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The notion of rigid geometry is introduced. Rigid geometries include Cartan geometries as
well as rigid geometric structures in the sense of Gromov. Foliations (M, F') with transverse
rigid geometries are investigated. An invariant go of a foliation (M, F') with transverse rigid
geometry, being a Lie algebra, is introduced. We prove that if, for some foliation (M, F') with
transverse rigid geometry, go is zero, then there exists a unique Lie group structure on its full
basic automorphism group. Some estimates of the dimensions of this group depending on the
transverse geometry are obtained. Examples, illustrating the main results, are constructed.
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1. Introduction

One of the basic objects associated with a geometric structure on a smooth man-
ifold is its automorphism group. Among the central problems, there is the question
whether the automorphism group can be endowed with a (finite-dimensional) Lie group
structure [1].

In the theory of foliations with transverse geometries, automorphisms are under-
stood as diffeomorphisms mapping leaves onto leaves and preserving transverse geome-
tries. The group of all automorphisms of a foliation (M, F') with transverse geometry
is denoted by A(M, F'). Let Ar (M, F) be the normal subgroup of A(M, F') formed by
automorphisms mapping each leaf onto itself. The quotient group A(M, F')/Ar(M, F)
is called the full basic automorphism group and is denoted by Ag (M, F).

In the investigation of foliations (M, F') with transverse geometry it is naturally to
ask the above problem about the existence of a Lie group structure for the full group
Ap(M, F) of basic automorphisms of (M, F).

Leslie [2] was first who solved a similar problem for smooth foliations on compact
manifolds. For foliations with complete transversal projectable affine connection this
problem was studied by Belko [3].

The leaf space M/F of the foliation is a diffeological space, and the group
Ap(M, F) can be considered as a subgroup of the diffeological Lie group Diff (M /F).
For Lie foliations with dense leaves on a compact manifold, the diffeological Lie groups
Diff (M /F) are computed by Hector and Macias-Virgos [4].

In this work we introduce a notion of a rigid structure. Cartan geometries [1] and
rigid geometric structures in the sense of Gromov [5,6] are rigid structures in our
sense. At the same time almost complex and symplectic structures don’t belong to
rigid structures. A manifold equipped with a rigid structure is called a rigid geometry.

We investigate foliations admitting rigid geometries as transverse structures and
call them by foliations with transverse rigid geometries (TRG). Cartan foliations [7,8]
and G-foliations, where G is a Lie group of finite type, are foliations with TRG. In
particular, Riemannian, pseudo-Riemannian, Lorenz, projective and conformal folia-
tions belong to the class of foliations under investigation. The category of foliations
with TRG is denoted by §rre. The group Ag(M, F') is an invariant of (M, F') in the
category STrc-
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We assume that all the foliations under consideration are modelled on effective
rigid geometries. We construct the foliated bundle for a foliation (M, F') with TRG
and reduce problems on the automorphism groups and the basic automorphism groups
of (M, F) to the analogous problems for e-foliations (Theorems 3 and Proposition 9).
](Emph?size that these statements are proved without assumption of completeness of

M, F).

For any complete foliation (M, F') with TRG we define the structure Lie algebra
go(M, F) and show that go(M, F') is an invariant of this foliation in the category Frra
(Proposition 5). One of the main results of this work is the proof of the theorem
asserting that if go(M, F) is zero, then there exists a unique Lie group structure
on Ag(M, F). We also obtain some estimates of the dimensions of these Lie groups
depending on the transverse geometry (Theorem 5).

We give different interpretations of holonomy groups of complete foliations with
TRG (Theorem 4) and find some other sufficient conditions for the existence of a
Lie group structure on Ap(M, F') (Theorem 6). In particular, it is shown that the
structure Lie algebra of any complete proper foliation with TRG is zero, and Ag (M, F)
is a Lie group (Corollary 2).

We demonstrate that, for a foliation with TRG covered by a fibration, the con-
dition go(M, F) = 0 is equivalent to the discreteness of its global holonomy group
(Theorem 7).

Examples of computations of the full basic automorphism group of a foliation with
TRG are constructed. Examples 1 and 2 also show that the group Ag(M, F') depends
on the transverse rigid geometry of the foliation (M, F).

2. Rigid geometries

Parallelizable manifolds. Recall that a manifold admitted an e-structure is
called parallelizable. In other words, a parallelizable manifold is a pair (P,w), where
P is a smooth manifold and w is a smooth non-degenerate R™-valued 1-form w on P,
i. e, wy: Ty, P — R™ is an isomorphism of the vector spaces for each u € P. Here
m = dim P.

Rigid structures. We will use notations from [9]. Denote by P(N, H) a principal
H-bundle with the projection p: P — N. Suppose that the action of H on P is a
right action and R, is the diffeomorphism of P, corresponding to an element a € H.

Two principal bundles P(N, H) and P(N, H) are called isomorphic if H = H and
there exists a diffeomorphism I': P — P such that I'o R, = R, oI, Va € H, where

R, is the transformation of P, corresponding to an element a.

Def 1. Let P(N, H) be a principal H-bundle and (P,w) be a parallelizable man-
ifold satisfying the following condition:
(S) there is an inclusion h C R™ of the vector space of the Lie algebra b of the Lie group
H into vector space R™ such that w(A*) = A, VA € b, where A* is the fundamental
vector field on P corresponding to A.

Then £ = (P(N, H),w) is called a rigid structure on the manifold N. A pair (N, ¢)
is called a rigid geometry.

Def 2. Let £ = (P(N,H),w) and € = (P(N, H),®) be two rigid structures. An
isomorphism I': P — P of the principal bundles P(N, H) and P(N, H) satisfying the
equality I'*& = w is called an isomorphism of the rigid structures £ and &.

Any isomorphism T" of rigid structures § and £ defines a map v: N — N such that
pol'=yop,and v is a diffeomorphism from N to N. The projection v is called an
isomorphism of the rigid geometries (N, €) and (N, €).

Induced rigid geometries. Let & = (P(N,H),w) be a rigid structure on a
manifold N with the projection p: P — N. Let V' be an arbitrary open subset of the
manifold N, let Py := p~ (V) and wy := w|p,. Then & := (Py(V, H),wy) is also a
rigid structure.
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Def 3. The pair (V,&y) defined above is called an induced rigid geometry on the
open subset V of N.

Gauge transformations. Let A(€) be the group of all automorphisms of a rigid
structure £ = (P(N, H),w). It is a Lie group as a closed subgroup of the group A(P,w)
of all automorphism of a parallelizable manifold (P, w). Denote by A(NV, &) the group of
all automorphisms of the geometry (N, &), i. e., A(N,€&) := {y € Diff(N) | 3T € A(¢) :
pol = ~op}. Consider the natural group epimorphism x: A(§) — A(N,§): T — 7,
where + is the projection of I' with respect to p: P — N.

Def 4. Let £ = (P(N,H),w) be a rigid structure on a manifold N with the
projection p: P — N. The group Gauge(§) := {I' € A(&) | poT" = p} is called a group
of gauge transformations of the rigid structure &.

Remark that Gauge(€) is a closed normal Lie subgroup of the group A(§), because
it is the kernel of the natural group epimorphism x: A(§) — A(N,¢).
Effectiveness of rigid geometries.

Def 5. A rigid structure £ = (P(N, H),w) is called effective if for an arbitrary
open subset V in N the induced rigid structure &y = (Py(V, H),wy ) has the trivial
group of gauge transformations, i. e., Gauge({y) = {idp, }. A rigid geometry (N,§) is
said to be effective if € is an effective structure.

Pseudogroup of local automorphisms. Let (N,¢) be a rigid geometry. For
arbitrary open subsets V, V/ € N an isomorphism V — V' of the induced rigid
geometries (V,&y) and (V/,&y) is called a local automorphism of (N, &). The family
H of all local automorphisms of a rigid geometry (N, §) forms a pseudogroup of local
automorphisms. Denote it by H = H(N,&). Recall that a pseudogroup H of local
diffeomorphisms of manifold N is called quasi-analytic if the existence of an open
subset V' C N and an element y € H such that |y, = idy implies that v|p() = idp(4)
in the entire (connected) domain D(7y) on which ~ is defined.

Proposition 1. The pseudogroup H = H(N,§) of all local automorphisms of an
effective rigid geometry (N, ) is quasi-analytic.

Proof. Let v be an element of H = H(N,§) such that v|y = idy for some open
subset V' in N. The effectiveness of the rigid geometry (N, §) implies I' = idp,,, where
I is a local automorphism of  having the projection 7|y with respect to p: P — N.
Let the domain D = D(v) of v be an open connected subset of N such that D\ V # ().
Consider an automorphism I' of the induced rigid structure £p with the projection ~.
Since I'*wp = wp, I' is an isomorphism of the parallelizable manifold (Pp,wp). It is
known that two automorphisms of a connected parallelizable manifold, which coincide
at one point, coincide at any point. Therefore it follows from the equality I'|p, =T =
idp, that I'|cp, = idcp, for each connected component C'Pp of Pp. Thus, I' = idp,,
hence v = idp.

3. Foliations with transverse rigid geometries.
Foliated bundles

Foliations with transverse rigid geometries (TRG). A foliation (M, F) of
codimension ¢ on an n-manifold M has a transverse rigid geometry (N, ), where N is
a g-manifold, if (M, F') is defined by a cocycle n = {U;, fi, {i;}} modeled on (N, §),
i. e.,

1) {U;} is an open covering of M;
2) fi: U; — N are submersions with connected fibres;
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with ;5 is a local automorphism of (IV, ). The topological space N is not assumed to
be connected. Without loss of generality, we will suppose that N = U;c;f;(U;) and
the family {(U;, f;)} is maximal as it is generally used in manifold theory.

Let X be the set of fibres of the submersions f; belonging to the cocycle 1. One can
easily check that ¥ is a base of a certain topology 7 in M. The connected components
of the topological space (M, 7) form a partition F' = {L,| o € A}.

Def 6. We call (M, F), where F' is the partition mentioned above, a foliation with
transverse rigid geometry (N, &), and L, are called its leaves. The cocycle n modelled
on (N,¢) is said to be an (N, &)-cocycle.

Let (M, F) be a foliation defined by an (N,§)-cocycle n = {U;, fi, {7ij}}, where
(N,¢€) is an effective rigid geometry. Effectiveness of ¢ guarantees the existence of
a unique isomorphism T';; of the induced rigid structures &y, (v,nv,) and &, v,nv;)s
whose projection coincides with ~;;. Hence, in the case U; NU; N Uy, # 0, the equality
Vij © Vjk = 7ik implies the equality
(Fl) Fij o} ij = Fik-

The following two equalities are direct corollaries of the effectiveness of n and (I'y) :
(Fg) Iy = ldpl and (F3) Fij = (Fji)_l.

Assumptions. In this work we will assume that each rigid geometry is effective
and all the foliations under consideration are modeled on effective rigid geometries.

Notations. We denote by X(NN) the Lie algebra of smooth vector fields on a
manifold N. If @ is a smooth distribution on M, then Xqo(M) = {X € X(M) |
Xy € Qu, Yu € M}. If Q is an integrable distribution and defines a foliation F, where
@ = TF, we also use notation Xz (M) for Xq(M).

Foliated bundles. Now we construct the foliated bundle for a foliation with
TRG.

Theorem 1. Let (M, F) be a foliation with a transverse rigid geometry (N,§),
where § = (P(N, H),w). Then there exist a principal H-bundle m: R — M, an H-
invariant foliation (R,F) whose leaves are projected by m onto the leaves of (M, F') and
an R™-valued 1-form @ on R, where m = dim P, that satisfy the following conditions:
(i) the map @, : T, (R) — R™, Yu € R, is surjective; moreover, ker @, = T, F;

(ii) there is an inclusion h C R™ of the vector space of the Lie algebra b of the Lie
group H into R™ such that ©(A*) = A, VA € by, where A* is the fundamental vector
field on R corresponding to A,

(iii) the foliation (R,F) is an e-foliation;

(iv) the restriction wp on an arbitrary leaf L of the foliation (R, F) is a regular covering
map onto a leaf of (M, F), and the subgroup H(L) :={a € H | R,(L) = L} of the Lie
group H is the group of deck transformations.

Proof. Supppose that the foliation (M, F') with transverse rigid geometry is defined
by a (N, &)-cocycle {U;, fi,{vi;}}, where £ = (P(N,H),w), and let p: P — N be the
projection of the principal H-bundle P(N, H). Denote V; := f;(U;), P; := p~1(V;) and
p;i := p|lp,. Without loss of generality, we can assume that U; and V; are contractible
open sets. Let R; := fi P, :={(x,2) € U; x P; | fi(z) = pi(2)}, fi: Ri — Pi: (z,2) —
zand m;: Ry — U;: (x,2) — x, ¥Y(x,2) € R;. We have p; o f; = fi o ;. The formula
(x,2) - a := (z,z - a), V(z,2) € Ry, Ya € H, defines a right action of the group
H on R;. Thus we have the principal H-bundle m;: R; — U; with the simple H-
invariant foliation F; = {f; '(2) | z € P;}. Let w; := w|p,. We have the R™-valued
1-form &; := ffw; defined on R;. Moreover, @;(X) = 0 for X € X(R;) if and only if
X e X7, (Rz)

Let Y := [ |;c ; Ri be the disjunct union of the manifolds R;. Let us introduce an
equivalence relation p in Y. Denote a point u € Y N'R; by the pair (i,u). Two points
(i,u) and (j,w) in Y are said to be p-equivalent if
(1) mi(u) = m;(w) € Uy NUj;

(2) fi(u) = (Lj o f;)(w),
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where I';; is the isomorphism of the rigid structures £ f;winuy) and &, (v,nu,) whose
projection v;; belongs to the (IV, {)-cocycle {U;, fi, {7i;j}}-

The above equality (I'z) implies that p is reflexive. The relation (I's) guarantees
the symmetry of p, while the relation (I';) implies the transitivity of p. Thus p is
indeed an equivalence relation in Y. Hence we have the quotient space R :=Y/p, the
quotient mapping ¢: Y — R and the surjective projection 7: R — M, where m maps
the equivalence class [(i,u)] € R of a point (i,u) € Y to the point m;(u) € M. The
restriction ; = ¢|g,: Ri — R is injective. Therefore ¢; is a bijective map onto
image U; := ¢(R;); it will be denoted by ¢;: R; — U;. A smooth structure in R is
well defined by assuming that each bijection ¢; is a diffeomorphism of R; and Uj;.

Let z be any point in R and U; 3 2. Set x-a := ¢; *(z)-a, Ya € H. This definition
does not depend on the choice of U; containing x because all I';; are isomorphisms
of the corresponding principal H-bundles. Thus R becomes the total space of the
principal H-bundle. The quotient manifold R/H can be identified with the manifold
M, while the projection onto the quotient can be identified with 7: R — M.

Define an 1-form @ on R by the formula &|g = (o7 @i f U; N U; # 0, then
UiNU; # 0 and T'}jw; = w; because I';; is an isomorphism of the respective rigid
structures, which lies over the local automorphism ~;; of (V,&). Since w; = fw;, we
have the equality (p; ')*@; = (gpj_l)*@j on U; NUj. Thus the 1-form @ is well defined.

The foliations F; on R; and hence the foliations (p;).F; on U; are glued together
by p into a foliation F on the manifold R such that ‘7:‘01- = (i)« F;. It follows from
the definition of @ that @(X) =0 for X € X(R) if and only if X € X£(R).

The invariance of the foliations F;, i € J, with respect to the action of the group H
implies the H-invariance of the foliation F on R.

The equality @w(A*) = A, VA € b, is a consequence of the equality (S) for w and
the definitions of the principal H-bundle 7: R — M with the 1-form @.

We emphasize that the (P,w)-cocycle {U;, fi,{I';;}} defines the foliation (R, F).
Thus (R, F) is an e-foliation.

From the construction of the foliation (R, F) it follows that the restriction 7|, onto
an arbitrary leaf £ of (R,F) is a covering mapping onto some leaf L of the foliation
(M, F). Fix a point = € L and a point u € LN 7~ !(z). For any point v’ € LN 7! (z)
there exists a unique element b € H such that v’ = u - b. Invariance of the lifted
foliation (R, F) with respect to the action of the Lie group H implies that Ry(L) = L,
hence b € H(L) := {a € H | R,(L) = L}. Thus the subgroup H(L) of the group
H acts transitively on the set £ N7~ (z), with L = £L/H(L). Therefore the covering
mapping 7|z: £ — L is regular, and H(L) is its deck transformation group. O

Def 7. The principal H-bundle R(M, H) with the H-invariant foliation (R, F)
constructed in the proof of Theorem 1 is called the foliated bundle for the foliation
(M, F) with transverse rigid geometry (N, &) and (R, F) is called the lifted foliation.

Remark 1. The lifted e-foliation (R, F) is defined by (P,w)-cocycle {U;, fi, {T'i;}}.

Remark 2. If H is disconnected, R may be also disconnected. In this case all the
connected components of R are mutually diffeomorphic, and we will consider one of
them. Thus, we assume that the space of the foliated bundle R is connected.

4. Completeness and a structure Lie algebra of a
foliation with TRG

Completeness of foliations with TRG. Let (M, F) be an arbitrary smooth
foliation on a manifold M and T'F be the distribution on M formed by the vector
spaces tangent to the leaves of the foliation F. The vector quotient bundle TM/TF
is called the transverse vector bundle of the foliation (M, F'). Let us identify TM/TF
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with an arbitrary smooth distribution 9t on M that is transverse to the foliation
(M,F),i.e, TM =TF & M.

Let (M, F') be a foliation with TRG and (R, F) be the lifted foliation. It is natural
to identify the transverse vector bundle TR /TF with a distribution 9 := 7*9M on R,
i. e., with a distribution defined by the equality 9, := {X,, € T, R | m. X, € M.},
where z = w(u) and u € R.

Def 8. A foliation (M, F') with transverse rigid geometry is said to be 9t-complete
if any transverse vector field X € Xg7(R) such that &(X) = const is complete. A
foliation (M, F') with TRG of arbitrary codimension ¢ is said to be complete if there
exists a smooth g-dimensional transverse distribution 9t on M such that (M, F) is
IM-complete.

Remark 3. In other words, (M, F) is an 9M-complete foliation iff the lifted e-
foliation (R,F) is complete with respect to the distribution 9 in the sense of Con-

lon [10]. Remark that a complete e-foliation in the sense of Conlon is also complete
in the sense of Molino [11].

Ehresmann connections for foliations. Let (M, F') be a foliation of codimen-
sion ¢ and 9T be a smooth g-dimensional distribution on M that is transverse to the
foliation F. The piecewise smooth integral curves of the distribution 90t are said to be
horizontal, and the piecewise smooth curves in the leaves are said to be vertical. A
piecewise smooth mapping H of the square I; x I to M is called a vertical-horizontal
homotopy if the curve H|sx, is vertical for any s € I; and the curve H|j, x; is hori-
zontal for any ¢ € I5. In this case, the pair of paths (H|;, x oy, H|{0}x1,) is called the
base of H. It is well known that there exists at most one vertical-horizontal homotopy
with a given base. A distribution 9t is called an Ehresmann connection for a foliation
(M, F) (in the sense of Blumenthal and Hebda [12]) if, for any pair of paths (o, k) in
M with a common starting point ¢(0) = h(0), where o is a horizontal curve and h is
a vertical curve, there exists a vertical-horizontal homotopy H with the base (o, h).
If the distribution 90 is integrable, then the connection is said to be integrable. For a
simple foliation F) i. e., such that it is formed by the fibers of a submersion r: M — B,
a distribution 91 is an Ehresmann connection for F' if and only if 9 is an Ehresmann
connection for the submersion r, i. e., if and only if any smooth curve in B possesses
horizontal lifts.

Proposition 2. If (M, F) is an M-complete foliation with TRG, then M is an
Ehresmann connection for this foliation.

Proof. The distribution M := 7*M is an Ehresmann connection for the lifted foli-
ation (R, F), because (M, F) is 9M-complete. So in view of F' = 7w, F and M = 7w, IN,
we see that 9t is an Ehresmann connection for (M, F). O

Structure Lie algebra. Applying of the relevant results of Molino [11] on com-
plete e-foliations, we obtain the following theorem.

Theorem 2. Let (M, F) be a complete foliation with TRG and (R, F) be its lifted
e-foliation. Then:
(i) the closure of the leaves of the foliation F are fibers of a certain locally trivial
fibration m,: R — W;
(i) the foliation (L, F|z) induced on the closure L is a Lie foliation with dense leaves
with the structure Lie algebra gq, that is the same for any L € F.

Def 9. The structure Lie algebra go of the Lie foliation (£, F|z) is called the
structure Lie algebra of the complete foliation (M, F) and is denoted by go = go(M, F).

Remark 4. If (M, F') is a Riemannian foliation on a compact manifold, this notion
coincides with the notion of a structure Lie algebra in the sense of Molino [11].

Def 10. The fibration m,: R — W satisfying Theorem 2 is called a basic fibration
for (M, F).
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5. Category of foliations with TRG

Category of foliations. Denote by §ol the category of foliations, objects of which
are foliations, morphisms of two arbitrary foliations (M, F') and (M’, F’) are smooth
maps M — M’ mapping leaves of the foliation (M, F') into leaves of the foliation
(M', F'); a composition of morphisms coincides with the composition of maps.

Category of foliations with TRG. Let (M,F) and (M’,F’) are foliations
with transverse rigid geometries (N,§) and (N',¢’) defined by an (N, ¢)-cocycle
n = {U, fi,{v;}} and an (N',&)-cocycle ' = {U,, fl,{~,..}}, respectively. Let
f: M — M’ be a morphism which is a local isomorphism in the category Fol.

Hence for any x € M and y := f(z) there exist neighborhoods Uy > z and U], 5 y
from n and 7 respectively and a diffeomorphism \: Vi, — V!, where V, := fr(Ug)
and V] := fL(U!), satisfying the relations f(Uy) = U and Ao fi, = f. o f|u,. We will
say that f preserves transverse rigid structure if the diffeomorphism A: Vi, — V/ is an
isomorphism of the induced rigid geometries (Vi,&v,) and (V{, &)

This notion is well defined, i. e., it does not depend of the choice of neighbor-
hoods Uy, and Uj, from the cocycles n and 7'

By a TRG-morphism of two foliations (M, F) and (M', F') with transverse rigid
geomelries we mean a morphism f: M — M’ in the category Fol which preserves
transverse rigid structure. The category §rra objects of which are foliations with
TRG, morphisms are TRG-morphisms, is called the category of foliations with trans-
verse rigid geometries.

Isomorphisms in the category §rrg. Remark that for any e-foliation (R, F)
the lifted foliation coincides with (R, F). Using this we easily get the following lemma.

Lemma 1. Let (R,F) and (R',F’) be two e-foliations with transverse rigid ge-
ometries (P,w) and (P’,w’) respectively, where (P,w) and (P',w’) are parallelizable
manifolds. Let & and &' be the basic 1-forms on R and R’ deﬁned according to The-
orem 1. Then a diffeomorphism f: R — R’ is an zsomorphzsm in the category STrc
if and only if f is an isomorphism in the category Fol and f*&' = @.

Proposition 3. Let (M, F) and (M',F') be two foliations with TRG, let (R,F)
and (R', F') be the corresponding lifted foliations. Then a diffeomorphism f: M — M’
is an isomorphism in the category Srra if and only if there exists an isomorphism

f R — R’ of the lifted foliations in the category Frrc such that R. o f f oR,,
Va € H, where R,, R! are the right translations by an element a € H on R and R’
accordz'ngly.

Proof. We will use the notations introduced in the proof of Theorem 1. Let the
foliation with TRG (M, F') is defined by an (N, §)-cocycle n = {U;, fi, {7i;}}. Recall
that the lifted foliation (R, F) is defined by a (P, w)-cocycle 7 = {U;, fi,{I';;}}, where
U, .= W_I(Ui), and the local isomorphisms I';; of the rigid structure £ lie over the
local isomorphisms ~;; of the rigid geometry (N, §). For the objects, concerning to the
foliation (M', F"), we will use primes.

At first, suppose that f: R — R’ is an isomorphism of the e-foliations (R,F)
and (R, F') satisfying the condition R], o f = f o R,, Va € H. Then the projection
f: M — M’ of f is well defined by the equality @’ o f = f om, where 7: R — M and
7' R’ — M’ are the projections of the foliated bundles.

Consider an arbitrary point x € M and y := f(z) € M’. There are neighborhoods
Uy 2 x and U, > y from the (N,¢)-cocycle and the (N’ ¢&')-cocycle defining the

foliations (M, F') and (M’, F') respectively, with f(Uy) = Uy. Then f(Uy) = U.. The
lifted e-foliations (Uy, F lg,) and (U, F |U,) are defined by the submersions f: Uy, —
Py and f!: U, — P! accordingly. Besides, R, o f = f o R,, Va € H. Hence, according
to Lemma 1, a diffeomorphism I': P, — P. defined by the relation I'o fr = f; ) f|U' is
a local isomorphism of the rigid structures £ and £’. Put Vi, = f;(Uy) and V] = f;(US';)
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Let v: Vi — V! be the projection of I', then -y is an isomorphism of the rigid geometries
induced on Vj, and V.. Thus, f is an isomorphism of the foliations (M, F') and (M’, F')
in the category §rrc-

Converse, suppose that f: M — M’ is an isomorphism of the foliations (M, F)

and (M', F’") in the category §rrg. Construct f: R — R’ in the following way. Let
x be any point in M and y := f(x) € M'. Let Uy 3 x and U, > y be neighborhoods
from the cocycles n and 1’ respectively, with f(Uy) = U.. Consider Ry = fi(Px),
where P, = fi(Uk). Then Ry = {(z,2) € Uk X Py | fu(x) = pr(2)}, R's is defined
similarly. Since f is an isomorphism in the category §rra, by definition, there exists
a diffeomorphism 7: V, — V/ which is an isomorphism of the induced rigid geometries

(Vk7§Vk) and (V:q/vg{/;)v and Yo fk = f; o f’Uk
Since the rigid geometries (N, £) and (N, ') are effective, there is a unique isomor-
phism I': P, — P! of the induced rigid structures £y, and f(/s/ with the projection ~.
Then I'w’ = w and 'o R, = R, oI', Ya € H. Define a map h: Ry — R’ by the
equality
h(z,z):= (f(z),T(2)), V(z,z2)€ Rg.

According to the definition of the foliated bundle for (M, F'), the bijections
: Ri — U; are isomorphisms of the simple foliations with TRG defined by the

submersmns fi: Ri — P; and fz U, — P, respectlvely An analogous assertion holds
for the foliation (M ' F'). Hence h: R — R’s is an isomorphism of the foliations
mentioned above in the category STraG-

Put, by definition, f|Uk = go;ohogo;l for any neighborhood Uy, from the cocycle 7.
It is not difficult to check that this equality defines the map f : R — R/, where
f satisfies the following conditions: (i) f*@ = @ and (ii) R, o f = f o R4, Ya € H.
Therefore, by Lemma 1, f is an isomorphism of the lifted e-foliations satisfying (ii). [

Proposition 4. Let (M, F) and (M', F") be two foliations with transverse rigid
geometries (N, &) and (N'E") accordingly. Let f1 and f2 R — R’ be two isomorphisms
of (R,F) and (R',F’) satisfying the equalities R, o fi=fioRs, i=12Yae H. If
their projections h;: M — M’ coincide: hy = ho, then f1 f2

Proof. The map f = f2—1 o fl: R — R is an isomorphism of (R, F) satisfying the
relation R/ o f = fo R, Ya € H, where the projection of f is f = h2_1 ohy = idyy.
For any x € M we have y = f(z) = x. Therefore, we can take U; = Uy 3 x in the
definition of morphisms of the category §rrg. Then we have Up = U,. As above, let
fr: Up — Vi be a submersion from the cocycle defining (M, F') and py, := p|p,. Then
~v =idy, and I' o py, = pi, where I': P, — P, is an automorphism of the induced rigid
structure &y, = (Px(H, Vi), wk). Therefore I' € Gauge(&y, ). Due to the effectiveness
of the transverse rigid geometry (N, {) we necessarily have I' = idp,. The equality
Fofk = fk of|U implies fk = fk of\Uk, i. e. f|U € AH(Uk,}—\U ). For any x € M,
the neighborhoods {Uy | € Uy} from the (N &)-cocycle n = {Ul,fi, {7i;}} form a
base of the topology of the manifold M at z. Hence f(u ) =u, Vu € m~*(z). Since  is
an arbitrary point in M, we have f = idg. Thus, fi = f. O

A foliated natural functor. By analogy to Proposition 3 and 4 it is not difficult
to prove that for any morphism f: M — M’ of foliations (M, F') and (M, F’) in the
category §Trc there exists a unique morphism f : R — R of the lifted foliations
(R,F) and (R, F') satisfying the equality R, o f = f o R, Ya € H. Set ®(M, F) :=
(R,F) and ®(f) := f, then we get a covariant functor ® from the category Frre to

the category of foliated bundles. This functor is a foliated natural bundle in sense of
Wolak [13], [14, Chapter II].
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Automorphism groups of foliations with TRG. Let (M, F) be a foliation
with a fixed transverse rigid structure (N,&). Denote by A(M, F') the group of all
automorphisms of (M, F) in the category §rrg. We say also that A(M, F) is the full
group of automorphisms.

Theorem 3. Let (M, F) be a foliation with TRG. Let (R,F) be the lifted folia-
tion and AT(R,F) = {f € A(R,F) | foR, = Ryof, Va € H}. Then the map
w: AH(R,F) — A(M,F): f — f, where f is the projection of f € AH(R,F) with
respect to m: R — M, is a natural group isomorphism.

Proof. By Proposition 3, the map pu is well defined and surjective. It is clear that
1 is a group homomorphism. According to Proposition 4, u is injective. Thus, p is a
group isomorphism.

Remark 5. Due to Theorem 3, problems concerning to automorphism groups of
foliations with TRG are reduced to the analogous problems for automorphism groups
of the lifted e-foliations.

Invariance of the structure Lie algebra. The following statement shows that
the structure Lie algebra go(M, F) of a foliation (M, F') with TRG is an invariant in
the category Srra-

Proposition 5. Let (M, F') and (M',F") be two foliations with TRG isomorphic

in the category §rra. Then their structure Lie algebras go(M, F) and go(M', F') are
isomorphic.

Proof. Let (R,F) and (R',F’) be the lifted foliations for (M, F) and (M’, F’)
respectively. Suppose that there exists an isomorphism f: M — M’ of the foliations
(M, F) and (M', F') in §rra. Then by Proposition 3 there exists a map f: R — R’/
which is an isomorphism of (R, F) and (R’, F’). Let £ be an arbitrary leaf of (R, F),
then £/ = f (L) is a leaf of (R', F"). Since f is a homeomorphism, f maps the closure £
of £ onto the closure £/ of £, i. e., f(L) = L. Thus, f |71 £ — L' is an isomorphism of
the induced Lie foliations (£, F|z) and (L', F'|z) with dense leaves. It is known [11]
that the structure Lie algebra of a Lie foliation with dense leaves is an invariant in
the category of foliations Fol. Therefore the Lie algebras go(L, F|z) and go(L', F'|z)
are isomorphic. By definition go(M, F) = go(L, F|z) and go(M', F') = go(L’, F'|77),
hence the Lie algebras go(M, F') and go(M’', F’) are isomorphic. O]

6. Different interpretations of holonomy groups

Holonomy groups of foliations with Ehresmann connections. Let (M, F)
be a foliation with an Ehresmann connection 9t (see Section 3). Let €2, be the set
of horizontal curves with an initial point z. It is not difficult to prove that the map
O, : Oy x (L, x) — Qy: (0, [h]) — &, where [h] € m1(L,z), H is a vertical-horizontal
homotopy with the base (o,h), and &(s) := H(s,1), s € I, defines a right action of
the fundamental group 71 (L, z) of the leaf L = L(x) on the set Q.

Def 11. Since Kon(L,x) := {[h] € mi(l,z) | ®,(0,[h]) = 0, Vo € Q,} = ker @,
is a normal subgroup in 7 (L, x), the quotient group Hom(L,z) := 71 (L, z)/ ker ®, is
well defined [12]. The group Hen(L,x) is called the 9MM-holonomy group of the leaf L
of the foliation (M, F) with the Ehresmann connection 9.

It is known that there is a natural group epimorphism 6: Hon(L,z) — I'(L, z) onto
the germ holonomy group I'(L, z) of the leaf L = L(x) such that

B=doa, (*)

where a: 71 (L,z) — Hop(L,z) and §: m(L,x) — I'(L, x) are the natural projections
onto the corresponding quotient groups.
The following assertion is a consequence of Theorem 7 proved by the author in [15].
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Proposition 6. Let (M, F') be a foliation with an Ehresmann connection 9. The
natural group epimorphism §: Hon(L,2) — T'(L,x) satisfying the relation (%) is an
isomorphism if and only if the holonomy pseudogroup of the foliation (M, F) is quasi-
analytic.

Equivalent approaches to the notion of holonomy groups.

Theorem 4. Let (M,F) be an 9M-complete foliation with TRG defined by an
(N, €)-cocycle {U;, fi,{vi;}}. Let L = L(x), x € M, be an arbitrary leaf of this foliation
and L = L(u), u € 7~ 1(x), be the corresponding leaf of the lifted foliation (R,F). Then
the germ holonomy group T'(L,x) of the leaf L is isomorphic to each of the following
five groups:

(i) the 9M-holonomy group Hon(L,x);

(ii) the group H, formed by germs of local diffeomorphisms belonging to the isotropy
subpseudogroup of the holonomy pseudogroup H of local automorphisms of the trans-
verse rigid geometry (N, &) at point v = f;(z), where x € Uy;

(iii) the group of deck transformations of the regular covering map w|z: L — L;

(iv) the subgroup H(L) ={a € H | R,(L) = L} of the Lie group H;

(v) the holonomy group ®(u) of the integrable connection T (F|r-1(r)) in the principal
H-bundle with the projection 7| -1 (y: 7 (L) — L.

Proof. According to Proposition 2, an 9-complete foliation (M, F') with TRG has
an Ehresmann connection 9. Recall that the holonomy pseudogroup H is a sub-
pseudogroup of the pseudogroup H(N, €) of all local automorphisms of the transverse
rigid geometry (N, £). According to Proposition 1 H is a quasi-analytic pseudogroup.
Therefore applying Proposition 6 we see that v: Hop(L,z) — T'(L,z) is a natural
group isomorphism.

Recall that according to Theorem 1 the restriction |z : £ — L is a regular covering
with the deck transformations group H(L). Then there is a normal subgroup p.(u) of
the fundamental group 71 (L, x) and a group isomorphism i, : 71 (L, z)/p.«(u) — H(L).

Denote by a: m(L,z) — I'(L,z) and §: m(L,x) — ®(u) the natural group epi-
morphisms. It is enough to show that kera = ker 5 = p.(u). Let [h] € ker «, then
h is a loop at x. Consider a chain Uy, ..., U, U; NU;zq # 0, Vi € {1,...,k — 1}, of
neighborhoods from the (N, &)-cocycle n that covers the set h([0,1]). Let f;: U; — V;
be submersions and ;s be the corresponding local automorphisms of the rigid geom-
etry (N,§) from 7. According to Proposition 4 for each +;, there is a unique local
automorphism I';, of £ lying over ;.

The composition of projections v := 15 0 Ygk—_1 © ... © Y21 is defined in a neigh-
borhood of the point v := fi(x) of the manifold N. The triviality of the germ of v at
v is a consequence of the choice of [h] € ker a. Therefore there exists a neighborhood
V 5 v in N such that |y = idy. Due to the effectiveness of £, the automorphism
I':=T1; 0lkk—1 0...0T@ satisfies the equality I'| p, = idp, .

Denote by h the path in the leaf £ with the origin u = h(0) covering the loop h.
In the sequel, we will use notations of the proof of Theorem 1. From the defi-
nition of the lifted foliation (R,F) it is follows that the chain Uy,..., U, where
U; = 7 1(U;), covers the set h([0,1]). As fi(u) € Py, the equality I'|p, = idp,
implies I'(f1(u)) = fi(u). Hence fi(h(1)) = f1(h(0)). Therefore h(1) = h(0) = u and
h € ker 8. Thus, ker o C ker 3.

The equality ker 5 = p,(u) follows directly from the definition of ®(u) [7]. To com-
plete the proof, we have to show the implication p.(u) C ker a. Take any [h] € p.(u).
Let h be the loop in L covering h with the origin at u = h(0). Then A(1) = h(0) = u.
Consider an arbitrary chain Uy, ..., U, U;NU;+1 # 0, Vi € {1,...,r — 1}, of neigh-
borhoods belonging to the (IV,)-cocycle n that covers the set h([0,1]). Let 7,5 be
the corresponding local automorphisms of (IV,&) from 7. Let I';s be the unique local
automorphism of { with the projection 7. It is well known that any e-foliation has
no holonomy. Then the holonomy diffeomorphism I' :=T"y,, 0 ', 1 0... 0T’ has the
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trivial germ at the point fl (u). Therefore its projection 7 := 741, 0 Ypp—10... 0721 has
the trivial germ at point v = fi(x). Since v is a local holonomy diffeomorphism along
the loop h, we have [h] € ker a. O

7. Foliations with the zero structure Lie algebra

Proposition 7. Let (M,F) be a complete foliation with TRG. Suppose that
go(M,F) =0. Let m,: R — W be the basic fibration. Then:
(i) the formula

OV W x H—W: (w,a) — m,(Ra(u)) Y(w,a) €W x H, Yu € ' (w)

defines a smooth locally free action of the Lie group H on the basic manifold W;

(1) there is a homeomorphism s: M/F — W/H between the leaf space M/F and the
orbit space W/ H satisfying the equality k o m, = soqom, where k: W — W/H is the
quotient map onto W/H, q: M — M/F is the quotient map onto M/F;

(111) the equality miw = @ defines an R™-valued non-degenerate 1-form w on W such
that w(Ayy,) = A, where Ay, is the fundamental vector field on W defined by an
element A € h C R™.

Proof. (i) Since go(M, F) = 0, by Theorem 2 the lifted foliation (R, F) is formed
by the fibres of the basic fibration m,: R — W. The action ®" is well defined, because
the lifted foliation (R,F) is H-invariant. Smoothness of the action of H on R and
smoothness of 7, imply smoothness of ®"V. Take any point w € W and u € 7, ! (w).
Let £ = L(u) and L := w(L), then x = w(u) € L. Recall that H(L) = {a € H |
R.(L) = L}. Let H, be the isotropy subgroup of H at w. From the definition of
the action ®" of the Lie group H on W it follows that H(L) = H,. The condition
go(M, F) = 0 implies that the lifted foliation (R,F) is proper, hence the induced
foliation (m~*(L), F|r-1(z)) is also proper. Therefore the orbit u- H(L) = LN 7 (x)
is a discrete subset of the orbit u- H. So H(L) is a discrete subgroup of the Lie group H.

Thus, each isotropy group of the action ®" is discrete, i. e., " is a locally free
action.

(ii) Consider an arbitrary point x € M, u € 7~ (x) and w = m(u). From (i) it is
follows that m,(7~1(L(x)) = w - H. Hence the map s: M/F — W/H: [L] — [w - H],
where [L] is the leaf L considered as a point of M/F and [w - H] is the orbit of H
considered as a point of W/ H, is well defined and satisfies the equality kom, = sogom
stated in (ii). Since k and ¢ are open and continuous maps, this relation implies that
the bijection s is a homeomorphism.

(iii) This statement is a consequence of the assertion (ii) of Theorem 1 and of the
definition of the 1-form w. O

Corollary 1. If go(M, F) = 0, then the holonomy group I'(L,x) is isomorphic to

the isotropy group H.,, where w € my(n~1(x)), of the induced action ®V of the Lie
group H on the basic manifold W.

Proof. As shown in the proof of Proposition 7, H(L) = H,,. Therefore, according
to Theorem 4, the holonomy group I'(L, z) of a leaf L of this foliation is isomorphic
to the isotropy group H,,. O

8. The groups of basic automorphisms of foliations
with TRG

Let A(M, F) be the full automorphism group of a foliation (M, F') with TRG. We
denote by p: A% (R,F) — A(M, F) the group isomorphism defined in Theorem 3.
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Leaf automorphisms. The group
AL(M,F):={f € AM,F)| f(Ly) = Lo, VL, € F}

is a normal subgroup of A(M,F) which is called the leaf automorphism group
of (M, F).

Proposition 8. Consider the subgroup of leaf automorphisms AX(R,F) = {f €
AL(R,F) | f(La) = Lo, VLo € F} of the group AH (R, F). Then the restriction

ML = M’Af(’R,]—‘): Af(Ra F) — AL(M, F)
is a group isomorphism.

Proof. Let f € AH(R, F) and f := 1(f). Consider an arbitrary leaf L € F. There
exists a leaf £ € F such that n|z: £L — L is a covering map. As f(£) = £ and
mof = fom then f(L) = L, hence f € AL(M,F). Thus we have an inclusion
W(AT (R, F)) © A (M, F).

Let us show that the map ur is surjective. Take an arbitrary element g €
Ar(M, F). According to Theorem 3 there is a unique element § € A7 (R, F) lying
over g. Let u be an arbitrary point in R, v’ := §(u), x = w(u), L = L(z). There are
neighborhoods U; 5 x and U; 3 y = g(z) from the (N, §)-cocycle n = {U;, fi, {vi;}}
defining the foliation (M, F'). Remark that the points v := f;(z) and v’ := f;(y) be-
long to the same orbit of the holonomy pseudogroup H(M, F') of the foliation (M, F).
Recall that each element of H(M, F') is a local automorphism of the transverse rigid
geometry (NN, €). Therefore there exists a local automorphism ~;; € H(M, F') such that
7vij(v) = v'. Effectiveness of the transverse rigid geometry (NN, ) implies the existence
of a unique local automorphism I';; of the rigid structure £ from the holonomy pseu-
dogroup H(R,F) with the projection 7;;. In the notations of the proof of Theorem 1
i = {U;, fi,{Ti;}} is a (P,w)-cocycle defining the e-foliation (R, F). Let w = f;(u),
w' = ﬁ(u’) then w' = I';j(w), i. e., the points w and w’ belong to the same orbit
of the holonomy pseudogroup H(R,F). Therefore the points v and v’ belong to the
same leaf £ of (R,F), i. e., g(£) = L. Hence g € AH (R, F).

Thus gy, is an isomorphism of the groups A (R, F) and A (M, F). O

Basic automorphisms of foliations with TRG. Remark that the quotient
group AX(R, F) := AH(R, F)/AH (R, F) is well defined.

Def 12. The quotient group
Ap(M,F) = AM,F)/AL(M,F)

is called the basic automorphism group of the foliation (M, F') with TRG.

Let (M, F) be a foliation with TRG. Let M/F be the leaf space of (M, F), and
q: M — M/F be the natural projection onto the leaf space which maps any = € M
to the leaf L(x) considered as a point [L(z)] in M/F. Each f € A(M,F) maps an

arbitrary leaf L of F’ onto some leaf of this foliation. Hence the equality F(L) = [£(L)]
defines a mapping f of the leaf space M/F onto itself such that the following diagram

M —— M/F

fl lf (1)

M —— M/F.
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is commutative. Since ¢ is an open and continuous mapping, (1) implies that f is
a homeomorphism of the leaf space M/F. Denote by A(M/F) the set of all such
homeomorphisms of M/F. Then

G: AM,F) — AM/F): f— f

is a group epimorphism with the kernel ker § = Ay (M, F). Therefore the basic au-
tomorphism group Ag(M, F) is canonically isomorphic to the group A(M/F'). Thus
the basic automorphism group Ap(M, F') can be considered as a group, A(M/F), of
homeomorphisms of the leaf space M/F of this foliation.

Let us emphasize that the basic automorphism group Ag(M,F) of a foliation
(M, F) with TRG is an invariant of this foliation in the category §rre.

Proposition 9. Let (M, F) be a foliation with TRG and (R,F) be the lifted fo-
liation. Denote by AX(R,F) the quotient group A (R,F)/AH(R,F). There exists
a natural group isomorphism x: AB(R,F) — Ap(M, F) satisfying the commutative
diagram

AT(R,F) ——  A(M,F)

J l (2)
AR(R,F) —X— Ap(M,F),
where v and s are the associated group epimorphisms onto the quotient groups.

Proof. By Theorem 3, the map x: AZ(R,F) — Ag(M,F): h- A¥(R,F) — h-
Ar(M, F), where h is the projection of h € A" (R, F) with respect to 7: R — M, is
well defined. According to Proposition 8, u(ker ) = ker s, where ker r and ker s are the
kernels of the epimorphisms 7 and s, respectively. Hence there exists an isomorphisms
of the quotient groups AZ (R, F) and Ag(M, F) satisfying the diagram (2). O

9. Conditions guarantee that Ag(M, F') is a Lie
group

Uniqueness of a Lie group structure. The next proposition follows from
Proposition 1 proved by Bagaev and the author in [16].

Proposition 10. Let A(P,w) be the Lie group of all automorphisms of a paral-
lelizable manifold (P,w). If a group G is realized as a closed subgroup of A(P,w), then
G admits a unique topology and a unique smooth structure that make it into a Lie
group. This topology coincides with the compact-open topology.

The case go(M,F) = 0. A leaf L of a foliation (M, F) is called closed if L is a
closed subset in the topology of the manifold M. Further we use the term “a closed
leaf” only in this sense.

Let (M, F) be a complete foliation with TRG and m,: M — W be the basic
fibration. Suppose that go(M, F) = 0, then according to Theorem 2 the leaves of
the lifted foliation (R,F) coincide with the fibres of the basic fibration m,: R — W.
Hence the basic manifold W can be identified with the leaf space R/F of the foliation
(R,F), and 7, can be identified with the projection §: R — R/F.

Applying the commutative diagram (1) to the foliation (R,F) we see that each
automorphism h € A7 (R,F) induces a diffeomorphism h of the manifold W such
that m, o h = h o . Since h*® = &, then, from the definition of the non-degenerate
R™-valued 1-form @w on W satisfying Proposition 7, it is follows that h*©w = @. From
the definition of the action H on W it is follows that ho R, = R, o h, Va € H.

As above, we denote by A(W,w) the group of all automorphisms of the paralleliz-
able manifold (W,w), i. e., A(W,w) := {f € Diff W | f*w = w}. It is well known
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that A(W,w) admits a unique Lie group structure. There is a natural bijection be-
tween the identity component A.(W,&) of A(W,) and the orbit A.(W, &) - v of a
point v € W, being a closed submanifold of W. This bijection induces a smooth struc-
ture on A.(W,w) [9]. According to Proposition 10, the topology of A(W,w) is the
compact-open topology.

Let AH(W) := {f € AW, @) | fo Ry = Ryo f} and let AZ (W) be the identity
component of A7 (W). Then A (W) and AX (W) are closed Lie subgroups of A(W,@).

Proposition 11. Let (M, F) be a complete foliation with TRG and go(M, F') = 0.
Then the map 3
vi AB(R,F) = AHW): h- AH(R,F) — h

where h € AH(R,F) and h is the projection of h with respect to m,: R — W is a
group isomorphism onto an open-closed Lie subgroup of the Lie group AH(W).

Proof. At first, consider the map a: A# (R, F) — A" (W): h — h, where h is the
projection of h with respect to m,: M — W. As shown above, he AH(W). Tt is clear
that a is a group homomorphism with the kernel ker o, being equal to the normal
subgroup AY (R, F). Therefore, there exists a group isomorphism v: AZ(R,F) —
AH (W), satisfying the equality o = v o r, where r: AT(R,F) — AZ(R,F) is the
natural projection onto the quotient group A% (R, F) = AH(R, F)/ AL (R, F).

It is enough to prove that ima is an open-closed subgroup in AX (W).

If A (W) is a discrete Lie group, then imy = ima is also a discrete Lie group.

Now suppose that dim A# (W) > 1. Let a be the Lie algebra of the Lie group
AH (W) and B be any element of a. Denote by B* the fundamental vector field defined
by B. Then X := B* is a complete vector field and it defines a 1-parameter group ©;X,
t € (—00,00), of diffeomorphisms of W. The condition ;X € A% (W), Vt € (o0, 0)
is equivalent to the following relations: 1) Lx A}, =0, VA € h; 2) Lxw = 0.

Since m,: R — W is a submersion with an Ehresmann connection 9, there exists
a unique vector field Y € Xzz(R) such that m,.Y = X. Remark that completeness
of the vector field X implies completeness of the vector field Y. Hence Y defines a
l-parameter group 1), t € (—00,00), of diffeomorphisms of the manifold R. Let us
show that ¢} € AH(R,F), Vt € (—o00,0), i. e., we have to check the validity of the
following facts: 1) the map ), t € (—00,00), is an isomorphism of (R,F) in the
category Fol; 2) Lyw = 0; 3) Ly A* =0, VA € h.

1) The equality m.Y = X implies the relation 7, o ¥} = ¢;* o m, for any fixed
t € (—o0,00), hence ¥} (m, ' (v)) = 7, (¢ (v)), Yo € W, and ¢} is an isomorphism
of the lifted foliation (R, F) in the category Fol.

2) Take arbitrary u € R and Zy € M,,. There is a unique vector field Z € Xz#(R)
such that Z|, = Zy and w(Z) = &(Zy) = const. Put Zy := mpZ and apply the
following formula [9]:

(Lx@)(Zw) = X(&(Zw)) — 0 ([X, Zw])- (3)

The relation @ = @ o 7, implies that w(Zyw) = ©(Zy) = const, so X(w(Zw)) = 0. By
the choice of X we have Lxw = 0. Hence the equality (3) gives

®([X, Zw]) = 0. (4)

In the formula
(Lyw)(Z2) =Y (©(2)) — &([Y, Z]) (5)

the first term Y (w(Z)) = 0, because &(Z) = const. The relations © = @ o 7y, and (4)
imply the following chain of equalities:

&(Y, 2)) = @(m.Y, Z)) = &(Im. Y. w1 Z]) = &([X, Zuw]) = 0.
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Therefore (5) implies that (Lyw)(Z) =0 and (Ly@)(Zp) = 0. Thus, Lyw = 0.

3) Denote by (W, F) the foliation formed by the connected components of orbits
of the action ®V of H on W. Let (R, FH) be the foliation formed by the connected
components of orbits of the Lie group H on R.

At any point v € R there is an neighborhood W foliated with respect to both
foliations (R, F) and (R, F) which meets each leaf of these foliations in at most one
connected subset. We can suppose that the basic fibration 7,: R — W is trivial in

the neighborhood m, *(V), where V := m,(W). Put U = n(W). Let r: U — U/(F|v)
and s: V — V/(FH|y) be the quotient maps. We can identify U/(F|y) and V/(FH|y)
with the manifold V' such that the diagram

w "5y

ﬂl l (6)
U ——v,

where the restrictions of 7 and 7, onto W are denoted by the same letters, is commuta-
tive. Without loss of generality, we can assume that 9| is an Ehresmann connection
for the submersion r and 91|yy is an Ehresmann connection for the submersion Ty,
By the choice of X, for any A € h we have the equality LxAj, = 0, i. e,
[A}/, X] =0. Since the fundamental vector fields span the tangent spaces to the
leaves of the foliation (W, F*), it is not difficult to check that X is a foliated vector
field for this foliation. Hence the vector field Xy := s, X|y is well defined. There is a
unique vector field Yy € Xon(U) such that .Yy = Xy . In other words, Yy is the -
horizontal lift of Xy . The commutative diagram (6) implies the relation m,. Yy, = Yy,
hence Y is a foliated vector field with respect to the foliation (R, FH). Therefore,

[A*,Y] € Xpu(R). (7)

According to Theorem 1, we have the equalities @(A*) = w(Aj,) = A, hence A* is a
vector field foliated with respect to (R, F). So we have the following chain of equalities

ﬂ'b*[A*,Y] = [Wb*A*,ﬂ'b*Y] = [A;;V,X] = 07

hence,
[A*,Y] € X£(R). (8)
The relations (7) and (8) imply the equality [A*, Y] =0, VA € b.
Thus, we proved the inclusion AZ (W) C ima = imv. Therefore imv is an open-
closed Lie subgroup of the Lie group A% (W). d

Theorem 5. Let (M, F) be a complete foliation with a transverse rigid geometry
(N,§), where & = (P(N,H),w). Suppose that the structure Lie algebra go(M,F) is
zero. Then:

(i) the full basic automorphism group Ag(M, F') is realized as an open-closed subgroup
of the Lie group AH(W) and admits a Lie group structure with the following estimate
of its dimension:

dim Ap(M, F') < dim P; 9)

(i) if either there exists an isolated closed leaf L or the set of closed leaves of the
foliation (M, F) is countable, then
dimAg(M, F) < dim H, (10)

(iii) there exists a unique topology and a unique smooth structure on the full group
Ap(M, F) of basic automorphisms of the foliation (M, F'), making Ag(M, F) into a
Lie group. This topology coincides with the compact-open topology, when Ag(M,F)
is realized as a subgroup of the group AH(W).
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Proof. (i) Applying Propositions 9 and 11, we get that the map 8 := v o
x ! Ag(M,F) — AH(W) is a group isomorphism of the full group of basic au-
tomorphisms Ap (M, F) onto an open-closed subgroup imf of the Lie group A (W).
We identity Ag(M, F) with im3 and consider Ag(M, F') as an open-closed subgroup
of the Lie group A% (W). Hence Ap(M, F) admits a Lie group structure, and the
following estimates of dimensions hold:

dim Ag(M, F) < dim A# (W) < dim A(W, ) < dim W = dim P = m.

(ii) Suppose that there exists a closed leaf L of the foliation (M, F). Then
mp(m~1(L)) is a closed orbit of the action ®" of the Lie group H on W. Let us to fix
an arbitrary point v in this orbit. Let L' = LW (v) be a leaf of the foliation (W, F"V).
Then the leaf L' is a closed subset in W. It is known [1] that the smooth structure of
the Lie group A (W) coincides with the smooth structure induced by the bijection of
the identity component A2 (W) of the Lie group A (W) onto the closed submanifold
AH (W) -v of W, where A (W)-v is the orbit of the point v. Any g € AX (W) maps each
closed orbit of the Lie group H onto some closed orbit of H. Since AZ (W) - v is con-
nected and either the orbit v- H is isolated or if the set of closed orbits of H is countable,
so AZ(W)-v c LY. Therefore dim Ag(M, F) < dim AZ (W) - v < dim F¥ = dim H.

(iii) Applying the statement (i) proved above and Proposition 10 to the group
Ap(M, F) we get the statement (iii). O

Remark 6. Theorem 5 does not exclude the triviality of the full group Ag (M, F).

Remark 7. The main result of the work [3] by Belko is the theorem asserting
that if there exists a closed leaf of a foliation (M, F) with complete transversally
projectable affine connection, then the group Ag (M, F) is a Lie group. This statement
is not correct. It’s proof essentially uses the fact that existence of a closed leaf of this
foliation implies that the lifted foliation is simple. It is not true, in general. Let us
consider a foliation (M, F') from Example 3 (in Section 10), when r = 1/7, as affine
foliation. It has a compact leaf, but go(M, F) = R! # 0, hence the lifted foliation is
not simple. Thus the foliation (M, F') is a Lie foliation with non-zero structure Lie
algebra go(M, F'), and the group Ag(M, F) is not a Lie group.

Discrete holonomy groups of leaves. Let (M, F') be a complete foliation with
TRG. Let m: R — M be the projection of the foliated bundle over (M, F').

Def 13. We say that the holonomy group of a leaf L 3> z of the foliation (M, F)
is discrete if there exists a point u € 7~ !(z) such that the group H(L) := {a € H |
R.(L) =L, L= L(u) € F} is a discrete subgroup of the Lie group H.

Let v/ € 7~ (x) and v’ #€ £ = L(u). In this case the subgroup H(L') is conjugate
to the subgroup H(L) in the Lie group H. Hence H(L) is a discrete subgroup of H
ifft H(L') is a discrete subgroup of H. Thus, by Theorem 4 the notion of discrete
holonomy group of leaf L is well defined.

Recall that a leaf L of a foliation (M, F') is said to be proper if L is an embedded
submanifold in M. A foliation (M, F') is called proper if each its leaf is proper.

Proposition 12. Let (M, F) be a complete foliation with TRG. If there erists

proper leaf L with discrete holonomy group then the structure Lie algebra go(M, F) is
zero.

Proof. Let L be a proper leaf with discrete holonomy group. Let z € L, u € 7~ (z),
and £ = L(u). Since L is proper, there exists a foliated neighborhood U of the point
x such that L meets U in a connected subset L N U. Then there is a neighborhood
U of u foliated with respect to (R,F) such that an embedded submanifold 7 ~!(L)
of R meets U in a connected subset. Since the subgroup H(L) of H is discrete,
LN~ (x) =u-H(L) is a discrete subset of the fiber 7~!(z). Therefore, there exists a
neighborhood V C U of u foliated with respect to the foliation (R, F) such that LNV
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is connected. By [17, Theorem 4.11], it follows that the leaf £ is proper. Thus the
complete e-foliation (R, F) has a proper leaf L. It is known [10] that such a foliation is
formed by the fibers of a locally trivial fibration. Hence all leaves of the lifted foliation
(R, F) are closed and the structure Lie algebra go(M, F) is zero. O

Theorem 6. Let (M, F) be a complete foliation with transverse rigid geometry
(N,§), where € = (P(N, H),w). If at least one of the following conditions holds:
(i) there exists a proper leaf L with discrete holonomy group;
(ii) there is a closed leaf L with discrete holonomy group;
(iii) there exists a proper leaf L with finite holonomy group;
(iv) there is a closed leaf L with finite holonomy group,
then the basic automorphism group Ag(M, F') admits a Lie group structure of dimen-
ston at most dim P, and this structure is unique.

Proof. Remark that any closed leaf of a foliation is proper and each finite holonomy
group is a discrete one. Hence we have implications (iv) = (i) = (ii) = (7).
According to Proposition 12 the existence of a proper leaf L with discrete holonomy
group guarantees the equality go(M, F') = 0. Thus, applying Theorem 5 we get the
required assertion. O

It is well known that any foliation has leaves without holonomy. Therefore, the
following statement is a consequence of the assertion (iii) of Theorem 6.

Corollary 2. For any proper complete foliation (M, F') with TRG the basic auto-
morphism group Ag(M, F) admits a unique Lie group structure.

10. Foliations covered by fibrations

(G, X)-foliations. It is said that a group of diffeomorphisms of a manifold X acts
quasi-analytically, if existence of an element g € G and an open subset U in X such
that g|y = idy implies g = idx.

Let G be a Lie group of diffeomorphisms of a manifold X, which acts quasi-
analytically on X. Recall that (M, F) is a (G, X)-foliation if (M, F') is defined by
an n-cocycle {U;, fi,{vi;}}, where f;: U; — V; is a submersion onto an open subset of
X, for each «;; there is g € G such that vi; = g|f,(,nv,) and {V;} is a covering of X.
Uniqueness of such a g € (G is a consequence of quasi-analyticity of the action of G.

Def 14. Let (X,¢) be a rigid geometry, where § = (P(H,X),w), let G be an
automorphism group of (X,&). A (G, X)-foliation (M, F) is called a (G, X)-foliation
with transverse rigid structure.

Foliations covered by fibrations. Let f: M — M be the universal covering
map.

Def 15. We say that a foliation (M, F') is covered by a fibration jf the induced

foliation F := f*F on M is formed by the leaves of a submersion r: M — B onto a
g-dimensional manifold B, where ¢ is codimension of the foliation (M, F').

Proposition 13. Let (M, F) be a foliation with TRG, which admits an Ehresmann

connection I and is covered by a fibration r: M — B, where f: M — M is the
universal covering map. Then:

(i) B is simply connected, the submersion r: M — B is a locally trivial fibration;

(ii) the manifold B admits a rigid geometry ¢ locally isomorphic to (N,§);

(iii) there is a group epimorphism a: w1 (M) — W onto some subgroup ¥ of automor-
phisms of the rigid geometry (B,(): the group ¥ is called the global holonomy group
of the foliation covered by a fibration; the foliation (M, F) is a (V, B)-foliation with
TRG;

(iv) for any x € M, the holonomy group T'(L,x) of the leaf L = L(x) is isomorphic to
the isotropy subgroup W, where y € r(f~!(x)).
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Proof. (i) By Proposition 2, the distribution 9t is an Ehresmann connection for
foliation (M, F). It is not difficult to check that the distribution 9t = f*9M0 is an
Ehresmann connection for the foliation (M, F'), hence 9 is an Ehresmann connection
for the submersion r: M — B. It is well known that a submersion admitting an
Ehresmann connection is a locally trivial fibration. Thus, the foliation (M F) is
formed by the fibres of the locally trivial fibration r: M — B. Hence r: M — B
is a fibration with the covering homotopy property. Applying the exact homotopy
sequence and the fact that the leaves of r are arcwise connected and the manifold M
is simply connected, we see that the basic manifold B is also simply connected.

(ii) Let f;: U; — V; be a submersion from the (N, §)-cocycle 7, defining (M, F).
Without loss of generality, we can assume that U; is a regularly covered neighborhood,
i.e., f71(U;) = UW, is a disjunct sum of neighborhoods W, such that f|yy, : Ws — U;
is a diffeomorphism. Therefore there exists a diffeomorphism ~,: V, = ’I“(Wa) — V;
satisfying the equality v, or = f; o f on W,,. The diffeomorphism ~, induces a rigid
geometry (4 = (Py(Va, H),wq), where P, := ~% P, onV,, such that v,: V, — V; is an
isomorphism of (V,, () and (V;,&y;). By a straightforward verification, one can show
that there exists a unique rigid structure ¢ = (P(H, B), 5) on B such that (|y, = (,-

(iii) Let us consider the fundamental group m (M, x), z € M, as the group G of
deck transformations of the universal covering map f: M — M. Since each g € G is an
isomorphism of the induced foliation (M, F) and the basic manifold B of the fibration
r: M — B can be considered as the leaf space M / F, g defines a map ¢: B — B
satisfying the relation rog = ¢ or. Hence ¢ is a dlffeomorphlsm of B. Moreover, from
the definition of the rigid geometry ¢ on B it follows that ¢ € A(B,(). Denote by ¥
the group of all such . Then there is a group epimorphism x: 71 (M,z) — ¥: g — ),
where rog=1or.

(iv) As f: M — M is the covering map, we can consider (M, F) as a (¥, B)-
foliation. Then the holonomy pseudogroup H of (M, F') is determined by the group .
Since ¥ acts quasi-analytically on B, for each y € B the group H,, which consists
of germs at y of transformations from the isotropy subpseudogroup of the holonomy
pseudogroup H, is isomorphic to the isotropy subgroup ¥,. According to Theorem 4,
the holonomy group I'(L, z) is isomorphic to H,, where y € r(f~!(z)), and hence the
group I'(L, x) is isomorphic to ¥,,. O

According to Proposition 2 a complete foliation (M, F') with TRG admits an Ehres-
mann connection, hence the following assertion is true.

Corollary 3. If (M, F) is a complete foliation with TRG, then the statements of
Proposition 13 are valid for (M, F).

Basic automorphism groups of foliations with TRG covered by fibra-
tions. In the following theorem we give and apply another interpretation of the
structure Lie algebra of a foliation (M, F') with TRG covered by a fibration.

Theorem 7. Let (M F) be a complete foliation with TRG covered by a fibration
r: M — B, where f: M — M is the universal covering map. Let U be the global
holonomy group of (M, F) considered as a subgroup of the Lie group A(B,(C) of all
automorphisms of the rigid geometry (B, (), which was introduced in Proposition 13.
Then:
(i) the structure Lie algebra go(M, F) is isomorphic to the Lie algebra of the Lie group
W, where U is the closure of U in the full Lie group of automorphisms A(B, () which
15 a Lie group;
(ii) the equality go(M, F') = 0 is equivalent to the condition that ¥ is a discrete sub-
group of the Lie group A(B,();
(iii) if ¥ is a discrete subgroup of the Lie group A(B,(), then the full group of basic
automorphisms Ag(M, F') admits a Lie group structure, and this structure is unique.

Proof. As above, let m: R — M be the projection of the foliated bundle over
(M,F) and f: M — M be the universal covering map. Put R := f*R = {(y,u
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MxR| fly) =nuw)}, 7: R — M: (y,u) — y, @: 7@ — R: (y,u) — u. A right
action of H on R is defined by the equality (y,u) -a = (y,u-a), Va € H. It is
easy to see that a principal H-bundle 7: R — M equlpped with a foliation (R F ),
where F = ¢*F, is the foliated bundle for the foliation (M F). Since (M, F) is a
simple foliation defined by submersion r: M — B, so (R, F) is also simple foliation
defined by the projection of the basic fibration 7,: R — W. In general, when the Lie
group H is not connected, the manifold R is not simply connected. Remark that the
lifted e-foliation (R, F) is covered by fibration 7,: R — W. The fundamental group

G = m(M,z) acts on R by the formula g(y,u) := (g(y ),u),V(y,u) € R,Vg € G.
Hence go R, = R, 0g9,Va € H,Vg € G. Moreover, each g is an automorphlsm of the

foliation (R, F) in the category Fol. Therefore G induces a group ¥ C Dif f(W). Let
s: W — B be a map defined by the equality s o7, = 7 o r. Analogously to proof of
Proposition 13, a rigid structure { = (W(H B),#) with the projection s: W — B is
defined, and (B, ¢) is a rigid geometry, ¥ C A(¢). Furthermore the group isomorphism
A(¢) — A(B,¢) maps ¥ onto V.

Consider any leaf £ = L(u), u € R, of (R, F). Let z € o 1(u) and d = 7y(2).
Since ¥ C A(¢) € AW, 0), 50 U -d = (cl¥) - d, where ¥ - d is the closure of the orbit
U - din W, and cl¥ is a closure of U in the Lie group A(¢). Hence the closure L
of £ in R satisfies the equality £ = ¢(7, ' ((cl¥) - d)). Denote by (cI¥), the identity
component of the Lie group cl¥, then (V). -d and L := 7, * ((cl¥), - d) are connected
smooth manifolds, with o|r: L. — £ is a regular covering map. The induced foliation
(¢lL)*(F|z) is simple and is defined by a submersion 7p.: L — (cI¥), - d = (cl¥)e.
It is known [11] that this implies that the structure Lie algebra of the Lie foliation
(L, F|z) with dense leaves is isomorphic to the Lie algebra of the Lie group (clD)..
Since ¥ is the projection of \i/~ with respect to s: W — B, so effectiveness of ¢ implies

that the Lie groups ¥ and ¢V are isomorphic.
The statement (ii) is a direct consequence of the statement (i). Therefore the
assertion (iii) follows from Theorem 5. O

Basic automorphisms of foliations with integrable Ehresmann connec-
tions.

Proposition 14. Let (M, F) be an 9M-complete foliation with TRG. Suppose that
the distribution M is integrable and, therefore, defines a foliation (M, F*), where
TF" =9M. Then: B
(i) the universal covering manifold M can be identified with the product L x B of some
manifolds L and B, and (M, F) is covered by the trivial fibration r: L x B — B, where
r 18 the canonical projection onto the second factor;

(i) if the global holonomy group ¥ is a discrete subgroup of the Lie group A(B,() of
all automorphisms of the induced rigid geometry (B, (), then the full group of basic
automorphisms Ag(M, F') admits a unique Lie group structure.

Proof. By assumption, M is endowed with two transverse foliations (F, F*) of di-
mensions p and ¢, respectively, where p 4+ ¢ = dim M. According to Proposition 2, the
distribution 9 = TF" is an Ehresmann connection for the foliation (M, F).

Let f: M — M be the universal covering map. Let F := f*F, F* := f*F" be
the induced foliations on M and 9 := TF*. Remark that 9 = f*9 is an integrable
Ehresmann connection for the foliation (M, F'). In the terminology of Section 3, the
simply connected manifold M is endowed with two transverse foliations (F, F"*) such
that for any pair of curves (o, h) with a common initial point ¢(0) = h(0), where o is a
horizontal curve and h is a vertical curve, there exists a vertical-horizontal homotopy H
with the base (o,h). In other words, the conditions of the famous Kashiwabara’s
theorem about the decomposition of manifolds [18] (rediscovered by Blumenthal and
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Hebda [12]) are satisfied. According to this theorem there exists a diffeomorphism ®
of M onto a product of manifolds L x B which is an isomorphism in the category Fol of
two pairs of foliations: first, of (M, F)) and (L x B, F}), where Fy = {L x {z} | z € B},
second, of (M, F*) and (L x B, Fy), where F, = {{y} x B | y € L}. We identify M
with L x B by means of ®, while the foliation (M, F) is identified with the trivial
foliation (L x B, Fy). Therefore the foliation (M, F') is covered by the trivial fibration
r: L x B — B. Thus, (M, F) satisfies Theorem 7. O

11. Examples

Foliations obtained by suspension of a homomorphism. Let p: w1 (B, by) —
Diff(T") be a homomorphism of the fundamental group of a manifold B 3 by into the

group of diffeomorphisms of a g-dimensional manifold 7', and let p: B — B be the
universal covering mapping. Then we have a right action of the group II := 71 (B, bg)

on B by deck transformations. The equality
(@,t)-g:=(x-g,p(g7 (1), V(w,t) € BxT, Vgell,

defines a free right properly discontinuous smooth action of the group II on the product
of manifolds B x T'; therefore the quotient manifold M := B xp T is defined. Let
k: B x T — M be the natural projection. Then F := {k(B x {t}) | t € T} is
a foliation of codimension g on M; in this case, it is said that the foliation (M, F')
is obtained by suspension of the homomorphism p. For this foliation we will use the
notation (M, F) := Sus(T, B, p) suggested in [19]. The image ¥ := imp is the global
holonomy group of (M, F)

Transversally similar and transversally homothetic foliations. Let G be
the similarity group of the Euclidean space E?, ¢ > 1, and RT be the multiplicative
group of positive real numbers. Then G = CO(q) AR is the semidirect product of the
conformal group CO(q) = R" - O(q) and the group RY. Let H = CO(q) and p: G —
G/H = E? be the canonical principal H-bundle. Let g be the Lie algebra of the Lie
group G, and w be the Maurer-Cartan g-valued 1-form on G. Then £ = (G(E?, H),w)
is an effective rigid geometry. Foliations with this transverse geometry (E?,¢) are
called transversally similarity foliations [7].

Denote by F the neutral element of the group O(q). If G = (RT-E)<RY, H = R"-F,
and w is the Maurer-Cartan g-valued 1-form on the Lie group G, then foliations with
the transverse effective rigid geometry (E?, ), where £ = (G(EY,R" - E),w), are called
transversally homothetic foliations [7].

Example 1. Let B be a smooth p-dimensional manifold whose fundamental group
m1(B, b) contains an element « of infinite order. For an arbitrary natural number ¢ > 1,
denote by E? a ¢-dimensional Euclidean space. Define a homomorphism p: Il :=
m1(B,b) — Diff(E9) by setting p(a) = v, where 1 is the homothetic transformation
of the Euclidean space E? with the coefficient A # 1, i. e. ¥(z) = Az, Va € E4, and
p(B3) = idgs for any element 3 € (B, b) such that 3 # o with some integer k. Then
(M, F) = Sus(E%, B, p) is a proper transversally similar foliation with a unique closed
leaf diffeomorphic to B.

According to Corollary 2, the full basic automorphism group Ag(M, F') of this
foliation (M, F') admits a Lie group structure. Let us compute the group Ag(M, F)
and show that this fact is indeed true.

The group Il := ker p acts on B x E? properly discontinuously, hence the quotient
manifold B xm, E¢ = By x E4, where By := B/HO, is defined. The quotient group
Uq = II/Tly & Z acts from the right on the product of manifolds By x E? such that
M = By Xy, E? and the quotient map x: My := By x E? — M is a regular covering
map with the deck transformation group ¥g. The foliation (M, Fy), where Fy := k*F,
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is formed by the fibres of the projection pry: My = By x E? — E? onto the second
factor.

The group A(§) is equal to the group of left translations of the Lie group G =
CO(q) A R?, hence we can identify A(E? ) = A(§) with G. For any h € G the
transformation h' = (idp,, h) of By x E? belongs to A(My, Fy). Therefore, the map
a: A(My, Fy) — G: h' — h, where h o pry = pry o b/, is a group epimorphism with
ker v = A (Mo, Fp). Let us emphasize that f € A(Mo, Fy) lies over an automorphism
f € A(M,F) if and only if it satisfies the relation f o ¥y = ¥y o f. Remark that
a(Py) =¥ C A(E?,£) = G is the global holonomy group of the foliation (M, F). Let
N(¥) be the normalizer of ¥ in the Lie group G. It is not difficult to check that the
map

B: Ag(M,F) — N(®)/U: f- AL(M,F) — o(f) - 0,

where f € A(My, Fy) lies over f with respect to the map k, is a group isomorphism,
hence Ag(M,F) = N(¥)/V.

In our case ¥ = (¢p) and N(¥) = R* - O(q), therefore Ag(M, F) = U(1) x O(q),
where U(1) & (R* - E)/V is the compact 1-dimensional abelian group.

If g =1, then O(q) = Zy and Ag(M,F) = U(1) X Zs.

Example 2. Consider the foliation (M, F') constructed in Example 1 as a transver-
sally homothetic foliation, i. e., with a different transverse rigid geometry. In this case
the Lie group Ap(M, F) is isomorphic to the quotient Lie group N(V¥)/W¥, where
N(¥) is the normalizer of ¥ in the Lie group (Rt - E) <RY. Since N(¥) =R*" - E, so
Ap(M,F) 2 U(1).

Remark 8. In both examples 1 and 2 the foliation (M, F') has a closed leaf and, in
Theorem 3, the equality is achieved in the estimate (ii) of the dimension of Ag(M, F).

Example 3. Let 9 be the rotation of the plane E? about the point 0 € E? through
the angle 6 = 27r. Consider an Euclidean metric g on E2. Denote by Iso(E?,g) the
full isometry group of (E?,g). Let p: m(S',b) = Z — Iso(E?,g) be defined by the
equality p(1) := 1, 1 € Z. Then we have a suspended Riemannian foliation (M, F) :=
Sus(E2, S1, p). This foliation has a unique closed (compact) leaf.

There exists a group isomorphism between Ap(M, F') and the quotient group
N(¥)/¥, where ¥ = () and N(¥) is the normalizer of ¥ in the Lie group Iso(E?, g)
identified with O(2) £ R2. Since N(¥) = O(2), so Ag(M,F) = O(2)/V. Hence
Ap(M, F) admits a Lie group structure if and only if ¥ is a closed subgroup of O(2)
or, equivalent, when d = 27r for some rational number 7.

If 0 = 27, where 7 is a non-zero rational number, then Ag(M, F) = O(2).

References

1. Kobascu LI. I'pymmel mpeobpazoBanuit B quddepennuaabaoil reomerpun. — M.:
Hayka, 1986. — 224 c.

2. Leslie J. A Remark on the Group of Automorphisms of a Foliation Having a Dense
Leaf // J. Diff. Geom. — 1972. — Vol. 7. — Pp. 597-601.

3. Beavko U. B. Adbdunnbie npeobpasoBaHus TPAHCBEPCAJIbHON IPOEKTUPYEMOI
CBSI3HOCTH Ha MHOroobpasum co cioenmeMm // Mar. cboprmk. — 1982. —
T. 117, Ne 2. — C. 181-195.

4. Hector G., Macias-Virgos E. Diffeological Groups // Reseach and Exposition in
Math. — 2002. — Vol. 25. — Pp. 247-260.

5. D’Ambra G., Gromov M. Lectures on Transformation Groups: Geometry and
Dynamics, Surveys in Differential Geometry (Cambridge, Mass., 1990). — Beth-
lehem, Penn.: Lehigh University, 1991. — Pp. 19-111.

6. Gromov M. Rigid transformations groups // Geometrie Differentielle (Paris, 1986).
Travaux en Cours. — 1988. — Vol. 33. — Pp. 65-139.



Complete Foliations with Transverse Rigid Geometries and Their Basic. . . 35

7. 2Kykoea H. H. MunumabHbIe MHOYKECTBA KAPTAHOBBIX caoeHuil // Tpy/pl MaTeM.
nucturyta uM. B.A. Crekmosa. — 2007. — T. 256. — C. 115-147.

8. Blumenthal R. A. Cartan Connections in Folated Bundles // Michigan Math. J. —
1984. — Vol. 31. — Pp. 55-63.

9. Kobascu II., Homudsy K. Ocuosl quddepeniuaibioii reomerpun. — M.: Hayxka,
1981. — T. 1, 344 c.

10. Conlon L. Transversally Parallelizable Foliations of Codimension 2 // Trans. Amer.
Math. Soc. — 1974. — Vol. 194. — Pp. 79-102.

11. Molino P. Riemannian Foliations. Progress in Math. — Birkhauser Boston,
1988. — 339 p.

12. Blumenthal R. A., Hebda J. J. Ehresmann Connections for Foliations // Indiana
Univ. Math. J. — 1984. — Vol. 33, No 4. — Pp. 597-611.

13. Wolak R. A. Foliated and Associated Geometric Structures on Foliated Mani-
folds // Ann. Fac. Sci. Toulouse Math. — 1989. — Vol. 10, No 3. — Pp. 337-360.

14. Wolak R. A. Geometric Structures on Foliated Manifolds // Publ. del Dep. de Ge-
ometria y Topologia, Universidad de Santiago de Compostela. — 1989. — Vol. 76.

15. 2Kyxosa H. H. CeoiicrBa rpadukoB specManoBbix cioennii // Becruuk HHI'Y.
Cep. Maremaruka. — 2004. — Boim. 1. — C. 73-87.

16. Bazaes A. B., XKykosa H. HU. I'pynnsl usomerpuii puMaHOBbIX 0p6udosios //
Cub. Mar. 2Kypnan. — 2007. — T. 48, Ne 4. — C. 723-741.

17. Tamypa HU. Tononorus cioennii. — M.: Mup, 1979. — 317 c.

18. Kashiwabara S. The Decomposition of Differential Manifolds and its Applica-
tions // Tohoku Math. J. — 1959. — Vol. 11. — Pp. 43-53.

19. Chubarov G. V., Zhukova N. I. Aspects of the Qualitative Theory of Suspended
Foliations // J. of Difference Equations and Applications. — 2003. — Vol. 9. —
Pp. 393-405.

20. Kamber F., Tondeur P. Foliated Bundles and Characteristic Classes // Lecture
Notes in Math. — Springer, 1975. — Vol. 494.

VIIK 514.763.23
HO.HHLIG CJioeHud C TpaHCBepCaJIbHbIMUA 2KECTKMNMU
reoMeTpnudMm U UX 6a30351e aBTOMOp(bI/IBMbI

H. . 2Kykosa

Kagedpa mamemamuru v mMexaHuru
Huotcezopodckuti 2ocydapemeernnti yrnusepcumem um. H.H. Jlobauesckozo
np. Tazapuna, 0. 23, xkopn. 6, 2. Huoscruti Hoszopod, Poccus, 603950

Bseneno nmonsitue xecTkux reomerpuii. 2KecTkre reoMeTpun BKIIIOYAIOT KAPTAHOBBI TE€0-
METPHUH, & TaKXKe YKECTKHE TeOMETPUYECKHe CTPYKTYphl B cMmbicyie ['pomosa. Mccmemyrorcs
cnoenus (M, F') c TpaHCBEpCATIBHBIME KeCTKUME reoMeTpusivu. Haiien nnsapuant go(M, F)
cnoenusi (M, F'), npencrasisromuii coboii anrebpy Jlun. Jlokazano, aro npu go(M,F) = 0
rpymnmna 6a30Bbix aBroMopdusMoB cioenus (M, F') momyckaer cTpykTypy rpynnst Jlu, npu-
9eM 9Ta CTPYKTypa eIUHCTBEHHA. [[0IydIeHbl OMEHKN pa3MEepHOCTEH ITHUX TPy B 3aBUCH-
MOCTH OT TPAHCBEPCAJBHBIX reoMeTpuii. [1ocTpoeHbl TpUMEpPDhI BBIYUCIEHUS TPYIIT 6a30BbIX
aBTOMOP(U3MOB CJIOCHUIA.





