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1. Introduction

The focus of our research on such problems lies in the fact that for nonlinear
systems of the type of Navier–Stokes in a three-dimensional space, we can not find a
class of spaces where we could uniquely solve the problem at the border. This class
is found by the linearization of systems of Navier–Stokes. However linearized systems
often do not describe accurately the movement of liquid (or fluid). An intermediate
case of investigation was proposed in [1], i.e., to the linearized system, nonlinear terms
are added, which may allow us to more accurately describe the movement of liquid
(or fluid) and at the same time allow the resolution in a unique way of the nonlinear
problem relative to the boundaries, obtained by disrupting our initial system.

Using the Hadamard theorem for infinitely small Lipschitz constant, satisfying the
conditions of these disturbances, the obtained disrupted problem at the borders has a
unique solution 𝑣 = 𝐴(𝑓, 𝛼) where 𝛼 is the value of the velocity 𝑣 at the border (with
𝛼 = 0 for the studied problem), 𝑓 is the second member of the perturbed obtained
system, and 𝐴 satisfies the Lipschitz conditions with respect to 𝑓 , in the corresponding
functional spaces.

For some smooth conditions on the Nemytsky–Hammerchtéin operator and using
the theorem of Hadamard about strong derivation of inverse functions, the operator
𝐴(𝑓) is strongly differentiable in the sense of the corresponding 𝑓 . This derivation is
weaker than the Fréchet derivation. But it is quite sufficient to establish the necessary
conditions of optimality of problems relative to those equations.

2. Statement of the Problem of Optimal Control

The physical processes that find their applications in technique, are generally con-
trolled. It means that they can be achieved in many ways at the mercy of man.
Therefore, we must find the best control according to particular criteria, in other
words, the optimal control of the process.

The flow of an incompressible viscous fluid in a not empty and bounded domain
Ω, is characterized by its velocity 𝑣 = 𝑣(𝑥) and pressure 𝑝 = 𝑝(𝑥).
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Consider the associated system after disruption

𝜈 M 𝑣(𝑥) +𝑀(𝑥, 𝑣(𝑥)) +

∫︁
Ω

𝑘(𝑥, 𝑦)𝑔(𝑦, 𝑣(𝑦))d𝑦 = ∇𝑃 (𝑥) + 𝑓(𝑥), (1)

div 𝑣(𝑥) = 0, (2)

𝑣 |𝜕Ω (𝑥) = 0, 𝑥 ∈ Ω ⊂ R3, (3)

and functional with the following form

𝐽𝑘(𝑓) =

∫︁
Ω

𝑃𝑘(𝑥, 𝑣(𝑥)), 𝑓(𝑥))d𝑥, 𝑘 = 0, 1, . . . , 𝑠1 + 𝑠2, (4)

where 𝑃𝑘 are Caratheodoric functions, that is they are measurable with regard to the
triplet (𝑥, 𝑣, 𝑓) and continue with regard to the couple (𝑣, 𝑓) almost everywhere for
all the elements 𝑥 of Ω; 𝜈 is the kinematic coefficient of viscosity (or of tenacity) and
it is considered to be constant. 𝜕Ω = 𝑆 is the border of the domain Ω. In addition to
that we have

|𝑃𝑘(𝑥, 𝑣, 𝑓)| 6 𝑄𝑘(𝑥) + 𝐶𝑘

(︀
|𝑣|2 + |𝑓 |2

)︀
,

|∇(𝑣,𝑓)𝑃𝑘(𝑥, 𝑣, 𝑓)| 6 𝐷𝑘(𝑥) + ̂︀𝐶𝑘

(︀
|𝑣|2 + |𝑓 |2

)︀
with 𝑃𝑘, 𝑘 = 0, 1, . . . , 𝑠1 + 𝑠2, derivable with respect to the pair (𝑣, 𝑓), 𝑄𝑘(𝑥) ∈ 𝐿1(Ω),

𝐷𝑘(𝑥) ∈ 𝐿2(Ω), 𝐶𝑘 and ̂︀𝐶𝑘 are constants. More, 𝑃𝑘, 𝑃𝑘𝑣 and 𝑃𝑘𝑓 verify the Lipschiz
condition from the pair (𝑣, 𝑓); 𝑠1 and 𝑠2 are non negative integers.

According to [1] the following functions:

𝑀 : Ω× R3 × R9 → R3

(𝑥, 𝜁, 𝜂) ↦→ 𝑀(𝑥, 𝜁, 𝜂),

𝑔 : Ω× R3 × R9 → R3

(𝑥, 𝜁, 𝜂) ↦→ 𝑔(𝑥, 𝜁, 𝜂),

𝑘 : Ω× Ω → R9

(𝑥, 𝑦) ↦→ 𝑘(𝑥, 𝑦).

are measurable and satisfying the following conditions:

‖𝑀(𝑥, 𝜁, 𝜂)‖ 6 𝑐0(‖𝜁‖+ ‖𝜂‖) + 𝑑1(𝑥) (5)

|𝑔(𝑥, 𝜁, 𝜂)| 6 𝑐1(‖𝜁‖+ ‖𝜂‖) + 𝑑2(𝑥) (6)

where 𝑑𝑖(𝑥) ∈ 𝐿2(Ω), 𝑖 = 1, 2.
Moreover 𝑀 and 𝑔 are continuously differentiable with respect to the correspondent
(𝜁, 𝜂) almost at each fixed point 𝑥 ∈ Ω , and

|𝑀 ′
𝜁 |+ |𝑀 ′

𝜂| 6 𝑐2, ∀𝜁 ∈ R3, ∀𝜂 ∈ R9 (7)

|𝑔′𝜁 |+ |𝑔′𝜂| 6 𝑐3, ∀𝜁 ∈ R3, ∀𝜂 ∈ R9 (8)

at almost every 𝑥 ∈ Ω, where 𝑐𝑖 is a constant for 𝑖 = 0, 1, 2, 3.

The function 𝐾 defines a continuous integral operator 𝐿2(Ω) → 𝐿2(Ω), with the
following form:

(𝐾𝜙)(𝑥) =

∫︁
Ω

𝑘(𝑥, 𝑦)𝜙(𝑦)𝑑𝑦. (9)
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In the same way, the following operators have been defined in [1]:

𝑁 : 𝑊 1
2 (Ω) → 𝐿2(Ω)

𝜗 ↦→ [𝑁(𝜗)](𝑥) = 𝑁(𝜗),
(10)

and

𝐺 : 𝑊 1
2 (Ω) → 𝐿2(Ω)

𝜗 ↦→ [𝐺(𝜗)](𝑥) = 𝐺(𝜗),
(11)

by the formulae:
[𝑁(𝑣)](𝑥) =𝑀(𝑥, 𝑣(𝑥),∇𝑣(𝑥)) (12)

[𝐺(𝑣)](𝑥) = 𝑔(𝑥, 𝑣(𝑥),∇𝑣(𝑥)) (13)

and the operators:

𝑁 ′(𝜗) : 𝑊 1
2 (Ω) → 𝐿2(Ω)

ℎ(𝑥) ↦→ [𝑁 ′(𝜗)](𝑥) = 𝑁 ′(𝜗)ℎ,

and

𝐺′ : 𝑊 1
2 (Ω) → 𝐿2(Ω)

ℎ(𝑥) ↦→ [𝐺′(𝜗)ℎ](𝑥) = 𝐺′(𝜗)ℎ,

depending on the parameter 𝜗 ∈𝑊 1
2 (Ω) by the formulas:

[𝑁 ′(𝜗)]ℎ(𝑥) =𝑀 ′
𝜁(𝑥, 𝜗(𝑥),∇𝜗(𝑥))ℎ(𝑥) +

3∑︁
𝑖=1

𝑀 ′
𝜂𝑖

𝜕ℎ(𝑥)

𝜕𝑥𝑖
(14)

and

[𝐺′(𝜗)]ℎ(𝑥) = 𝑔′𝜁ℎ(𝑥) +
3∑︁

𝑖=1

𝑔′𝜂𝑖

𝜕ℎ(𝑥)

𝜕𝑥𝑖
, (15)

where 𝑀 ′
𝜂𝑖
, 𝑔′𝜁 , 𝑔

′
𝜂𝑖

have for argument (𝑥, 𝜗(𝑥),∇𝜗(𝑥)) (the notations 𝑁 ′(𝜗) and 𝐺′(𝜗)
are in [2]).
Let

𝑈 =

{︃
𝜗 ∈𝑊 1

2 (Ω) : ∃!𝑓 ∈
(︂ ∘
𝐽1
2

)︂′
, ∃!𝛼 ∈ 𝐵, 𝑀1(𝜗) = (𝑓, 𝜗)

}︃
,

‖𝜗‖𝑈 = ‖𝑓‖(︀ ∘
𝐽1
2

)︀′ + ‖𝛼‖𝐵.

Assuming that [𝑀1(𝜗)](𝑥) = 𝑣△𝜗−∇𝑃 ,

[𝑀1(𝜗)](𝑥) ≡𝑀(𝑥, 𝜗(𝑥),∇𝜗(𝑥)) +
∫︁
Ω

𝑘(𝑥, 𝑦)𝑔(𝑦, 𝜗(𝑦),∇𝜗(𝑦))𝑑𝑦.

It has been prooved in [1] that the operator

𝑀1 : (𝑈, ‖ ‖𝑈 ) →
(︀ ∘
𝐽1
2

)︀′ ×𝐵

𝜗 ↦→ 𝑀1(𝜗) = (𝑓, 𝜗)
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is an isomorphism. Where
∘
𝐽1
2 is the Hilbert space of vector functions, obtained by

completing
∙
𝐽(Ω) according to the standard corresponding scalar product:

(𝑢, 𝜗) =

∫︁
Ω

(𝑢𝜗+ 𝑢𝑥𝜗𝑥)𝑑𝑥,

∙
𝐽(Ω) is the set of infinitely differentiable vector functions and 𝐵 has been defined by

𝛼 ∈ 𝐵 ≡ {𝛼 ∈ 𝐿2(𝑆) / ∃ 𝑎 ∈𝑊 1
2 (Ω), 𝑑𝑖𝑣𝑎 = 0, 𝑎|𝑆 = 𝛼}

with ‖𝛼‖𝐵 = 𝐼𝑛𝑓{‖𝑎‖𝑊 1
2 (Ω) : 𝑎 ∈𝑊 1

2 (Ω), 𝑑𝑖𝑣𝑎 = 0, 𝑎|𝑆 = 𝛼}.
In [1], it was shown that by choosing 𝜔 = 𝑚𝑎𝑥(𝑐2, 𝑐3) with the operators 𝑀 and

𝑔, satisfying the conditions (5)− (8) and if there is a number 𝜔0 > 0 such that for any
𝜔, we have 0 < 𝜔 < 𝜔0 then the problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑀(𝜗) ≡ 𝑣△𝜗(𝑥) +𝑀(𝑥, 𝜗(𝑥),∇𝜗(𝑥)) +
∫︁
Ω

𝑘(𝑥, 𝑦)𝑔(𝑦, 𝜗(𝑦)∇𝜗(𝑦))𝑑𝑦 = ∇𝑝(𝑥) + 𝑓(𝑥),

div 𝜗(𝑥) = 0,

𝜗|𝑆(𝑥) = 𝛼(𝑥)

has a unique solution 𝜗 = 𝐴(𝑓, 𝛼) for all 𝑓 ∈
∘
𝐽1
2 and 𝛼 ∈ 𝐵 and more:

1) 𝐴 :
∘
𝐽1
2 ×𝐵 →𝑊 1

2 (Ω) is 𝑠− continuous and 𝑠− differentiable on
∘
𝐽1
2 ×𝐵;

2) the operator 𝐴 is strongly differentiable on
∘
𝐽1
2 × 𝐵 as a mapping on the space

(𝑊 1
2 (Ω), 𝜎), where 𝜎 is a weak topology in 𝑊 1

2 (Ω).

We also obtained in [1], that when the solution 𝜗 = 𝐴(𝑓, 𝛼) is 𝑠− continuous

and 𝑠− differentiable as a mapping from
∘
𝐽1
2 × 𝐵 to 𝑈 , then 𝐴 is 𝑠−continuous and

𝑠− differentiable as a mapping from 𝐿2(Ω)× 𝐵 in 𝑊 1
2 (Ω). This is deduced from the

continuity of 𝐴 from 𝑈 in𝑊 1
2 (Ω) and 𝐿2(Ω) in

(︀ ∘
𝐽1
2

)︀′
, this is

(︀
𝐻(Ω) ⊂ 𝐿2(Ω) ⊂

(︀ ∘
𝐽1
2

)︀′)︀
.

To obtain the result above stated, we had to show that the operators 𝑁 and 𝐺 are
𝑠−continuous and 𝑠−differentiable on 𝑊 1

2 (Ω) and 𝐺
′ = 𝐾 *𝐺. Similary, it was shown

that, since 𝐾 is a continuous linear map and that the operators 𝐺 and 𝑁 satisfy the
Lipschitz condition, then 𝐾 ∘𝐺 also satisfies the Lipschitz condition.

Therefore, what conditions the command applied to the system (for disruption)
should be submitted to, so that the associated solution to the command coud be
unique?

The problem is to choose a command 𝑓 from 𝑈0, where 𝑈0 is a convex set in 𝐿2(Ω),
such that for the solution 𝑣(𝑥) of the system (1)–(3), depending of that command 𝑓 ,
constraints persist, which are given in the form of inequalities

𝐽𝑘(𝑓) 6 0, 𝑘 = 1, 𝑠1, (16)

given in the form of equalities

𝐽𝑘(𝑓) = 0, 𝑘 = 𝑠1 + 1, 𝑠1 + 𝑠2, (17)

and that in addition to this, the functional 𝐽0(𝑓) takes the smallest possible value

𝐽0(𝑓) = inf
𝑈0

𝐽0(𝑓). (18)
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Such control is called optimal.

Definition 1. The function 𝑣 = 𝐴(𝑓) is called generalized solution of system (1)–

(3) in 𝑊 1
2 (Ω) , if it satisfies the integral identity 𝐼 = 0, ∀𝜙 ≡ 𝜙(𝑥) ∈

∘
𝐽1
2 (Ω), where

𝐼 = −𝜈
∫︁
Ω

𝑣𝑥𝜙𝑥d𝑥

∫︁
Ω

[︂
𝑀(𝑥, 𝑣(𝑥)) +

∫︁
Ω

𝑘(𝑥, 𝑦)𝑔(𝑦, 𝑣(𝑦))d𝑦 − 𝑓(𝑥)

]︂
𝜙(𝑥)d𝑥 = 0. (19)

Suppose that 𝜙 is sufficiently smooth. Then

− 𝜈

∫︁
Ω

3∑︁
𝑗=1

(︂
𝜕𝑣𝑖
𝜕𝑥𝑗

𝜕𝜙𝑖
𝜕𝑥𝑗

)︂
d𝑥 = 𝜈

∫︁
Ω

3∑︁
𝑗=1

𝑣𝑖𝜕
2𝜙𝑖

𝜕𝑥2𝑗
d𝑥− 𝜈

∫︁
𝜕Ω

𝑣𝑖

3∑︁
𝑗=1

𝜕𝜙𝑖
𝜕𝑥𝑗

𝑛𝑗d𝑥 =

= 𝜈

∫︁
Ω

3∑︁
𝑗=1

𝑣𝑖
𝜕2𝜙𝑖
𝜕𝑥2𝑗

d𝑥− 𝜈

∫︁
𝜕Ω

𝑣𝑖

3∑︁
𝑗=1

𝜕𝜙𝑖
𝜕𝑛𝑗

d𝑠 = ⟨𝜈
(︂

M 𝜙𝑖 −
𝜕𝜙𝑖
𝜕𝑛

𝛿𝑠

)︂
, 𝑣𝑖⟩,

3∑︁
𝑗=1

⟨𝜈 M 𝜙𝑖, 𝑣𝑖⟩ = ⟨𝜈 M 𝜙, 𝑣⟩ by condition (3).

Thus we obtain

𝐼 = ⟨𝜈 M 𝜙+ (𝑁 ′(𝑣) +𝐾𝐺′(𝑣))𝜙, 𝑣⟩ − ⟨𝜙, 𝑓⟩ = 0. (20)

Theorem 1. Suppose that under the conditions of (4) (see [1]) 𝑣 is a solution of
system (1)–(3), corresponding to the control 𝑓(𝑥) ∈ 𝑈0, where

𝑓𝜀(𝑥) = 𝑓(𝑥) + 𝜀

(︂
𝑓(𝑥)− 𝑓(𝑥)

)︂
, (0 6 𝜀 6 1),

and 𝑣𝜀(𝑥) is a solution relative to the control 𝑓𝜀(𝑥) ∈ 𝑈0. Then

‖𝑣𝜀(𝑥)− 𝑣(𝑥)‖𝑊 1
2 (Ω) 6 𝐶

⃦⃦
𝑓𝜀(𝑥)− 𝑓(𝑥)

⃦⃦
𝐿2(Ω)

. (21)

Proof. Remark that 𝛿𝑣(𝑥) = 𝑣𝜀(𝑥)− 𝑣(𝑥) satisfy the integral identity:

𝜈

∫︁
Ω

𝜙𝑥𝛿𝑣𝑥 −
∫︁
Ω

𝜙

[︂
𝑀𝜀 −𝑀 +

∫︁
Ω

𝑘(𝑔𝜀 − 𝑔)d𝑦

]︂
d𝑥+

∫︁
Ω

𝜙𝛿𝑓d𝑥 = 0, ∀𝜙 ∈
∘
𝐽1
2 (Ω). (22)

So, using condition (16) (see [1]) and the restriction (21) (see [1], for 𝛼 = 0), we obtain
inequality (21). �

3. Derivation of the Functional

Consider the functional

𝐽(𝑓) =

∫︁
Ω

𝑃 (𝑥, 𝑣(𝑥)), 𝑓(𝑥))d𝑥, (23)

Let’s prove that 𝐽 is differentiable in 𝐿2(Ω).
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3.1. Formula for the Gradient of the Function

Consider the problem (1)–(3) with a disrupted control 𝑓𝜀 ∈ 𝐿2(Ω), which is linked
to the solution 𝑣𝜀(𝑥) of the problem and the value of the functional 𝐽(𝑓𝜀).

Denote the variations by: 𝛿𝑣 = 𝑣𝜀 − 𝑣, 𝛿𝑓 = 𝑓𝜀 − 𝑓 . We have

M 𝐽 =M 𝐽(𝑓) = 𝐽(𝑓𝜀)− 𝐽(𝑓) =

∫︁
Ω

[︂
𝑃 (𝑥, 𝑣𝜀, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓)

]︂
d𝑥,

𝑃 (𝑥, 𝑣𝜀, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) = 𝑃 (𝑥, 𝑣𝜀, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓𝜀) + 𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) =

=

1∫︁
0

𝑃𝑣(𝑥, 𝑣 + 𝜗𝛿𝑣, 𝑓𝜀)𝛿𝑣d𝜗+ 𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) =

= 𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) + 𝑃𝑣(𝑥, 𝑣, 𝑓)𝛿𝑣 +

1∫︁
0

[︂
𝑃𝑣(𝑥, ̂︀𝑣, 𝑓𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓)

]︂
𝛿𝑣d𝜗 =

= 𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) + 𝑃𝑣(𝑥, 𝑣, 𝑓)𝛿𝑣 +

1∫︁
0

[︂
𝑃𝑣(𝑥, ̂︀𝑣, 𝑓𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)

]︂
𝛿𝑣d𝜗+

+

[︂
𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓)

]︂
𝛿𝑣.

Then

M 𝐽 =

∫︁
Ω

[︂
𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓)

]︂
d𝑥+

∫︁
Ω

𝑃𝑣(𝑥, 𝑣, 𝑓)𝛿𝑣𝑑𝑥+

∫︁
Ω

(𝑟1 + 𝑟2)d𝑥,

where

𝑟1 =

1∫︁
0

[︂
𝑃𝑣(𝑥, ̂︀𝑣, 𝑓𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)

]︂
𝛿𝑣d𝜗, ̂︀𝑣 = 𝑣 + 𝜗𝛿𝑣,

𝑟2 =

[︂
𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓)

]︂
𝛿𝑣.

(24)

As the functions 𝑣 and 𝑣 satisfy respectively the integral identities (in this case we
use relation (20)), so their difference 𝛿𝑣 = 𝑣𝜀 − 𝑣 also will satisfy the identity (20).
Taking into account this fact, we have:

M 𝐽 =

∫︁
Ω

[︂
𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓)

]︂
d𝑥+

∫︁
Ω

𝑃𝑣(𝑥, 𝑣, 𝑓)𝛿𝑣d𝑥+

+ ⟨𝜈 M 𝜙+ 𝜙

(︂
𝑀𝜀 −𝑀 +

∫︁
Ω

𝑘(𝑔𝜀 − 𝑔)d𝑦

)︂
, 𝛿𝑣⟩ − ⟨𝜙, 𝛿𝑓⟩+

∫︁
Ω

(𝑟1 + 𝑟2)d𝑥. (25)

In the last expression, taking into account the conditions on𝑀 and 𝑔, also taking into
account formulas (25) and (26) (see [1]), we rewrite the following:

∫︁
Ω

𝜙

(︂
𝑀𝜀 −𝑀

)︂
d𝑥 =

∫︁
Ω

𝜙

(︂
𝑀(𝑥, 𝑣𝜀(𝑥))−𝑀(𝑥, 𝑣(𝑥))

)︂
d𝑥 =
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=

∫︁
Ω

𝜙

[︂ 1∫︁
0

𝑀𝑣(𝑥, 𝑣 + 𝜗𝛿𝑣)𝛿𝑣𝑑𝜗

]︂
d𝑥 =

∫︁
Ω

𝜙𝑀𝑣(𝑥, 𝑣(𝑥))𝛿𝑣(𝑥)d𝑥+

∫︁
Ω

𝜙(𝑥)𝑟3d𝑥 =

=

∫︁
Ω

𝜙(𝑥)[𝑁 ′(𝑣)](𝑥)𝛿𝑣(𝑥)d𝑥+

∫︁
Ω

𝜙(𝑥)𝑟3d𝑥, (26)

where

𝑟3 =

1∫︁
0

[︂
𝑀𝑣(𝑥, ̂︀𝑣(𝑥))−𝑀𝑣(𝑥, 𝑣(𝑥))

]︂
𝛿𝑣(𝑥)d𝜗, ̂︀𝑣 = 𝑣 + 𝜗𝛿𝑣, (27)

and∫︁
Ω

𝜙

[︂ ∫︁
Ω

𝑘(𝑔𝜀 − 𝑔)d𝑦

]︂
d𝑥 =

∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)

(︂
𝑔(𝑦, 𝑣𝜀(𝑦))− 𝑔(𝑦, 𝑣(𝑦))

)︂
d𝑦

]︂
d𝑥 =

=

∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦

[︂ 1∫︁
0

𝑔𝑣(𝑦, 𝑣 + 𝜗𝛿𝑣)𝛿𝑣𝑑𝜗

]︂
d𝑦

]︂
d𝑥 =

=

∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)𝑔𝑣(𝑦, 𝑣(𝑦))𝛿𝑣(𝑦)d𝑦

]︂
d𝑥+

∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)𝑟4d𝑦

]︂
d𝑥.

∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)𝑔𝑣(𝑦, 𝑣(𝑦))𝛿𝑣(𝑦)d𝑦

]︂
d𝑥 =

∫︁
Ω

[︂ ∫︁
Ω

𝜙(𝑥)𝑘(𝑥, 𝑦)𝑔𝑣(𝑦, 𝑣(𝑦))𝛿𝑣(𝑦)d𝑦

]︂
d𝑥 =

=

∫︁
Ω

[︂ ∫︁
Ω

𝜙(𝑥)𝑘(𝑥, 𝑦)d𝑥

]︂
𝑔𝑣(𝑦, 𝑣(𝑦))𝛿𝑣(𝑦)d𝑦 =

∫︁
Ω

[︂ ∫︁
Ω

𝜙(𝑦)𝑘(𝑦, 𝑥)𝑔𝑣(𝑥, 𝑣(𝑥))d𝑦

]︂
𝛿𝑣(𝑥)d𝑥 =

=

∫︁
Ω

(𝐺′*(𝑣)𝐾*𝜙𝑇 )(𝑥)𝛿𝑣(𝑥)d𝑥,

where (𝐾*𝜙𝑇 )(𝑥) =

∫︁
Ω
𝑘(𝑦, 𝑥)𝜙𝑇 (𝑥)d𝑥. In what follows, as a matter of convenience,

we will simply write 𝜙 but not 𝜙𝑇 . Thus,∫︁
Ω

𝜙(𝑥)

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)(𝑔𝜀−𝑔)d𝑦
]︂
d𝑥 =

∫︁
Ω

(𝐺′*(𝑣)𝐾*𝜙)(𝑥)𝛿𝑣d𝑥+
∫︁
Ω

[︂ ∫︁
Ω

𝑘(𝑥, 𝑦)𝑟4d𝑦

]︂
𝜙(𝑥)d𝑥.

where

𝑟4 =

1∫︁
0

[︂
𝑔𝑣(𝑦, ̂︀𝑣)− 𝑔𝑣(𝑦, 𝑣)

]︂
𝛿𝑣d𝜗. (28)

𝑃 (𝑥, 𝑣, 𝑓𝜀)− 𝑃 (𝑥, 𝑣, 𝑓) = 𝑃 (𝑥, 𝑣, 𝑓)𝛿𝑓 + 𝑟5, (29)

where

𝑟5 =

1∫︁
0

[︂
𝑃𝑓 (𝑥, 𝑣, ̂︀𝑓)− 𝑃𝑓 (𝑥, 𝑣, 𝑓)

]︂
𝛿𝑓d𝜗, with ̂︀𝑓 = 𝑓 + 𝜗𝛿𝑓. (30)

Taking into account formulas (26), (27), (29) and (25) we obtain
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M 𝐽 =

∫︁
Ω

𝑃𝑓 (𝑥, 𝑣, 𝑓)𝛿𝑓d𝑥+

∫︁
Ω

𝑃𝑣(𝑥, 𝑣, 𝑓)𝛿𝑣d𝑥+

+ ⟨𝜈 M 𝜙+𝑁 ′(𝑥, 𝑣)𝜙+𝐺′*(𝑣)𝐾*𝜙, 𝛿𝑣⟩ − ⟨𝜙, 𝛿𝑓⟩+

+

∫︁
Ω

(𝑟1 + 𝑟2 + 𝑟5)d𝑥+

∫︁
Ω

𝑟3𝜙d𝑥+

∫︁
Ω

(︂ ∫︁
Ω

𝑘𝑟4𝑑𝑦

)︂
𝜙d𝑥. (31)

Remark 1. The transformations in the formula (31) are true only for the func-
tions 𝜙, sufficiently “smooth” and are issued only by the evidence of obtaining the
conjugate form of the problem. For the following transformations, consider the fol-
lowing conjugate problem:

𝜈 M 𝜙+𝑁 ′(𝑣(𝑥))𝜙+𝐺′(𝑣(𝑦))𝐾*𝜙 = −𝑃𝑣. (32)

From the existence (see Theorem 2 (see [3, p. 54] and Theorem of Hadamard) of
the solution of the conjugate problem (32), we finally have the expression for M 𝐽

M 𝐽 =

∫︁
Ω

𝑃𝑓 (𝑥, 𝑣, 𝑓)𝛿𝑓d𝑥+

∫︁
Ω

𝜙𝛿𝑓d𝑥+

∫︁
Ω

(𝑟1 + 𝑟2 + 𝑟5)d𝑥+

+

∫︁
Ω

𝑟3𝜙d𝑥+

∫︁
Ω

(︂ ∫︁
Ω

𝑘𝑟4d𝑦

)︂
𝜙d𝑥 =

∫︁
Ω

[︂
𝑃𝑓 (𝑥, 𝑣, 𝑓) + 𝜙

]︂
𝛿𝑓d𝑥+𝑅,

where

𝑅 =

∫︁
Ω

(𝑟1 + 𝑟2 + 𝑟5)d𝑥+

∫︁
Ω

(︂
𝑟3 +

∫︁
Ω

𝑘𝑟4d𝑦

)︂
𝜙d𝑥.

In assessing the balance of development, one can show that 𝑅 = 𝑜
(︁
‖𝛿𝑓‖𝐿2(Ω)

)︁
.

Due to the fact that 𝑃𝑣 satisfies the Lipschitz condition with respect to the group of
arguments (𝑣, 𝑓) and using Theorem 1, we have⃒⃒⃒⃒
⃒⃒∫︁
Ω

𝑟1d𝑥

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒∫︁
Ω

[︂ 1∫︁
0

(︂
𝑃𝑣(𝑥, ̂︀𝑣, 𝑓𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)

)︂
𝛿𝑣d𝜗

]︂
d𝑥

⃒⃒⃒⃒
⃒⃒ 6

6
∫︁
Ω

1∫︁
0

|𝑃𝑣(𝑥, ̂︀𝑣, 𝑓𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓
𝜀)| |𝛿𝑣|d𝜗d𝑥 6

6
∫︁
Ω

1∫︁
0

𝐿

(︂
‖̂︀𝑣 − 𝑣‖𝑊 1

2 (Ω) + ‖𝑓𝜀 − 𝑓𝜀‖𝐿2(Ω)

)︂
|𝛿𝑣|d𝜗d𝑥 =

=

∫︁
Ω

1∫︁
0

𝐿𝜗 ‖𝛿𝑣‖𝑊 1
2 (Ω) |𝛿𝑣|d𝑥 =

1

2
𝐿 ‖𝛿𝑣‖𝑊 1

2 (Ω)

∫︁
Ω

|𝛿𝑣|d𝑥 6

6
1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 ‖𝛿𝑣‖𝑊 1

2 (Ω) ‖𝛿𝑣‖𝑊 1
2 (Ω) =

1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 ‖𝛿𝑣‖2𝑊 1

2 (Ω) 6

6
1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 𝑐 ‖𝛿𝑣‖2𝐿2(Ω) = 𝑜

(︀
‖𝛿𝑣‖𝐿2(Ω)

)︀
,
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⃒⃒∫︁
Ω

𝑟5d𝑥

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒∫︁
Ω

[︂ 1∫︁
0

(︂
𝑃𝑓 (𝑥, 𝑣, ̂︀𝑓)− 𝑃𝑓 (𝑥, 𝑣, 𝑓)

)︂
𝛿𝑓d𝜗

]︂
d𝑥

⃒⃒⃒⃒
⃒⃒ 6

6
∫︁
Ω

1∫︁
0

⃒⃒⃒
𝑃𝑓 (𝑥, 𝑣, ̂︀𝑓)− 𝑃𝑓 (𝑥, 𝑣, 𝑓)

⃒⃒⃒
|𝛿𝑓 |d𝜗d𝑥 6

6
∫︁
Ω

1∫︁
0

𝐿

(︂
‖𝑣 − 𝑣‖𝑊 1

2 (Ω) +
⃦⃦⃦ ̂︀𝑓 − 𝑓

⃦⃦⃦
𝐿2(Ω)

)︂
|𝛿𝑓 |d𝜗d𝑥 =

=

∫︁
Ω

1∫︁
0

𝐿
⃦⃦⃦ ̂︀𝑓 − 𝑓

⃦⃦⃦
𝐿2(Ω)

|𝛿𝑓 |d𝜗d𝑥 =

∫︁
Ω

1∫︁
0

𝐿𝜗 ‖𝛿𝑓‖𝐿2(Ω) d𝜗d𝑥 =

=
1

2
𝐿 ‖𝛿𝑓‖𝐿2(Ω)

∫︁
Ω

|𝛿𝑓 |d𝑥 6
1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 𝑐 ‖𝛿𝑓‖2𝐿2(Ω) = 𝑜

(︀
‖𝛿𝑓‖𝐿2(Ω)

)︀
,

and⃒⃒⃒⃒
⃒⃒∫︁
Ω

𝑟2d𝑥

⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒∫︁
Ω

(︂
𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓)

)︂
𝛿𝑣d𝑥

⃒⃒⃒⃒
⃒⃒ 6

6
∫︁
Ω

⃒⃒
𝑃𝑣(𝑥, 𝑣, 𝑓

𝜀)− 𝑃𝑣(𝑥, 𝑣, 𝑓)
⃒⃒
|𝛿𝑣|d𝑥 6

6
∫︁
Ω

𝐿

(︂
‖𝑣 − 𝑣‖𝑊 1

2 (Ω) +
⃦⃦
𝑓𝜀 − 𝑓

⃦⃦
𝐿2(Ω)

)︂
|𝛿𝑣|d𝑥 =

=

∫︁
Ω

𝐿
⃦⃦
𝑓𝜀 − 𝑓

⃦⃦
𝐿2(Ω)

|𝛿𝑣| 𝑑𝑥 = 𝐿

∫︁
Ω

‖𝛿𝑓‖𝐿2(Ω) |𝛿𝑣|d𝑥 = 𝐿 ‖𝛿𝑓‖𝐿2(Ω)

∫︁
Ω

|𝛿𝑣|d𝑥 6

6
1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 ‖𝛿𝑓‖𝐿2(Ω) ‖𝛿𝑣‖𝑊 1

2 (Ω) 6
1

2
𝐿(𝑚𝑒𝑠Ω)

1
2 𝑐 ‖𝛿𝑓‖2𝐿2(Ω) .

The other members are evaluated in the same way. For the variation of the functional
M 𝐽 , we have finally

M 𝐽 =

∫︁
Ω

[︂
𝑃𝑓 (𝑥, 𝑣, 𝑓) + 𝜙

]︂
𝛿𝑓d𝑥+ 𝑜

(︀
‖𝛿𝑓‖𝐿2(Ω)

)︀
.

Let’s introduce the following function

𝐻(𝑥, 𝑣(𝑥), 𝑓(𝑥), 𝜙(𝑥))
𝑑𝑒𝑓
= 𝐻(𝑥, 𝑣, 𝑓, 𝜙) = 𝑃 (𝑥, 𝑣, 𝑓) + 𝜙𝑓.

In this case, the formula for the variation will take the following form

M 𝐽 =

∫︁
Ω

𝜕𝐻

𝜕𝑓

(︀
𝑥, 𝑣, 𝑓 , 𝜙

)︀(︀
𝑓𝜀 − 𝑓

)︀
d𝑥+ 𝑜

(︀
‖𝛿𝑓‖𝐿2(Ω)

)︀
.

So we’ve just proved the following theorem

Theorem 2. Suppose that all the conditions of paragraph 1 [1] about functions 𝑀
and 𝑔 are satisfied, as well as the requirements of paragraph 1 about 𝑃 .
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Then the functional 𝐽(𝑓) is differentiable with respect to 𝑓 , and its derivatives at

the point 𝑓 are expressed by the formulae 𝐽𝑓 (𝑓) =
𝜕𝐻

𝜕𝑓

(︀
𝑥, 𝑣, 𝑓 , 𝜙

)︀
.

4. Necessary Conditions of Optimality

Let 𝑓 = 𝑓(𝑥) ∈ 𝑈0, with 𝑓(𝑥) an optimal control. Consider an arbitrary command
𝑓(𝑥), with 𝑓 = 𝑓(𝑥) ∈ 𝑈0.

Let’s find the variation 𝑓𝜀 of the optimal control 𝑓 in the direction of (𝑓 − 𝑓) as
follows:

𝑓𝜀(𝑥) = 𝑓(𝑥) + 𝜀
(︀
𝑓(𝑥)− 𝑓(𝑥)

)︀
𝛿𝑓 = 𝑓𝜀 − 𝑓 = 𝜀

(︀
𝑓 − 𝑓

)︀
,

(33)

In the variations, 𝜀 is always the same and 𝑓𝜀 ∈ 𝑈0. This is satisfied for example,
when 𝜀 ∈ [0, 1], because 𝑈0 is a convex set.

4.1. First Variation of the Functionals

Consider a family of functions 𝐻𝑘, 𝑘 = 0, 𝑠1 + 𝑠2, where

𝐻𝑘(𝑥, 𝑣, 𝑓, 𝜙𝑘) = 𝑃𝑘(𝑥, 𝑣, 𝑓) + 𝜙𝑘𝑓. (34)

The functions 𝜙𝑘 are solutions of the conjugate problems. So

M 𝐽 =

∫︁
Ω

𝜕𝐻𝑘

𝜕𝑓

(︀
𝑥, 𝑣, 𝑓 , 𝜙𝑘

)︀(︀
𝑓𝜀 − 𝑓

)︀
d𝑥+ 𝑜

(︀
‖𝛿𝑓‖𝐿2(Ω)

)︀
, 𝑘 = 0, 𝑠1 + 𝑠2, (35)

the first variation 𝛿𝐽𝑘 of the functional 𝐽𝑘(𝑓) at point 𝑓 is determined as follows:

𝛿𝐽𝑘 = 𝛿𝐽𝑘(𝑓) = lim
𝜀→0

M 𝐽𝑘(𝑓)

𝜀
. (36)

As 𝑓 − 𝑓 = 𝜀(𝑓 − 𝑓) and the norm ‖𝑓 − 𝑓‖𝐿2(Ω) for any fixed 𝑓 , are fixed finite
quantities, then

𝛿𝐽𝑘 = lim
𝜀→0

1

𝜀

⎧⎨⎩
∫︁
Ω

𝜕𝐻𝑘

𝜕𝑓

(︀
𝑥, 𝑣, 𝑓 , 𝜙𝑘

)︀
𝜀(𝑓 − 𝑓)d𝑥+ 𝑜(𝜀)

⎫⎬⎭ =

=

∫︁
Ω

𝜕𝐻𝑘

𝜕𝑓

(︀
𝑥, 𝑣, 𝑓 , 𝜙𝑘

)︀
(𝑓 − 𝑓)d𝑥 (37)

where

𝛿𝐽𝑘 =

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓 − 𝑓)d𝑥, (38)

where
∘

𝜕𝐻𝑘 is the function 𝐻𝑘 with the arguments related to optimal control 𝑓 .

4.2. Establishment of the Necessary Conditions of Optimality

Let 𝛾 be a set of parameters:

𝛾 =
{︀
𝜆(𝑓 − 𝑓), 𝜆 > 0, 𝑓 ∈ 𝑈0

}︀
(39)
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Or simply , 𝛾 =
{︀
𝜆(𝑓 − 𝑓)

}︀
, giving the variation of the optimal control

𝑓𝜀 = 𝑓 + 𝜀𝜆(𝑓 − 𝑓).

Then 𝛾 is the family of variations of the functionals 𝑍𝛾 =
(︀
𝛿𝐽𝛾

0 , 𝛿𝐽
𝛾
1 , . . . , 𝛿𝐽

𝛾
𝑠1+𝑠2

)︀
,

where

𝛿𝐽𝑘 = 𝜆

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓 − 𝑓)d𝑥, 𝑘 = 0, 𝑠1 + 𝑠2. (40)

All kinds of 𝛾, whose form looks like the family of variation of the functional {𝑍𝛾}
𝑛𝑜𝑡
=

𝐾1 ⊂ 𝐸𝑠1+𝑠2+1. Let’s show that 𝐾1 is a cone in 𝐸𝑠1+𝑠2+1 with its apex at the zero
point.

It is clear that 𝑍𝛾 = 0 ∈ 𝐸𝑠1+𝑠2+1 corresponds to the family 𝛾 = {0}, with 𝜆 = 0.
We have implicitly 0 ∈ 𝐾1.

Consider the family 𝛾 =
{︀
𝜆(𝑓 − 𝑓)

}︀
. For that family, there is a vector of variation

of the functionals 𝑍𝛾 =
(︀
𝛿𝐽𝛾

0 , 𝛿𝐽
𝛾
1 , . . . , 𝛿𝐽

𝛾
𝑠1+𝑠2

)︀
∈ 𝐾1.

Consider 𝜆𝑍𝛾 =
(︀
𝑎𝛿𝐽𝛾

0 , 𝑎𝛿𝐽
𝛾
1 , . . . , 𝑎𝛿𝐽

𝛾
𝑠1+𝑠2

)︀
, where

𝑎𝛿𝐽𝛾
𝑘 = 𝑎𝜆

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓 − 𝑓)d𝑥, 𝑎 > 0.

Consider the family 𝑎𝛾 = {𝑎𝜆(𝑓 − 𝑓)} too.
Such a family is admissible, like the corresponding vector of variation of the func-

tionals 𝑍𝑎𝛾 ∈ 𝐾1. Moreover, it is clear that 𝑍𝑎𝛾 = 𝑎𝑍𝛾 , as 𝛿𝐽
𝑎𝛾 = 𝑎𝛿𝐽𝛾

𝑘 , we conclude
that, 𝑎𝑍𝛾 ∈ 𝐾1 and 𝐾1 is a cone.

We now show that the cone 𝐾1 is convex. For this it is sufficient to show that
∀𝑍𝛾1 , 𝑍𝛾2 ∈ 𝐾1 their sum 𝑍𝛾1 + 𝑍𝛾2 ∈ 𝐾1. Consider 𝑍𝛾1 generated by the family

𝛾1 =
{︀
𝜆1(𝑓 − 𝑓)

}︀
, and 𝑍𝛾1 generated by the family 𝛾2 =

{︀
𝜆2(𝑓 − 𝑓)

}︀
. Consider the

set
𝛾1 + 𝛾2 =

{︀
𝜆(𝑓 − 𝑓)

}︀
, or 𝜆 = 𝜆1 + 𝜆2,

𝑓 = 𝜗𝜆𝑓
1 + (1− 𝜗𝜆)𝑓

2, 0 6 𝜗𝜆 =
𝜆1

𝜆1 + 𝜆2
6 1.

As 𝑈0 is convex, the set 𝛾1 + 𝛾2 is admissible. So is the correspondent vector of
variation of the functionals 𝑍𝛾1+𝛾2

∈ 𝐾1.

In expression (40) for 𝛿𝐽𝛾1+𝛾2

𝑘 , 𝑘 = 0, 𝑠1 + 𝑠2, consider the expression

𝜆

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓 − 𝑓)d𝑥 =

(︂
𝜆1 + 𝜆2

)︂ ∫︁
Ω

∘
𝜕𝐻𝑘

𝑑𝑓
(𝜗𝜆𝑓

1 − (1− 𝜗𝜆)𝑓
2 − 𝑓)d𝑥 =

= 𝜆1

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓1 − 𝑓)d𝑥+ 𝜆2

∫︁
Ω

∘
𝜕𝐻𝑘

𝜕𝑓
(𝑓2 − 𝑓)d𝑥.

Thus, 𝛿𝐽𝛾1+𝛾2

𝑘 = 𝛿𝐽𝛾1

𝑘 + 𝛿𝐽+𝛾2

𝑘 , 𝑘 = 0, 𝑠1 + 𝑠2, then 𝑍𝛾1 + 𝑍𝛾2 = 𝑍𝛾1+𝛾2 ∈ 𝐾1 and
the cone 𝐾1 is convex.

Definition 2. The contsraints at the point 𝑓 , part of restrictions 𝐽𝑘(𝑓) 6 0, for
which 𝐽𝑘(𝑓) = 0 are called active. Those for which 𝐽𝑘(𝑓) < 0 are called inactive at
that point.
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To begin, suppose that all the restrictions (16) are active.
Consider the set

𝐾−
1 =

{︀
𝑐 ∈ 𝐸𝑠1+𝑠2+1 : 𝑐 = (𝑐0, 𝑐1, . . . , 𝑐𝑠1 , 0, . . . , 0), 𝑐𝑖 < 0, 𝑖 = 0, 𝑠1

}︀
a negative angle in 𝐸𝑠1+𝑠2+1. It is clear that 𝐾−

1 is a cone in 𝐸𝑠1+𝑠2+1.

Lemma 1. The cone 𝐾1, built for optimal control and the cone 𝐾−
1 are divided

in 𝐸𝑠1+𝑠2+1 by the hyperplane Γ, defined by the nontrivial functional 𝑙*:

𝑙* = (𝑙0, 𝑙1, . . . , 𝑙𝑠1+𝑠2) ∈
(︀
𝐸𝑠1+𝑠2+1

)︀*
= 𝐸𝑠1+𝑠2+1,

𝑠1+𝑠2∑︁
𝑘=0

|𝑙𝑘| > 0, for 𝑙𝑘 > 0, 𝑘 = 0, 𝑠1,

and the rests 𝑙𝑘, 𝑘 = 𝑠1 + 1, 𝑠1 + 𝑠2 may have any sign. The condition of separation
of 𝐾1 and 𝐾−

1 takes the following form

⟨𝑙*, 𝑍𝛾⟩𝐸𝑠1+𝑠2+1 > ⟨𝑙*, 𝑐⟩𝐸𝑠1+𝑠2+1 , ∀𝑍𝛾 ∈ 𝐾1, ∀𝑐 ∈ 𝐾−
1 . (41)

This follows from the known theorem (see [4], p.224 or [5], 3.1).

Theorem 3. Let 𝑋 be a normed space, 𝑈1 a convex set in 𝑋, 𝑢* ∈ 𝑈1 a local
minimum point in the problem

𝐽0(𝑢) → inf,

𝐽𝑖(𝑢) 6 0, 𝑖 = 1, 𝑠1,

𝐽𝑖(𝑢) = 0, 𝑖 = 𝑠1 + 1, 𝑠1 + 𝑠2, 𝑢 ∈ 𝑈1,

where 𝐽𝑖, 𝑖 = 0, 𝑠1 + 𝑠2, 𝑠-differentiable at the point 𝑢* and 𝐽𝑖, 𝑖 = 𝑠1 + 1, 𝑠1 + 𝑠2
continuous in the neighborhood of the point 𝑢*.

Then there are numbers 𝑙0, 𝑙1, 𝑙2, . . . , 𝑙𝑠1+𝑠2 such that

𝑙* = (𝑙0, 𝑙1, 𝑙2, . . . , 𝑙𝑠1+𝑠2) ̸= 0, 𝑙0 > 0, 𝑙1 > 0, . . . , 𝑙𝑠1 > 0,

⟨ℒ𝑢(𝑢*, 𝑙*), 𝑢− 𝑢*⟩ > 0, ∀𝑢 ∈ 𝑈1, 𝑙𝑖𝐽𝑖(𝑢
*) = 0, 𝑖 = 1, 𝑠1 + 𝑠2

here ℒ𝑢(𝑢*, 𝑙*) = 𝑙0𝐽
′
0(𝑢

*)+𝑙1𝐽 ′
1(𝑢

*)+. . .+𝑙𝑠1+𝑠2𝐽
′
𝑠1+𝑠2(𝑢

*) the gradient of the function
ℒ(𝑢, 𝑙*) with variable 𝑢 ∈ 𝑈1 at the point 𝑢 = 𝑢*.

Then, using inequality (41) in which 𝑐→ 0, we obtain

⟨𝑙*, 𝑍𝛾⟩𝐸𝑠1+𝑠2+1 > 0, ∀𝑍𝛾 ∈ 𝐾1, (42)

That is, for any family 𝛾 like in (39).
Inequality (3) is well demonstrated, assuming that all restrictions (16) are actives.
Now consider the general case.

Let 𝐼 = {𝑘 : 1 6 𝑘 6 𝑠1, 𝐽𝑘(𝑓) = 0} be the set of all constraints at the point
𝑓 among all the restrictions like (16). The other constraints in the formula (16) are
inactive at the point 𝑓 , that is 𝐽𝑘(𝑓) < 0, 1 6 𝑘 6 𝑠1, but 𝑘 ̸∈ 𝐼. So thanks to
the continuity of the functional 𝐽𝑘 with respect to the control 𝑓 for small disrupted
controls, non-active constraints are not affected. Therefore, we can not take account
of them. In this case we will examine variations of functionals only for the active
constraints and their vectorial variations

𝑍𝛾 =
{︀
𝛿𝐽𝛾

0 , {𝛿𝐽
𝛾
𝑘 }𝑘∈𝐼 , 𝛿𝐽

𝛾
𝑠1+𝑠2 , . . . , 𝛿𝐽

𝛾
𝑠1+𝑠2

}︀
.
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Let’s build the cone 𝐾1 = {𝑍𝛾} ⊂ 𝐸𝑑𝑖𝑚𝐼+𝑠1+1. The corresponding cone is

𝐾−
1 =

{︀
𝑐 ∈ 𝐸𝑑𝑖𝑚𝐼+𝑠1+1 : 𝑐 = (𝑐0, {𝑐𝑘}𝑘∈𝐼 , 0, . . . , 0), 𝑐𝑘 < 0

}︀
,

and by taking the above steps till (42), we obtain

𝑙0𝛿𝐽
𝛾
0 +

∑︁
𝑘∈𝐼

𝑙𝑘𝛿𝐽
𝛾
𝑘 +

𝑠1+𝑠2∑︁
𝑘=𝑠1+1

𝑙𝑘𝛿𝐽
𝛾
𝑘 > 0, ∀𝑍𝛾 ∈ 𝐾1. (43)

Let 𝑙𝑘 = 0 for all 𝑘 : 1 6 𝑘 6 𝑠1, 𝑘 ̸∈ 𝐼. Then (43) takes the form of (42).
Thus, for all inactive contraints 𝐽𝑘(𝑓) < 0 corresponding to 𝑙𝑘 = 0, and for the

active contraints 𝐽𝑘(𝑓) = 0,

𝑙𝑘𝐽𝑘(𝑓) = 0, 𝑘 = 1, 𝑠1 + 𝑠2 (44)

so the condition (42) is verified too. From this we deduce the necessary conditions of
optimality of the control.

Let’s introduce the following function: Ψ = Ψ(𝑥) =
∑︁𝑠1+𝑠2

𝑘=0
𝑙𝑘𝜙𝑘(𝑥), where 𝜙𝑘(𝑥)

is the solution of the conjugate problem (32). Multiplying (32) by 𝑙𝑘 and making a
summation for all 𝑘 = 0, 𝑠1 + 𝑠2, then the function Ψ(𝑥) will be a solution of the
problem:

𝜈 M Ψ(𝑥)−𝑁 ′(𝑥, 𝑣(𝑥))Ψ(𝑥) +𝐺′(𝑦, 𝑣(𝑦))𝐾*Ψ = −
𝑠1+𝑠2∑︁
𝑘=0

𝑙𝑘𝑃𝑘𝑣. (45)

Let’s introduce the functions

ℋ(𝑥, 𝑣, 𝑓,Ψ) =
𝑠1+𝑠2∑︁
𝑘=0

𝑙𝑘𝐻𝑘(𝑥, 𝑣(𝑥), 𝑓(𝑥),Ψ(𝑥)). (46)

Using the formula (32) for 𝐻𝑘 and taking into account the introduced function 𝜓(𝑥),
we can write formula (44) in expanded form:

ℋ(𝑥, 𝑣, 𝑓,Ψ) ≡ ℋ(𝑥, 𝑣(𝑥), 𝑓(𝑥),Ψ(𝑥)) =
𝑠1+𝑠2∑︁
𝑘=0

𝑙𝑘𝑃𝑘(𝑥, 𝑣(𝑥), 𝑓(𝑥)) + Ψ(𝑥)𝑓(𝑥). (47)

Let’s consider the family 𝛾 = {𝑓 − 𝑓} for all 𝑓 ∈ 𝐿2(Ω). To this family we associate
the variation vector of the functional

𝑍𝛾 =
(︀
𝛿𝐽𝛾

0 , 𝛿𝐽
𝛾
1 , . . . , 𝛿𝐽

𝛾
𝑠1+𝑠2

)︀
∈ 𝐾1,

and inequality (43) persists:
𝑠1+𝑠2∑︁
𝑘=0

𝑙𝑘𝛿𝐽
𝛾
𝑘 > 0.

Replacing 𝛿𝐽𝛾
𝑘 by their respective expressions from (40) using formulas (47), we

obtain ∫︁
Ω

𝜕ℋ
𝜕𝑓

(𝑥, 𝑣(𝑥), 𝑓(𝑥),Ψ(𝑥))(𝑓 − 𝑓)d𝑥 > 0, ∀𝑓 ∈ 𝑈0. (48)

So we have just proved the following theorem:

Theorem 4 (The principle of linearized minimum). Suppose that all of the
conditions of theorems 1 and 2 are satisfied. Then, for the optimal control 𝑓(𝑥) ∈ 𝑈0
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it is necessary that there exists a nontrivial vector

𝑙* =
(︀
𝑙0, 𝑙1, . . . , 𝑙𝑠1+𝑠2

)︀
,

𝑠1+𝑠2∑︁
𝑘=0

|𝑙𝑘| > 0,

where 𝑙𝑘 > 0 for 𝑘 = 0, 𝑠1 and the conditions (48) as well as the conditions

𝑙𝑘𝐽𝑘(𝑓) = 0 𝑘 = 1, 𝑠1 + 𝑠2 (conditions (45)),

are satisfied; where function 𝑣(𝑥) is the solution of the problem (1)–(3), Ψ(𝑥) is the
solution of the conjugate problem (46) associated to 𝑓(𝑥) and the function ℋ is defined
in (47).
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