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For the describing of a system under the combined quantum and thermal influences, it
is offered two approaches each of them is a thermofield analogue of Clausius’classical and
Einstein’s statistical thermodynamics accordingly. We call them as Thermofield Thermody-
namics and Thermofield Statistical Thermodynamics. We start from the thermofield vacuum
and make a consent between basic notions of the quantum mechanics and thermodynam-
ics. We suppose to consider the thermofield vacuum as an effective thermobath and ground
stationary state as an thermal equilibrium state. On this ground we introduce such notions
as effective temperature and effective entropy and get possibility to describe systems under
combined quantum and thermal influences.
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For the describing of a system under the combined quantum and thermal influ-
ences, it is offered, as the first step, to start from the thermofield vacuum as the main
idea of Umezawa’s thermofield dynamics (7fD) [1]. To formulate an entire theory
of fluctuations it is necessary to make a consent between two ways of description:
the quantum and thermodynamics languages. So we suppose to consider the ther-
mofield vacuum as an effective thermobath (ETB) [2] and ground stationary state as
an thermal equlibrium state [3].

Taking the first way, we use the Bogolyubov’s (u, v)-transformation to find a wave
function of quantum oscillator in the thermal correlated-coherent state (TCCS) in the
form [4]

(g, T) =/ p(q,T) exp{i(q,T)}.
Its amplitude and phase depend on frequency w and temperature 7. We note the
phase plays an essential role even at the high temperatures when (q) = mwq?/2h. As

a result Sroedinger’s uncertainties relation ”coordinate- momentum” takes the form
of equality at any temperature
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that corresponds to presence of a thermal noise in the pure state. Here we can formally
enter the “effective quantum of action”

hief = Ricoth >h

2kpT = 7

Taking the second way we constructed a model of the system environment in
the form of the ETB filled with the thermal radiation which is the most natural
object with really infinite number of freedom degrees. It contains the infinite set of
weakly bounded quantum oscillators, each of them corresponds to a harmonic mode
of radiation at frequency w and average energy (¢), determined by Planck’s formula
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at any temperature. So this model is fundamentally differed from the standard model
of thermobath used in quantum statistical mechanics (QSM) consisting from weakly
bounded classical oscillators with

<€> = kBT

Thus, it is accepted that an effective temperature of an ETB mode (Bloch’s tem-
perature [5])
s @

T = .
f ko

Its limiting expressions are Kelvin’s temperature T at kgT > hi /2, which is the
same for all modes and a specific quantum temperature Ty = hw/2kp (Wigner’s

temperature [6]) at kpT < hw/2.

Essentially, that the initial imbedding of any system into the ETB allows consis-
tently constructing two sections of the new theory each of them does not use such
a notion as a particles number and, in a certain sense, is a thermofield analogue of
Clausius’classical and Einstein’s statistical thermodynamics accordingly. We call them
as Thermofield Thermodynamics (TfT) and Thermofield Statistical Thermodynamics
(TfSD).

In the TfT section (as it is accepted in thermodynamics) non concrete representa-
tions about a system concerning its mass and structure are required and the condition
of thermal equilibrium of system with the ETB mode is kept its validity in the stan-
dard form of the Zero Law B

Ter = Tet

. The First and the Second Laws of equilibrium thermodynamics thus formally do not
change, but we suggest generalizing the concept of transferred heat

6Qef = TefASef - (Cef)VATef-

Here, a more general characteristic, such as energy capacity (Cef)v, is entered. Its
limiting values has the expressions Cy and ;f—/'é P Where p,, is the spectral density of
radiation. Finally, the Third Law and efficiency of Carnot cycle accordingly have the

forms ~
T,
lim Sef = So # O; 77:1—(~f)2.
T50 (Tet)1

In the TfST section both types of uncontrollable influences on a system are con-
sidered correspondingly to an simultaneously account of quantum and thermal fluc-
tuations of system macroparameters, including its effective temperature as well. The
thermal equilibrium is defined now by the generalized Zero Law

T = Top + ATy

According to Gibbs-Einstein and Blokhintsev, in contrary to Boltzmann’s assembly
of particles, we enter the ensemble [7], containing an infinite set of complete system
copies under certain external conditions. This choice allows us to apply the obtained
relations to a single microparticle as well. TfST'is based on Gibbs’-Einstein’s canonical
initial distribution in the space of macroparameters at the module of distribution
associating by the effective temperature Tes. It takes the form [8]

ple) = { T age)

Expanding the structural function (¢)into a series up to the second order, it
is possible to find fluctuations of any system macroparameters, including effective
temperature as well. In the most simple case at Q(¢) = 1, from the given distribution,
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the expression for effective entropy follows in the form

() — Fer

Sut = —kp / dzp(e) n je) =

Here effective free energy

Fef = —kBTefln coth

2kpT

and p(e), in contrary to p(e), is a dimensionless density of probability. Formulae for
fluctuations of energy and temperature of a system are similar to Einstein’s formulae,
but they additionally show that fluctuations of frequency Aw = (w) and energy Ae =
(e) always take place including the ground state.

Some advantage of TfST over QSM ground on the different choice of thermobath
models. Studying the entropy in the frame of TfSTwe can take the quantum oscillator
in the TCCS as a macrosystem in the thermal equilibrium. Its effective entropy Sef

has the form
Sef = kg <1+ Incoth o
of = KB nco o%kpT

in which the contribution of the energy fluctuations in the ground state is included.
But according to QSM, we have the essentially other expression

hw hw - hw

We note the entropies S and S are different. Particulary, at T'— 0 : Sef — kg # 0
while S — 0 but at T > hw/2kp we have S¢ ~ S. The condition of applicability of
thermodynamics ATy = Tor at T — 0 in TfST, in contrary to QSM, are satisfied.

The legitimacy of our results can be also proved with the help of the TfD calcu-
lations. We define the effective entropy on the ground of the wave function ¥ (g, T)
obtained by us

Sut = —hs { [aap@mpta) + [ aot lnﬁ(p)} ,

where p(q) and p(p) are dimentionless densities of probability. This expression might
be rearranged through the “effective quantum of action”

Sef = kB{l + ln(hef/h)} = kB{l +In W},

where W — is a number of microstates in the given macrostate.

As a result, Fenyes’ idea [9] about an opportunity of the Nature description simul-
taneously at micro- and macrolevels by the means of two alternative ways proves to
be true. We have demonstrated the language of TfST allows using the generalized
diffusion equation for density pn(q, Tef), at the effective coefficient of diffusion

while the language of TfD allows using the Shroedinger equation for wave function
¥(q,T). Moreover the both ways of the description give us the equivalent results, and
they are applicable even up to the ground state of oscillator equal in rights (at T — 0).

We believe that using TfST principles and the main TfT ideas together can be
propagated on other systems (relic radiation in the early Universe, quark-gluon plasma,
quantum computers, nanostructures etc.). Then we can obtain their adequate descrip-
tion at any temperatures and avoid some difficulties which appear in the frame of QSM
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for any system at
<€> = ]{BTQ = kBT.

We hope that efficiency of the suggested theory at the description of nearly perfect
fluids [10] can be confirmed in the near future both at the analysis of quark - gluon
plasma and the further studying of He-4 superfluidity and Bose-Einstein condensates.
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[Tpemrararorcs JiBa 1MoIX0/1a K OITUCAHUIO CUCTEMbI, HAXO/SIIEHN 110/ OJTHOBPEMEHHBIM KBaH-
TOBBIM M TEIJIOBBIM CTOXAaCTHUYECKUM BO3JIEMCTBUEM, KAXKJBIH N3 KOTOPBIX SABJISETCS TEPMO-
IIOJIEBBIM aHAJIOTOM KJIACCHYECKO# TepMommHaMukm Kiraysmyca M CTATUCTHYECKON TEPMOJIH-
HAMUKNA DUHIITEHHA COOTBETCTBEHHO. MBI HA3BIBAEM UX MEPMONOALEOT, MeEPMOIUHAMUKOT
T MEPMONOAEBOT, CMATNUCTNUNECKOT, Mepmoduramukrot. VICXOns M3 ¢ TEpMOIIOJIEBOTO BaKyy-
Ma YCTAaHABJIMBAETCS COOTBETCTBUE MEK/y OCHOBHBIMM MOHSTUSIMU KBAHTOBOU MEXAHUKH W
TepMmosmHaMuKu. [Ipesiaraercsa paccMaTpuBaTh TEPMOIIOJIEBO BaKyyM Kak 3(hdeKTUBHBII
TEPMOCTAT U OCHOBHOE COCTOSIHME KaK COCTOsIHHE TeIlJIOBOro paBHoBecus. Ha sTom ocHOBa-
HUWU BBOJISITCSI TaKWe MOHSATHS KakK 3M@dEKTUBHAsT TeMIlepaTypHas U 3pdeKTUuBHAST SHTPOIHUST
U OTKPBIBAETCH BO3MOXKHOCTDb OIMCAHUS CUCTEMBI, HAXO/IAIIENCS 0] OJJTHOBPEMEHHBIM KBaH-
TOBBIM U TEILJIOBBIM BO3/IEHICTBUEM.

KuaroueBbie cioBa: 3ddekTuBHasE TeMrepaTrypa, 3hdeKTUBHAas SHTPOINS, KOMOUHU-
pPOBaHHOE KBAHTOBOE U TEILJIOBOE BO3/IEHCTBUE, CTOXACTUYIECKOE BO3JEICTBHE, TEPMOIIOJIEBO
BaKyyM.





