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An algorithm of the continuous analogue of Newton method (CANM) is proposed for the
solving of the boundary value problems of beam transport.

The efficiency of CANM has been practically shown on a number of the problems of beam
dynamics leading to the solving of ordinary differential and integral equations.

The solving of the problem of determining the optimal (in sense of some criterions of qual-
ity) parameters P; for charged particles transportation systems taking into account different
nonlinear effects, is given. The results of the calculation of the consistent “invisible” straight
section (insertion) of the accelerator obtained with the help of CANM are shown.
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1. Introduction

The creating of new accelerators and reconstruction of existing ones requires to
solve complicated nonlinear problems. Mathematical modeling of these problems leads
to interesting mathematical problems. Most of them are such complicated nonlinear
problems (including inverse ones) that the only way for their investigation is to develop
and implement a numerical method with the use of computers. In particular, among
these problems, there is a problem of determination of the optimum (in the sense of
some criterions of quality) parameters P; for charged particles transportation systems
taking into account some nonlinear effects; a problem of a design of matched “invisible”
long—straight sections of an accelerator. All these physical problems can be formulated
as mathematical problems of solution of boundary values problems for the systems of
two second order nonlinear ordinary differential equations.

A number of physical problems [1,2] reduced to the solving of ordinary differential
or integral equations, have been solved effectively with a continuous analogue of New-
ton method (CANM). That is why the authors of this paper decided to apply CANM
to the solution of the problems mentioned above.

CANM it was actively used in works of mathematical modeling of problems of
dynamics of particles [2-4]. The ideologist and scientific the professor E.P. Zhidkov
was the head of these works in LIT JINR. Use of this method has allowed to solve a
number of the physical problems connected with with enough split-hair accuracy

Problems of reconstruction of synchrophasetron JINR and problem of creation of
the new superconducting accelerator on 1.5 Gev.

The purpose of the present work is to give detailed enough description of algorithm
of numerical modeling of problems of dynamics of the charged particles in which basis
the continuous analog of a method of Newton is put.

This method allows to fit parameters, make placements and estimate errors of
placements for the elements of a system.

2. Physical Statement of the Problem

The scheme of the model of a charged particle transportation system with a chosen
system of coordinates is shown in Fig. 1. One of the possible variants of the structure
of “invisible” section for superconducting synchrotron is shown in Fig. 2. Physical
statement of the problem of charged particle transportation is made in following way.
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The given charged particles beam’s direction and spatial position at the entrance of a
transportation system — (ap, o1, So, Zo, Yo)-

S0
Zo
Yo

— coordinates of a trajectory’s initial point in the rectangular
system of coordinates of an installation.

ap — the angle contained by a tangent to the projection of the trajectory on the plane
“SX” at point (so, o, yo) and S-axis (in radians); c; — the angle contained by a
tangent to the projection of the trajectory on the plane “SY”and S-axis (in radians)

at point (so, o, Yo)-

~
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Figure 1. The system of coordinates utilized for calculations: SX — basic

rectangular system of coordinates; 51 X; and S>X>-systems of coordinates of the

1-st and 2-nd magnets
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Figure 2. Structure of the “invisible” section

It is necessary to determine such parameters (P, Ps, P, .

.. ; for example, p-momentum

of a particle) so that for the given initial position and direction of the particle one can
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obtain its final position and direction (also given) — (ag, ar1, Sk, Tk, Yk)-

S . . . .
xk — coordinates of a trajectory’s final point in the rectangular
yk system of coordinates of an installation.

k

o and oy are of the same meaning as ag and «p but at point (sg, Tk, Yk)-

3. Mathematical Statement of the Problem

Movement of a particle through a magnetic field is described by complete equations
in the rectangular system of coordinates of an installation [5]:

d?z A
@ = m@(svxayaxgay;7337Bx7By7Pi)7 (1)
d?y
@ = B()Row(s’ z,Y, IE;, y;) BS: Ba:7 Bya P’L);
1
where ByRy — a magnetic rigidity of the particle and N ;, p — momentum of
oRo

the particle, A = \/1 + (21)2 + (y})2, P; — some parameters, their mathematical and
physical meanings are defined in any particular case.

The components of the field B(B;, B;, By) are defined either analytically or nu-
merically (if the field is given as a table) in any particular physical case. B, B, By
components are nonlinear functions of (s, x,y) and may depend on parameters P;.

The boundary conditions are:

0> I;(So,Pi) :tga07

x(so, ;) =z

y(s0, P;) = yo, Yo (50, Pi) = tg oL, @
x(sg, P;) = x), = a, 2l (s, P) =tgap = ¢,

Y(sk, Pi) =y = b, i (s, P;) = tgagy = d.

The system of equations (1) may be transformed into a system of the first — order

equations by substitution : z, = 21 and y, = 1,

A
(J"l); = m@(SJxﬂyuxluyhBya B)?

A
(yl),s = BORO¢(83$7y7m17y17ByvPi)a (3)
/
Ts

y; =Y1.

=1,

Then the boundary condition (2) may be rewritten as

x(s0, P;) = wo, z(sk, ;) = a,
y(s0, P;) = o, y(sk, Pi) = b, ()
z1(s0, P;) = tg v, r1(sk, Pi) = ¢,
y1(s0, P;) = tgag., y1(sk, P;) = d.

Mathematical statement of the boundary value problem is as follows:
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— It is necessary to determine such parameters P; that the trajectory of a charged
particle will satisfy equations (3) and following boundary conditions:
x(sg, B;) = zp(P;) = a,
y(sk, ) = yi(F;) =0, )
x1(sk, Bi) = 21,(P) = ¢,
y1(sk, i) = y1x(Fr) = d.

— Let us rewrite boundary conditions (5) in a new form :
f1(sk, ) = g (sg, P;) —a =0,
f2(sk, Pi) = yx(sk, P;) — b =0,
f3(sk, Pi) = z1(sk, P) — ¢ =0,
fa(sk, Pi) = y1g(sk, P;) —d = 0.

(6)

The obtained system of four equations makes it possible to determine four param-
eters P;, i = 1+ 4. Satisfaction of the boundary conditions (5) achieved by these
parameters fitting. The system of Eqs. (6) may be solved by the method of introduc-
tion ¢ [6] if considering parameters P; as functions of t, i.e. P; = P;(t).

From this method we have:

0
501 (sx, Bi) = = fi(sk, o),
3]
52058 i) = = fa(sk, Pi), ™
7]
530k, i) = —fa(sk, Pa),
1o}
| 7 fa(sk, Pi) = —fa(sk, Pi)
or, in detail,
4
> (@1)p Py = —(ax — a),
i=1
4
> (we)p Pit = —(y = b),
i=1
- (8)
> (@h)p P = (), — o),
i=1
4
> W)p it = —(y;, — d)
i=1
The values of P/, i = 1+ 4 can be determined from the Egs. (8).
Then, using the next formula
1 Pi(t+ At) — Pi(t)
Pzt - At ) (9)
where At — a step for parameter ¢, we get the values of P; for the next step on ¢:
Pi(t + At) = Pi(t) + PiyAt. (10)

The values of P;(tg) are given (the initial approximation for ¢y = 0).
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In order to solve the system of equations (8), it is necessary to determine its

coeflicients (21, (), (40, (V1)
For this purpose we should solve following Cauchy problems for equations (3), (4):

1) Cauchy problem for the set of parameters Py, Po, P5, Py. Having solved this prob-
lem, we get:
xk(P17P27P37P4>7

yk(P17P27P37P4)?
x;g(P1)P27P37P4)7
y;g(P17P27P37P4)'

2) Cauchy problem for the set of parameters Py + APy, Py, P3, Py, where AP, — a
step of the increment for corresponding parameter.

We obtain
.Tk(Pl +AP1aP2aP37P4 5

(11)

yk(Pl+AP17P27P37P4)7 (12)
x;g<P1+AP17P27P37P4)7
y;g(P1+AP17P27—P37P4)'
From (11) and (12) one can obtain
(2x)p = (P14 APy, Pa, P3, Py) — x1(P1, P2, P3, Py)
k)P, — APl ’ (13)
/1 \/ _x;c(Pl+AP1,P25P37P4)_x;c(PlaP27P37P4)
(xk)Pl = AP, .

In the same way we get (yx)’p,; (¥j)p,- The procedure described above can be used
for calculating the derivatives with respect to P, P53, P4. It enables us to solve the
system (8) and to obtain P;(t + At), i = 1,4. So the first step of integration over ¢
variable is complete. The next step is implemented by repeating the above procedure
with new initial parameters obtained by formula (10).

This iterative process will be carried out until the given accuracy is attained.

4. Application of the Described Method to Some Physical
Problems

The following physical problems have been solved by using the described method:

— calculation of the bend — focusing beam transport system for fast extraction of
the beam from the Synchrophasetron at LHE, JINR [3];

— optimization of the long — straight matched sections of the 1.5 Gev proton su-
perconducting synchrotron JINR and analysis of nonlinear aberrations in these
sections [4].

Problem 1. A transportation system for beam fast extraction at the Synchro-
phasetron contains two turning magnets (see Fig. 1). As such magnets have a field
%g = —140), the direction of the beam at the exit of the
system depends essentially not only on the values of magnetic induction B; and Bs
but also on the magnet’s position in space (turns around axes and slopes). The field
into the magnet’s iron is given as two — dimensional tables by of the results of the
measurement. The values of the component By(s,z,y) were measured in magnet’s
median planes in relative units. Using of tables is necessary because of complexity
of the field distribution law at the edges of the magnets. In order to get a value of
magnetic field in Gauss units one has to multiply a value from the tables by the value
of magnetic induction By or Bs, correspondingly, for the first and second magnets.

with large gradient (n =
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The values of components of the magnetic field can be obtained by formulae:

2 2B 2B
By(S,Jf,y) = By(s,x,o) -Z (8 y(s’x70) + 9 y(S,ZE,O)) ,

2 0s? ox?
0By (s,z,0
Bm(saxay) = _%ya (14)
0By (s,x,0

The formulae (14) are obtained by Taylor expansion of By (s, x,y) about the point
(s,2,0) up to second-order taking into account the following conditions:

d’B,

ds?

d*B,
dz?

d’B,

Q7 = 0 and rot B =0. (15)

+ +

The position of the magnets in space is determined by parameters:

dy

d } — distances from the centres of the magnets to the ”S” axis;
2

l

I } — distances from the centres of the magnets to the ”X” axis;
2

Al

- } — horizontal angles of turn of the magnets around the ”Y” axis;
2

7L
Y2l

fr
P2

Different combinations of the parameters by four have been taken as varied pa-
rameters. Each combination contained the values of magnetic induction B; and Bs
because these parameters exert a substantial influence on the trajectory of a particle.
The table 1 contains coordinates and angles of beam at the exit of the system depend-
ing on the values of parameters P, = By, P, = By, P3 = dy, P, = ds. The complete
description of these results can be found in [5].

} — vertical angles of turn of the magnets around the ”X” axis;

} —vertical angles of turn of the magnets around the ”S” axis.

Table 1
Coordinates and angles of beam at the exit of the system depending on the
values of parameters P, = By, P, =By, P3=di, Py=d>

d1 d2 Bl B2 Yy th[

95 | 77 | =100 | =99 | 143,4899 | 0,2573
95 | 77 | =99 | —99 | 143,3140 | 0,2569
95 | 77| =99 | —100 | 143,3640 | 0,2573
55 | 77 | =99 | =99 | 143,3730 | 0,2610
55 | 77 | =99 | =99 | 143,6530 | 0,2600

Problem 2. The organization of a beam’s injection—extraction system, placement
of an accelerating station etc. require long and free sections (see Fig. 2) in the modern
rigidly focusing synchrotrons. The second physical problem is related to investigations
of nonlinear aberrations in quadrupole lenses of the above mentioned section for the
1.5 Gev proton superconducting synchrotron (LHE of JINR) and its matching with
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nonlinearities taken into consideration. It is worth mentioning that most papers de-
voted to design of a matched section are based on linear approximation. In this paper
all calculations for the free section were implemented taking into account the nonlin-
ear effects in lenses according to the method described above. Varied parameters are
gradients of lenses (G1, G2, G3), their lengths (I3, l2, I3) and drift distances (L1, Lo,
L3). The magnetic field of a quadrupole lens of great length almost does not depend
on s, i.e. By =0 and expansions of components B,, B, are:

B, = Gy[l + d6(5x4 - 109523/2 + y4)+
+ d10(9$8 — 84252 4+ 1262 y* — 36225 + yS) + -],

16
B, = Gz[1 + de(5y* — 1027y* + zh)+ (16)
+ d1o(9y® — 84y522 + 1262%y* — 36y%2° 4+ 28) + -],
where G — a quadrupole gradient of a corresponding lens, d, = R("=2)¢ R —

a radius is equal to half-aperture of a corresponding lens, ¢, — a relative value of a
field’s nonlinearity in a lens. Numerical experiments showed that the best matching
can be obtained by an insertion of corrective elements into the structure of the section
(see Figs. 3, 4).
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Figure 3. Dependens of the phase shift 1, (1) and . (2) of magnitude
emittensa beam for a linear coordination (without additional item)

Computed optimum parameters of such elements for free section for the 1.5 Gev
proton superconducting synchrotron are:

Gy = —464.296 Gs/cm, Iy =13.2cm, Ly =10 cm.

The complete description of the numerical modeling is given in [4].

5. Conclusions

The general approach to the solution of the problems of charged particles transport
and matching of long-straight sections of accelerators is proposed. It is based on a
continuous analogue of Newton method (CANM).

The developed method proved to be effective for solution of the described above
boundary value problem of charged particles transport and allows to fit parameters
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Figure 4. Dependens of the phase shift ¢, (1) and ¢, (2) of magnitude
emittensa beam for a unlinear coordination (with additional item)

of the system and carry out the placement of system’s elements according to initial
and final positions and directions of a beam. The errors of element’s placement can
be estimated also.

1. The following physical problems have been solved:

— parameters of proton’s transport system for fast extraction of a beam at the
Synchrophasetron of LHE, JINR have been computed and errors of turning
magnets placement in the system have been obtained.

— computation for a long matched section of the 1.5 Gev superconducting
synchrotron (SPIN) have been carried out. Nonlinear aberrations have been
taken into account. The results showed that nonlinear aberrations causes
substantial dismatching in the matched sections and using of corrective
nonlinear elements is the best way to eliminate this effect.

2. Further development of the proposed numerical method in connection with the
transport systems is to try to obtain optimum parameters taking into considera-
tion not only beam’s direction but also extent of a beam’s “spot”.
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VIIK 519.6
HereprBHLIﬁ aHaJIoT' MeToda HbIOTOHa AJIdd pellleHunsd 3aJa9n

AAHAMUKU Iy 9Ka
P. B. IloaskoBa, U. I1. FOauu

Jlabopamopusa ur@OPpMAUUOHHBLT METHON02UL
065e0unEnritl UHCMUMYM AIEPHLLL UCCAAOBAHUIL
ya. 2Koauvo-Kropu, 0.6, Jybra, Mockosckas obracmy, 141980, Poccus

Ha psme dusmuecknx 3a/1a4, TPpUBOAAIINX K PEIIEHUI0 OOBIKHOBEHHBIX UM MEPEHITHATD-
HBIX U WHTErPajbHBIX yPaBHEHNN, MPAKTHIECKH IOKa3aHa 3M@PEKTUBHOCTL HEIPEPBHIBHOTO
anasnora merona Herorona (HAMH), nmostomy aropaM maHHON paGOTBI MOKA3AJIOCh €CTe-
CTBEHHBIM Da3BUTHE 3TOI'O METOJA JJIsl PENIeHUs 3aJad IIPU YHCJICHHOM MOJIeJINPOBAHUU,
CBSI3aHHOM C TIPODBJIEMAMU CO3IAHMS HOBBIX YCKOPUTEIEH M PEKOHCTPYKIMHU crapbix. HAMH,
mpe/taraeMblil B TaHHOM paboTe [JIsI PelleHnsl HeJIMHEHHBIX 33129 TPAHCIOPTUPOBKU 3apsi-
2KEHHBIX YaCTHII, II03BOJIIET ONTUMAJIBLHBIM 00pPa30oM IOJZOOPATh IapaMeTpPhl JIEMEHTOB CH-
CTeMBI TPAHCIIOPTUPOBKYU U IIPOU3BECTU UX PACCTAHOBKY, a TAKKe CJeJIaTh OLEHKY JIOIYCKOB
Ha 9TH apaMeTPBhL.

KuaroueBsbie ciioBa: meron HpioToHa, IMHAMUKA IIyYKa.





