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In this paper, a region of convergence of the continuous analogy of Newton’s method is
defined and an optimal choice of the parameter 7 is proposed. For the damped Newton’s
method a global convergence is proved and error bounds are obtained. The damping strategies
allow one to extend the convergence domain of the initial guesses. Several damping strategies
were compared. Numerical examples are given and confirm the theoretical results.
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1. Introduction

One of the modifications of Newton method is the well-known continuous analogy
of Newton’s method (CANM) or damped Newton’s method

Th41 = T + TiUE, F'(xk)vk = —F(xk), k=0,1,... (1)

to solve nonlinear equations F'(z) = 0 in Banach spaces. In this case F: Q C X — Y
is an operator defined in an open convex subset ) of the Banach space X into the
Banach space Y. If 7, = 1 the CANM leads to the Newton method. In our paper [1]
we have shown that the iteration (1) is convergent if 7, € (0;2). In the present paper,
we give a 7-region of convergence of CANM and propose an optimal choice for the
parameter 7 in (1). We also prove the semilocal convergence theorem for the iteration
(1) by using a technique consisting of a new system of recurrence relations [2].

2. The 7—region of Convergence of the CANM

We study the influence of the parameter 7 on the convergence of method (1).
Consider the open level set L, = {z € Q; |F(z)| < n/8 = a} and let L C Q be
bounded. In that follows we assume that

(1) [F'(y) — F'(@)[| < Ly — =, =ye,

(c2) [|(F"(z0))~H ]| < B,

(c3) |(F"(w0)) " F(wo)l| <m, ao = Lpn,

(ca) LIF (i) “HHIEF (@) T F ()| < ag, B =0,1,...
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Theorem 1. Let us assume that the conditions (c¢1)—(c4) are satisfied and 1y, € Iy,
where

—-1++1
<0, +2a+8“’“> C(0,2), for 0<ay<1,
k

I, =
(0,%), for 1<ap <M <oo.
k

(2)

Then the sequence {xi} obtained by (1) is well defined and remains in L, and con-
verges to some x* with F(z*) = 0.

Proof. We notice first of all that
var <1, k=0,1,...,
as 7y € Ij,. By induction we prove that there exists ['y11 = (F'(zx11)) "}, such that

1Tl
1-— ArTk ’

(3)

Tkl <
Now from the conditions (¢;) and (c4) we have

I = DWF (i) | < TRl 1A () — B (@) < LIk | s — opll =
:TkL”FkH HFkF(xk>H é’Tkak<1, k’IO,l,...

So, by the Banach perturbation lemma there should exist I'y41 satisfying (3). Thus
the sequence {z}} obtained from the damped Newton iteration is well defined. The
Taylor expansion of F(z) about xj, gives

F(xpy1) = F(ag) + F' (&) (2r — 21) =
= (1= 7)F(xg) + (F'(&) — F'(2x)) (Thi1 — 1), (4)

where & = 0z + (1 — 0)xp41, 0 € (0,1). Using the conditions (c¢1) and (c4) in (4) we

have
1E @ k)l < ()| F (i), (5)
(1) = |1 = 7| + a7y (6)
It is easy to show that
P(m) <1 (7)
under the condition 75 € Ii. Therefore, from (5) we deduce the following
[E @)l < (k1)1 (Th—2) - - (m0) [ F' (o) || (8)

According to (7) we have
IF(z)| < |[F(o)|l < 2, k=1,2,...,

ie. xp € L, for all k =1,2,... From (8) we obtaine
|F(zg)]| =0 at k— oo.

Since L, is bounded, there exists an accumulation point z* of the sequence {z}} with
F(z*) = 0. O
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We call the interval I by the 7-region of convergence, as well as call the value 7y,

such that _
Y(Tx) = | nin P(7),

the optimal one and denote it by 7,,;. The direct calculation gives us

1
1, for 0<ap < 5
1 1
Topt = TCLIC’ for 5 <ap <1,
1
- >
o for ap > 1, ©)
1
ag, for 0<a < 5
1 3 1
,(/)(Topt) = 1-— H < Z, for 5 < ap < 1,
k

1 —e+¢c%a,, for ap>1.

Here € is a small number. Some particular choices of the parameter, in contrast to
the optimal one, may be useful. We consider

_ —1+ I+ 8

40,)C

Tk 5 (10)

which is a middle point of the admissible interval Ij. Since 73, < 1, then from (6) we
obtain

bm) = 51— 7). (1)

In (11) we can see that (1) < 1 if 7, > 1/3. On the other hand, the 7 is decreasing
and (1) is increasing with respect to ag. Therefore from (10) and (11) we get

—_

§<’Tk<17 0<1/J(7‘k)<1, Trap < 1
under condition 0 < ay < 3. Thus, the choice (10) allows us to weaken the condition

imposed on a;. From (10), (11) it follows that 7, — 1 and ¢ (7%) - 0 at ar — 0.
Moreover, if a1 < ag for k= 0,1, ..., then we have

To<T < <Tp<---<1, 0<(rg) < <P(m) < Y(10).
It should be pointed out that, according to affine invariance property [3] we can also

take
—_— —1++/1+ 2ba

Tk b , for Yb>0, k=0,1,..., (12)

which has the same properties as 7 given by (10), i.e. 7j : (0;00) — (0,1) and
decreasing with respect to ay.

Theorem 2. Suppose the conditions (c1) — (ca4) are satisfied and Ty is given by
(12) with 0 < ap, < HT2 Then the sequence {1} obtained by (1) is well defined and

remains in Lo, and converges to some x* with F(x*) = 0.

Proof. By virtue of (6) and (12) we have
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Since Ti(ay) is a decreasing function with respect to ax and ¥(7j) is decreasing
b+ 2 2

too with respect to 7T, and 0 < ap < %, then we get ) < Tk < 1, and

0 < ¥(Tk) < 1, Trar < 1. The proof follows immediately from (5) and (8). O

The above derived admissible interval (2) and the theoretical optimal value as well
as the particular choices (10), (12) cannot be implemented directly, since the arising
quantities aj are computationally unavailable due to the arising Lipschitz constant,
ITk|| and ||TxF(xr)|. However, the obtained theoretical results can be useful for
the construction of computational strategies. Namely, from the assumption (c4) it is
evident that ||F(xg)|| — 0 if ar — 0, and ax, — oo if ||F(xx)|| — oo.

Therefore, replacing ay in (12) by yr = ||F(zk)||, we obtain

*

141+ 2bys D

The function 7 = 7/ (yx) decreases with respect to yi. From (13) it is also clear
that 77 — 1if yp, — 0, and 77 — 0 if y, — co. We have the following theorem.

Theorem 3. Suppose the conditions (c1) — (ca) are satisfied and Ty is given by

V142
(13). Suppose also that 0 < aj < %byk

is well defined and remains in L, and converges to some x* with F(z*) = 0.

. Then the sequence {x} obtained by (1)

Proof. By virtue of (6) and (13) we have

U(r) =
T by + T F 20y

From (13), (14) it is easy to show that the next two inequalities hold simultaneously

(14)

Trap <1 and ¢(r7) <1 (15)
under the condition
14+ /1420
0 <ap < Y = (14a)
or equivalently
2 -1
S ak(ag ) (14b)
Since 0 < 73 < 1 and 77 ar < 1 then 7} € I}. As a consequence, the assertion of the
theorem follows directly from Theorem 1. 0

Corollary. Theorem 3 is valid for any choice 7, € (0, 7]

Indeed, 7rar < 7jar < 1 and for such 7, we have (1) = 1 — 7 + ap7f < 1,
that assures a reduction of the residual norm, i.e. ||F(xgy1)|| < ||F(zk)||. However
the choice 7} is preferable in the sense that 77 — 1 as y; — 0 and the method (1)
asymptotically leads to quadratically convergent Newton method. Nevertheless, there
arises a question of the choice of the parameter b in (13). In our opinion, it must be
done in such a way that the damped Newton’s method converges rapidly.

3. A Semilocal Convergence of CANM

We define the sequence

An41 = f(ana Tn)zg(anv Tn>an7 ag = LBW; n= 07 ]-7 ceey (16)
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where
1

1—712’

flz,7) = g(z,7) = |1 — 7| + 2. (17)

We need the following auxiliary lemmas, whose proofs are trivial from [2].

Lemma 1. Let f and g be two real functions given by (17). Then
(i) For a fixed 7 € (0,1], f(x,7) and g(x,T) increase as a function of
z € (0,1/7) and f(x,7) > 1,
(ii) f(yz;7) < f(z;7) and g(yx,7) < APg(x, T) for v € (0,1],

where
[0, 4if T#I,
P=Y11, if =1

V5 and 1, € (0,1) for all k = 0,1,... Then the

3
Lemma 2. Let 0 < ag < 5

sequence {a,} is decreasing, i.e.

3—5
SR

O0< " <ap<ap1<--<a1<ag<

Lemma 3. Let us suppose the conditions of Lemma 2 are satisfied and define
v =ay/ag. Then
(i) v = f(ao,70)*g9(ao, 10) € (0,1),

g - Qtp)m -1
(/”) (o35 < r}/(l'f’p) Qo — < e < f}/ P ag,

1
(iii) Fan, 7)g(am, 7) < 7O+ A with A = f(aim) <1.
Notice that
L |[To[[ [ToF (o)l < ao,
|1 — 2o < IToF(xo)l| <n < Rp with R= ﬁ = b

ie. x1 € B(xo,Rn) = {z € X; ||z — zo|| < Rn}. In these conditions we prove, for
n > 1, the following statements:
(In) |Tnll < flan—1,Tn-1) [[Tn-1l;
(n) TnF(zn)l| < flan-1,Tn-1)g(@n-1, Tn-1) [[Fn-1F (2n-1),
(IL,) L|Tull ITnF (20) ]| < an,
(IVn) @p41 € B(zo, ).
Assuming tgag < 1 and z1 € Q, we have

11 = ToF" (1) ]| < [IToll 1F"(xo) = F'(z1)]| < L|Tol 21 — @0l =
= 70L [ITol[ [To F(xo)|| < 000 < 1.
Then by the Banach lemma, I'y exists and

IToll
L —|[Toll [|F(2z0) — F'(z1)]]

1T < < f(ao, 7o) [[Toll,

and (Iy) is true. On the other hand, according to (1), we have

F(zng1) = (1= 7)F(zn) + (F'(6) = F'(20))(Tn1 — T0),
where &, = 0z, + (1 — 0)xp41, 0 € (0,1), and

F'(xp11) = F'(xn)(I = Pn),  Po=Tn(F'(vn) = F'(Tp11))
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If 2, 211 € Q following
[Pall < L{Th|l |2ns1 — Znll < 7oL |Unll [TnF (20)]] < Than < 1.
Then I'y,11 = (I — P,)"'T,, and for n = 0, if x¢, 21 € , we have
Ty F(z1) = (I — Po) ' To{(1 — 70)F(x0) + (F' (&) — F'(w0)) (21 — 20)} =
= (I = Po) (1 —70) — 7oLo(F"(&0) — F'(20))}ToF (x0).
Thus, we get

1
1-— Toao

[T F (1) < {11 = 7ol + 75 a0} IToF (z0) || = f (a0, 70)9(ao, 7o) [ToF (zo)ll;

i.e. (IT) is true. To prove (III;) and (IVy), we use

L|ITy || |[T1F ()]l < f(ao,70)*g(ao, 7o) L [|To| |To F (z0)[| < f(ao,70)*9(ao, 7o)ao = a1

and
|22 — zol| < |2 — 21| + [[21 — 20l| < 7T E (21)]| + Tol[ToF (o) <

< [11f(ao, 0)g(ao, 70) + 0] [ToF(z0)|| <7 (1 + f(a;y,ro)> =

_ n___
=n(l+A) <K =8,

i.e. 22 € B(ag, Rn) and this proof holds by induction for all n € N. Now following an
inductive procedure and assuming z,4+1 € §2 the items (I,,)—(IV,,) are proved.

To establish the convergence of {z,}, we only have to prove that it is a Cauchy
sequence and that x,11 € (2. We note that

n—1

ITnF(z)| < [ToF (20)|Gny  Ga =[] flar, 7e)g(ar, )
k=0

As a consequence of Lemma 3 it follows that

n—1 n
G < A" [0 = any
k=0

So, from A < 1, we deduce that lim,,_,, G,, = 0. We can now formulate the following
result on convergence for the iteration (1).

Theorem 4. In the conditions indicated for the operator F, let us assume that
To = (F'(20))"! € L(Y,X) exists at some 19 € Q and (c1) — (c4) are satisfied.
Suppose that Ty is given by

I CVi
T = k by
1, for 1—17<e.

, for 1—1>¢, (18)

Then if B(zo,Rn) = {z € X; ||z — xo| < Rn} € €O, the sequence {x,} defined by
(1) and starting at xo has, at least, R—-order (p + 1) and converges to a solution
x* of the equation F(x) = 0. In this case, the solution x* and the iterations x,
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—_— 2
belong to B(xo, Rn) and x* is the only solution to F(x) =0 in B (xo, 5 Rn) naQ.
Furthermore, we can give the following error estimates:
N AT 1 — 70| + aoré
2 = Znamll € P IO F ), = BTN )

1— Ay (1 = 10a0)?

Proof. We have proved above that the assumption (¢4) is satisfied. Then by virtue
of Theorem 3 the damped Newton’s iteration converges. Namely the residual norm
|F(x)|| decrease as k increase. Then 7} tends to units as k increases. Hence the
condition 1 — 77 < € will holds starting at some number £ = m. Then by virtue of
(18) we have 7, =1 for all £ > m. On the other hand, z,, € B(xo, Rn) for all n € N,
then z,, € Q, n € N. Now we prove that {x,} is a Cauchy sequence. To do this, we
consider n,m > 1:

e—1 e—1
[Zmtnte = Tmanll < Z [Zmtnti+1 — Tmanti| < Z ITmtnttF (Zmtn)|| <
1=0 =0
e—1 N . e—1
< HFM-Q—YLF(xm—i-n)H ZAI’YQ (1) < HFM-Q—YLF(xm—i-n)H Z(A'V)e_l =
1=0 =0
1-(Ay)°
= 1A, IFmenF@men)ll, (20)

in which we have used the well-known inequality (1 + x)* > 1+ kx.

According to Lemma 3, we have
ot F (@) | < A" DD F ()| < A" 7D F () | (21)

and
T F (@) [| < (A9)™ [ITo F' (o) || (22)

Substituting (21), (22) into (20), we obtain

1 - (Ay)°

AT T () (23)

[Zm+nte = Tmtnll <
then {z,} is a Cauchy sequence. Now by letting e — oo in (23), we obtain (19).

To prove that F'(z*) = 0, notice that ||[',F(z,)|| — 0 by letting n — oo. As
|E ()| < [|F' () |ITnF (z5)] and F'(x,,) is a bounded sequence, we deduce || F(x,,)|| —
0 and then F(z*) = 0 by the continuity of F'. Now, to show the uniqueness, suppose

that y* € B (a:o, Llﬁ - Rn) N €2 is another solution to F(z) = 0. Then

1

0=Fly")— Fa") = [ F'(a* +tly" —a")dtly" - 2°). (24)

Also we use the estimation

1

1
1T [ @ +ty" — o)t < W]l [ IF' " + 1" —2)) = F'(wo) |t <
0 0
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1 1
<8 [l — tly" —2*) — wolldt < L5 [((1 = )" — o]l + tlly” — ol <
0 0

2

Lp

—Rp)=1. (25)

1
We see that the operator / F'(z*+t(y* —2*))dt has an inverse and consequently from
0
(24), we get y* = x*. O
Remark. In [4] the following choice was proposed

[ £ (zn—1)]
Tn = = —1Tn-1, n=12..., 79~0.1, 26
Feal ™ " (26)
and were the error bounds of kind of (19) derived under the conditions ||F’'(x) ™| < 3,
|IF"(x)|| < M. Here we derive the error bounds (19) without such conditions. There
is a closed relationship between (13) and (26). Namely, (13) gives

o MNE@a-)l o 21 VLA 2 F ()]
Toor F@)I 7™ T 14 /14 20[F ()|

It is easy to show that A, — 1 at max(||F(x,—1)l, ||[F(zn)|]]) = 0, i.e. in the
limit these two choices coincide. Since 7, = 1 for all k£ > m our iteration (1) can be
considered as a Newton iteration starting at ag = a.,,, where

3—-5
2 )

am = L|[Con || [T F (2m) || < aoy™ < (27)
which obviously, holds for large m, and for any ag. On the other hand, the Kantorovich
semilocal convergence theorem was proved under the condition ag < 1/2, i.e. the local
Newton methods, require sufficiently good initial guesses. Unlike, our iteration (1), as
Newton’s method is able to compensate for bad initial guesses by virtue of damping
strategies. The inequality (27) has shown that the damped Newton’s method at first
m-stage allows one to extend the convergence domain of the initial guesses.

4. Numerical Results and Discussion

Now let us give some numerical examples that confirm the theoretical results. We

use the following test examples f;(x) =0, ¢ =1,...,5, which are the same as in [5]:
fi(x) =Inx =0, x* = 1.0,
folz) = e’ +7@=30 _1 =0,  z*=3.0,
f3($):1/x_1:07 .Z'*:l,
falz) =2 +422 —10=0, z* = 1.3652300134140968457,

f5(x) = arctanx = 0, x* = 0.0.

All these computations are carried out with a double arithmetic precision and the
number of iterations n such that |f(z,)| < 1.0e — 16 is tabulated in Table 1. Note
that for the last two calculations for (10) and (9) used ay = | f” (zx)(f'(xx)) 2 f (z)|-
Table 1 also gives the number of iterations of the simple Newton’s method, and damped
Newton’s method with [6]

___9(0) _ flxr)
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e | ¢ g g ¢ | 8 - 9 ¥ g v | 9z [ ar ][ 1 [ oz |61 (6) 4q 1o
¢ | ¢ [ g g 9 | 2 - L L 9 98 | 1w loz ] 9] 2 | 2 (01) 4q 12
¢ | L | -1 - ¢ | gz | op - et | g - logge [ ea [ 9 | -1 - [10
M W w m M Gz | €L 6 g : - 161 6 18 16 [0T],] (o) squ

ve | osy || 72 | 8 g g9l ¢l 9] 8 oz
s o[ 2 ] 2 ot |lee |61 [ar] 8 g - - 8] 9] 9] ¢ log
v e |l v | g ¢ w1 | - - - g 0% ez et |l ¢ | ot | 11 (8z) 4q L
¢ | - | -1- ¢ | or | 8ot | - - ¥ e | gz et ] 9| - | - TOJMAN]
ot lvilziloc]Jor] 1o co-|[veltozcle60lsss]| v |gel o] ov]v9 0z

(z)8f (z)vf (z)&f (z)ef (z)tf
suorjounq

T O1q®L,

9T — 2] = 2 J® SUOIJRIAYI JO IoqUINU O],
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YK 519.6
JlokajibHasi 1 MOJIyJIOKaJbHAas CXOANMOCTh HEIIPEePbIBHOI'O
anaJjiora meroga HproToHa

T. 2Kanmaas*, O. YUynyyab6aartap'
* Kagedpa npuraadnoli mamemamury
Monzoaveruti 20cydapemeennoili yrnusepcumem, Mownzoaus
T JTa6opamopus ungopmaruormvis mexnonozut
065edunénroill urncmumym AEPHLIL UCCALA0BAHUIL
ya. Koauo-Kropu 9.6, Tybra, Mockosckan obaacms, 141980, Poccus

B nanmnoit pabote omnpejesiena 06/1aCTh CXOUMOCTHA HEIIPEPBIBHOrO aHaJjora Merona Huro-
TOHA U TPEJIJIOYKEH ONITUMAJILHBIN BBIOOD napamerpa 7. s 3aTyxaroniero Mmerona HeioTona
JIOKa3aHa TJI00aJbHAasl CXOIMMOCTh W TOJIYUEHBI OIeHKH morpernHocTu. Crparernu 3aTyxa-
HU¢ TTO3BOJISIIOT PACIIMPHUTH O00JIACTh HAYaJbHBIX ITAPAMETPOB, IIPU KOTOPBIX METOJ, CXOIUT-
cd. /laHO cpaBHEHHe PA3/JIMYHBIX cTpaTernii 3aryxanus. [IpuBeiéHHbIE YUCTIEHHBIE TPUMEDPHI
MIOAITBEPKJAIOT TE€OPETUYIECKUEe PE3YJIBTATHI.

KuroueBrle ciioBa: HeluHeHbIe ypaBHEHN B 6aHAXOBBIX IIPOCTPAHCTBAX; 3aTYXAIONINAN
METO/l HbIOTOHA; PEKYPPEHTHBIE COOTHOIIEHNU; OlIEHKa ITOI'PENTHOCTH.





