —3.717 092 593 920 9
12 | 30 | —6.179 614 963 246 2 | —3.717 092 593 932 9
12 | 36 | —6.179 614 963 248 3 | —3.717 092 593 934 6
28 | 36 | —6.179 640 623 131 8 | —3.717 093 236 000 2
40 | 36 | —6.179 641 912 441 6 | —3.717 093 288 608 1
50 | 36 | —6.179 642 2330409 | —3.717 093 302 610 3
60 | 36 | —6.179 6423730300 | —3.717 093 308 887 9
70 | 36 | —6.179 642 443 638 6 | —3.717 093 312 101 5
80 | 36 | —6.179 6424830348 | —3.717 093 313 911 2

100 | 36 | —6.179 642 521 803 3 | —3.717 093 315 706 2
120 | 36 | —6.179 642 538 8130 | —3.717 093 316 498 0

As it is shown in Tables 14, the convergence of eigenvalues and matrix elements
vs the number of Legendre polynomials Pj_1(n), is proportional to their order ~ j 3.
It follows from estimations of values of the matrix elements Wi (a) ~ 1/y/j (in

particular, for integral (53) at ¢ = 1, we have
WP (a) = 2exp(—(j — 1/2)arch(sin™! a))/(1/2j — 1Vsina),

see, for example, [37]) and \;j_; = (j — 1)j ~ j2, which leads to estimations for the
correction of eigenvalues de ~ 572 in second-order perturbation theory. It means that
accuracy of an order of ~ 10712 of calculations will be achieved at least jmax ~ 1500.

In the benchmark calculations the grids in R and a have been chosen as follows:
Qr = {0(200)10(200)30} and Q, = {0(150)7/2}. Enclosed in parentheses are the
numbers of finite elements of the order p = 4 in each interval. The set of matrix
elements including the eigenfunction with number N = 50 were calculated with an
accuracy of an order of 1078, using the number of finite elements N,; = 150 at ey =
10712, A banded system of (150%4+1)*50=30050 linear algebraic equations (25) with
the mean bandwidth (4+1)*50=250 has been stable solved with relative error tolerance
€2 = 1072 at each value of hyperradius R belonging to the Gauss nodes of the grid
Qpr. A convergence study of the ground and first exited state energies of a Helium
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Table 2
Convergence of matrix elements Q35(R), Hs5(R), Hss5(R) at R = 7.65, like Table 1

jmax Nel Q35 (R)7 10_1 H35(R)7 10_2 H55 (R)7 10_2
12 6 | 1.345 981 051 4077 | 2.269 823 448 371 | 8.333 864 894 452
12 12 | 1.345 984 463 2035 | 2.269 832 028 222 | 8.333 904 465 350
12 18 | 1.345 984 480 2338 | 2.269 832 074 795 | 8.333 904 678 183
12 24 | 1.345 984 480 8970 | 2.269 832 076 647 | 8.333 904 686 599
12 30 | 1.345 984 480 9591 | 2.269 832 076 831 | 8.333 904 687 440
12 36 | 1.345 984 480 9704 | 2.269 832 076 853 | 8.333 904 687 547
28 36 | 1.345 970 507 6275 | 2.270 529 070 029 | 8.335 180 574 435
40 36 | 1.345 970 198 8424 | 2.270 563 372 554 | 8.335 245 600 693
50 36 | 1.345 970 135 2041 | 2.270 571 881 381 | 8.335 261 797 875
60 36 | 1.345 970 109 7007 | 2.270 575 593 492 | 8.335 268 874 497
70 36 | 1.345 970 097 4981 | 2.270 577 464 966 | 8.335 272 444 815
80 36 | 1.345 970 090 9213 | 2.270 578 508 889 | 8.335 274 437 152

100 36 | 1.345 970 084 6454 | 2.270 579 535 991 | 8.335 276 397 958
120 36 | 1.345 970 081 9686 | 2.270 579 986 560 | 8.335 277 258 259

Table 3

Convergence of potential curves 2R ?(e43(R) + 1), 2R ?(e45(R) + 1), like Table 1

Jmax | Net | 2R 2?(eq3(R) +1) | 2R %(e45(R) + 1)
28 6 | 4.439 005 647 8840 | 4.879 922 636 3814
28 | 12 | 4.438 991 442 6147 | 4.878 939 387 2213
28 | 18 | 4.438 991 281 3574 | 4.878 936 678 0110
28 | 24 | 4.438 991 270 2793 | 4.878 936 575 2142
28 | 30 | 4.438 991 268 8569 | 4.878 936 565 5674
28 | 36 | 4.438 991 268 5908 | 4.878 936 564 0653
40 | 36 | 4.438 814 541 3791 | 4.878 929 789 5129
50 | 36 | 4.438 775 794 7833 | 4.878 928 117 4560
60 | 36 | 4.438 759 636 3135 | 4.878 927 388 1689
70 | 36 | 4.438 751 689 2542 | 4.878 927 020 3953
80 | 36 | 4.438 747 322 9410 | 4.878 926 815 1861

100 | 36 | 4.438 743 080 9327 | 4.878 926 613 2176
120 | 36 | 4.438 741 240 5373 | 4.878 926 524 5981

atom with the number N of radial equations (45) and the number jy,ax of the Legendre
polynomials are presented in Tables 5 and 6.

One can see that the energy eigenvalues converge monotonically from above, with
the N = 45, jnmax = 50 — channel value being 1 = —2.90372415 a.u. and FE; =
—2.145973 22 a.u. Tables show that the obtained results agree with an accuracy of an
order of 1075 at jpax ~ N with variational estimations [15,16] and have a more high
accuracy than the previous ones [9,10]. So a similar accuracy can be achieved also
in calculations of high exited states of a He atom, for which variational calculations
were not applied, taking into account appropriate asymptotic behaviors of the matrix
elements and solutions [9].
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Table 4
Convergence of matrix elements Qu345(R), Hazas5(R), Hasa5(R) at R = 7.65, like
Table 1

Jmax | Nel Qu345(R), 1072 Hyz45(R),107* Hys45(R), 1073
28 6 | 7.163 551 693 508 | 1.313 245 172 874 | 1.034 074 714 010
28 | 12 | 7.192 416 552 701 | 1.313 393 326 976 | 1.037 535 372 894
28 | 18 | 7.192 470 461 759 | 1.313 394 061 373 | 1.037 544 063 945
28 | 24 | 7.192 471 802 131 | 1.313 393 807 683 | 1.037 544 380 393
28 | 30 | 7.192 471 876 618 | 1.313 393 761 626 | 1.037 544 409 101
28 | 36 | 7.192 471 882 307 | 1.313 393 751 746 | 1.037 544 413 457
40 | 36 | 7.164 925 249 674 | 1.304 767 510 954 | 1.036 946 196 503
50 | 36 | 7.158 600 336 853 | 1.302 825 852 351 | 1.036 806 107 806
60 | 36 | 7.155 920 393 086 | 1.302 012 009 221 | 1.036 746 299 243
70 | 36 | 7.154 591 453 293 | 1.301 611 523 137 | 1.036 716 518 763
80 | 36 | 7.153 857 856 101 | 1.301 391 714 358 | 1.036 700 039 417
100 | 36 | 7.153 142 578 776 | 1.301 178 645 274 | 1.036 683 940 956
120 | 36 | 7.152 831 407 895 | 1.301 086 493 836 | 1.036 676 926 529

Table 5
Convergence of the ground state energy (in a.u.) for a Helium atom versus
number N of basis functions and number j,.x of the Legendre polynomials

N jmax =12 [10] jmax =12 jmax =21 jmax =28
1| —2.887 91168 | —2.895 53919 | —2.895 551 19 | —2.895 552 76
2 | —2.891 37991 | —2.898 631 57 | —2.898 643 21 | —2.898 644 74
6 | —2.903 004 48 | —2.903 644 06 | —2.903 655 96 | —2.903 657 52
10 | —2.903 636 13 | —2.903 702 86 | —2.903 714 79 | —2.903 716 36
15 | —2.903 705 49 | —2.903 708 67 | —2.903 720 60 | —2.903 722 16
21 | —2.903 722 64 —2.903 722 99
28 | —2.903 722 66
N jmax =35 jmax =40 jmax =45 jmax =50
1| —2.895 553 32 | —2.895 553 52 | —2.895 553 63 | —2.895 553 71
2 | —2.898 645 28 | —2.898 645 47 | —2.898 645 58 | —2.898 645 66
6 | —2.903 658 08 | —2.903 658 27 | —2.903 658 39 | —2.903 658 46
10 | —2.903 716 91 | —2.903 717 10 | —2.903 717 22 | —2.903 717 30
15 | —2.903 722 72 | —2.903 722 91 | —2.903 723 03 | —2.903 723 10
21 | —2.903 723 54 | —2.903 723 74 | —2.903 723 85 | —2.903 723 93
28 | —2.903 723 55 | —2.903 723 74 | —2.903 723 85 | —2.903 723 93
35 —2.903 723 91 | —2.903 724 03 | —2.903 724 10
40 —2.903 724 03 | —2.903 724 10
45 —2.903 724 15
[9] —2.903 722 99
[15] —2.903 724 37

5. Conclusion

The main results presented in the paper were summarized in the abstract. The
numerical analysis shows that the finite element discretization of the problem and de-
veloped numerical schemes and algorithms implemented in Fortran 77 as the program
complex POTHEA provide stable calculations with a specified accuracy of ~ 10712 of
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Table 6
Convergence of the first exited state energy (in a.u.) like Table 5

N jmax =21 jmax =28 jmax =35
1] —2.139 93559 | —2.139 935 68 | —2.139 935 71
2 | —2.141 664 27 | —2.141 664 32 | —2.141 664 34
6 | —2.145 700 08 | —2.145 700 17 | —2.145 700 20
10 | —2.145 914 95 | —2.145 915 04 | —2.145 915 07
15 | —2.145 957 21 | —2.145 957 30 | —2.145 957 34
21 —2.145 968 71 | —2.145 968 74
28 —2.145 970 24

N jmax =40 jmax =45 jmax =50
1| —2.139935 72 | —2.139 935 72 | —2.139 935 73
2 | —2.141 664 35 | —2.141 664 35 | —2.141 664 36
6 | —2.145 700 21 | —2.145 700 21 | —2.145 700 22
10 | —2.145 91509 | —2.145 91509 | —2.145 915 10
15 | —2.145 957 35 | —2.145 957 36 | —2.145 957 36
21 | —2.145 968 76 | —2.145 968 76 | —2.145 968 77
28 | —2.145 970 26 | —2.145 970 26 | —2.145 970 27
35 | —2.145 972 10 | —2.145 972 10 | —2.145 972 11
40 —2.145 972 62 | —2.145 972 63
45 —2.145 973 22
[9] —2.145 956 97
[16] —2.145 974 04

parametric eigenfunctions and their derivatives with respect to the parameter within
an accuracy of the same order O(hP*1), as well as its parameter eigenvalues, their
derivatives and the matrix elements within an accuracy of the same order O(h?F) in
step h of the finite element grid, in accordance with theoretical estimations at fixed
number j,q. of equations (51). However, slow convergence of eigenvalues and ma-
trix elements vs the number j,,4. of Legendre polynomials of expansion (5) which is
proportional to the inverse cube of their order was shown. This fact gives restriction
on the required accuracy higher than ~ 10~ of solving the parametric 2D BVPs and
calculations of the matrix elements by using the conventional expansion (5) at rea-
sonable computer resources. The benchmark calculations of the matrix elements and
eigenenergies of a Helium atom confirm applicability of the elaborated algorithms and
program complexes taking into account the above restrictions. Solutions of this prob-
lem can be got by using the multistep Kantorovich expansion [12], for example, Eq.
(6) in hyperspheroidal coordinates [13,14], which will be considered in the following
papers.

Thus, the calculated parametric eigenvalues, eigenfunctions (parametric basis func-
tions) and the matrix elements can be used for the numerical solution with the required
accuracy of bound states and scattering problem for the three dimensional equation
of the Schrodinger type, including long-range potentials of the Coulomb type or for
various three-dimensional elliptic equations in partial derivatives, with the help of the
program complexes POTHEA and KANTBP [28-31]. The generalization of the algo-
rithm for solving a system of the parametric coupled 2D BVPs in the framework of
the projection method and FEM, which can be applied for solving multidimensional
boundary value problems for equations of Schrodinger type, will be given in further
papers.
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AJIFOpI/ITMLI YHUCJIEHHOI'O pelleHnd napaMeTpI/IquKoﬁ
,Z[BYMepHOI';i KpaeBoﬁ 3ala'1 Ha coOCTBEeHHbIE 3HAYECHUS U
BbIIMCJIEHUA ITPOM3BOAHDBIX OT COOCTBEHHBIX peHIeHI/Iﬁ 110
ImapamMeTpy M MaTpU4YHbIX 3JIEME€HTOB METOAOM KOHE€YHBbIX
9JIeMEHTOB

A.A. I'yces

Jlabopamopus, uHGOPMAUUOHHBLL METHOAO2UL
065edunénroill urncmumym AEPHHLLIL UCCAEA08AHUL
ya. 2Koauo-Kropu, 0. 6, 2. Jybna, Mockosckot oba., 141980, Poccus

IIpencrasnensl apdekTUBHbIE U CTaOUJIbHBIE AJITOPUTMBI YHCJIEHHOI'O PEIIeHUs C 3aJaH-
HOM TOYHOCTBIO MapaMeTPUYECKON IBYMEPHOI KpaeBoil 3aja4u Ha COOCTBEHHBIE 3HAYEHUSI
(K3C3). K3C3 dopmynmupyeTcst 1jisi CaMOCONPSI?KEHHOTO 3JIUIITHIECKOTO b bepeHmaib-
HOTO yPaBHEHWsI B YaCTHBIX IIPOM3BOJHBIX ¢ KpaeBbiMM ycyoBusiMu Heitmana u/win dupn-
XJIe B KOHEYHOHN IByMepHOU obsactu. Vcxonnas 3amada peaynupyeTcs K IapaMeTPUIecKon
oxHoponuoit oxnoMmeproit K3C3 mj1st cucrembl 0OBIKHOBEHHBIX I depeHaIbHbIX ypaBHe-
Huii Broporo nopsiaka (OY). Penykiusi npon3BoanuTCst pa3/IoKeHHEM HCKOMOIO DelleHUsI
IO TOJXOMAINEMY HabOPY OPTOTOHAJIBHBIX COOCTBEHHBIX (DYHKITHI BCIIOMOTATEILHON 3a1au
MIrypma—JluyBumnas mo oxgHol m3 nepeMeHHbIX. [Ipon3BomgHbIe 10 IIapaMeTpy OT COOCTBEH-
HBIX 3HAYEHUH U COOTBETCTBYIONINX COOCTBEHHBIX BEKTOP-DYHKIMI PEIyIINPOBAHHON 331891
OIPEIE/ISIIOTCS KaK PEIleHNsT MapaMeTputdIecKoit HeomgHoponuoit ognomepuoit K3C3, mosry-
JeHHOH nddepeHInpPOBAHNEM II0 TapaMeTpy peayuupoBanHoi 3ana4n. [Tosryuennsie K3C3
PEIAIOTCS METOIOM KOHEUHBIX JIEMEHTOB C AaBTOMATUIECKUM BBIOOPOM CABUTA CHEKTpa. A-
roputM, peasu3oBanHublii Ha @oprpane 77 B Buze nporpamymbl POTHEA | Beraucisier ¢ 3amau-
HOM TOYHOCTBIO HAGOP ~ 50 COGCTBEHHBIX 3HAYEHUIT (IIOTEHITMAIBHBIX TEPMOB), COBCTBEHHBIX
GYHKIUI 1 WX MEPBBIX MPOU3BOIHBIX IO TAPAMETPY, & TaKXKe MATPUIHBIX JIEMEHTOB — WH-
TEerpajoB OT IIPOM3BEJIEHUsT COBCTBEHHBIX (DYHKIUI ¥ /MM MEPBBIX TPOU3BOJHBIX COOCTBEH-
HBIX (DYHKIINI 10 TapaMeTpy. BeIduucaeHHbIe TOTeHnNaIbHbIE TEPMBI U MATPUIHBIE SJIEMEHTHI
MOXKHO MCIOJIB30BATH I (DOPMUPOBAHUS MATPHUIIBI TEPEMEHHBIX KOIMDMUITHEHTOB CUCTEMBI
O/1Y, xkoropas Bo3umkaeT npu peayknmn tpéxmepnoit K3C3 B paMkKax MHOrOKaHAJILHOTO
aauabaTUIecKoro moaxona mim merona Kanroposuya. DPpEGEKTUBHOCTL U CTAOUJIBHOCTD aJi-
TOPUTMA TPOJIEMOHCTPUPOBAHA YHUCJIEHHBIM AHAJIM30M COOCTBEHHBIX PENTEHUU MapaMeTpH-
geckoit nByMepHOit K3C3 1 BBIYMC/IEHHBIX MATPUYHBIX JIEMEHTOB KOTODBIE [TPUMEHSIFOTCS
npu pertennn ¢ omornbio nporpammMbl KANTBP Tpéxmepnoit K3C3 nna ypasuenuns: [1Ipé-
JWHTEpa, JJIsT ATOMa TeJisl C HYJIEBBIM IOJIHBIM YIJIOBBIM MOMEHTOM B THIIEPCGHEPUIECKUX
KOODJMHATAX.

KurogeBrble cioBa: napaMeTpudeckas JIByMepHas 3aj/lada Ha COOCTBEHHbIE 3HAYEHWUS,
JITUIITHYECKOE YPaBHEHNE BTOPOTO IMOPsiJIKa, METO]I KOHEYHBIX 3JIeMeHTOB, MeTosi KanTopo-
BUYa, runepcdeprieckne KOOPIMHATHI, ATOM TeJINS.





