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1. Introduction

The focus of our research on such problems lies in the fact that for nonlinear
systems of the type of Navier—Stokes in a three-dimensional space, we can not find a
class of spaces where we could uniquely solve the problem at the border. This class
is found by the linearization of systems of Navier—Stokes. However linearized systems
often do not describe accurately the movement of liquid (or fluid). An intermediate
case of investigation was proposed in [1], i.e., to the linearized system, nonlinear terms
are added, which may allow us to more accurately describe the movement of liquid
(or fluid) and at the same time allow the resolution in a unique way of the nonlinear
problem relative to the boundaries, obtained by disrupting our initial system.

Using the Hadamard theorem for infinitely small Lipschitz constant, satisfying the
conditions of these disturbances, the obtained disrupted problem at the borders has a
unique solution v = A(f, @) where « is the value of the velocity v at the border (with
a = 0 for the studied problem), f is the second member of the perturbed obtained
system, and A satisfies the Lipschitz conditions with respect to f, in the corresponding
functional spaces.

For some smooth conditions on the Nemytsky—Hammerchtéin operator and using
the theorem of Hadamard about strong derivation of inverse functions, the operator
A(f) is strongly differentiable in the sense of the corresponding f. This derivation is
weaker than the Fréchet derivation. But it is quite sufficient to establish the necessary
conditions of optimality of problems relative to those equations.

2. Statement of the Problem of Optimal Control

The physical processes that find their applications in technique, are generally con-
trolled. It means that they can be achieved in many ways at the mercy of man.
Therefore, we must find the best control according to particular criteria, in other
words, the optimal control of the process.

The flow of an incompressible viscous fluid in a not empty and bounded domain
Q, is characterized by its velocity v = v(x) and pressure p = p(x).
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Consider the associated system after disruption

v o (@) + Mz, o(@) + [ b p)gy,vw)dy = VP@) + f@), (1)
Q

divo(z) =0, (2)

vlog (£) =0, z€QCR3 (3)

and functional with the following form

Te(f) = /Pk(x,v(a:)),f(x))dx, k=01 . 5 Fss, (4)
Q

where Py, are Caratheodoric functions, that is they are measurable with regard to the
triplet (x,v, f) and continue with regard to the couple (v, f) almost everywhere for
all the elements z of ; v is the kinematic coefficient of viscosity (or of tenacity) and
it is considered to be constant. 92 = § is the border of the domain 2. In addition to

that we have ) )
|Py(,v, )| < Qr(x) + Ck (Jv]* + | f1?),
IV (o, ) Pr(,0, )] < Di(2) + C ([o? + [ f]?)
with Py, k =0,1,...,s1 + s2, derivable with respect to the pair (v, f), Qr(z) € L1(Q),

Dy(z) € Ly(R2), Cy, and ék are constants. More, Py, Py, and Py verify the Lipschiz
condition from the pair (v, f); s1 and s2 are non negative integers.

According to [1] the following functions:

M: OxR*xR? — R3
(x,¢,m) = M(x,(,n),

g: OxR*xR? — R3
(z,¢,m) = g(x, (),

E: OQxQ — RY
(z,y) = k(z,y).

are measurable and satisfying the following conditions:

1M (z, ¢, )l < colllCl + [Inll) + di(x) ()
l9(z, ¢;mI < er(liCl + [lnll) + dz(x) (6)

where d;(z) € L2(2), i =1,2.
Moreover M and g are continuously differentiable with respect to the correspondent
(¢,n) almost at each fixed point z € Q | and

MY+ My S ca,  VCER®, W eR (7)
g¢tl + 19y <3, V¢ ER? ¥peR? 8)

at almost every x € {2, where ¢; is a constant for ¢ = 0,1, 2, 3.

The function K defines a continuous integral operator La(€2) — Lo(£2), with the
following form:

(Ko@) = [ K p)ew)dy. ©)
Q
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In the same way, the following operators have been defined in [1]:
N: WHQ) — La2(Q) (10)
o= [N@)|(z) = N(),
and
G: Wi(Q) — L(Q) (11)
v [GW)(x) = G(V),
by the formulae:
[N(v)](z) = M(z,v(z), Vu(z)) (12)
[G()](z) = g(z,v(x), Vo(z)) (13)
and the operators:
N' (W) : Wi Q) — L(Q)
hz) = [N'(D)](z) = N'(I)h,
and
G WHQ) — Ly(Q)
hz) = [G(D)h](z) =G (I)h,
depending on the parameter ¥ € W4 (Q) by the formulas:
5 Oh(x)
V(@) = M(z, 9(2), Vo) h(x) + 3 M), 2 (14)
i=1 ‘
and
2., Oh(z)
[G'(9)]h(x) = gth(x) + Y gn, prt (15)
i=1

where M, , g;, g, have for argument (z,9(z), Vi(x)) (the notations N'(}) and G'(9)

are in [2]).
Let

U= {19 ceWr(Q): 3f e <JO§>I, Jla € B, M,(9) = (f,ﬂ)},

[0l = ||f||(Jo1)/ +llalls.

Assuming that [M1(9)](z) = vAY — VP,

[My(0)](x) = M (2,9(x), VI(z)) + /k(%y)g(y,ﬁ(y),Vﬁ(y))dy-
Q

It has been prooved in [1] that the operator

My Ull) — () xB
9 o M) = (1,9)



22 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 2, 2012. Pp. 19-32

[¢]
is an isomorphism. Where J3 is the Hilbert space of vector functions, obtained by

completing J(Q2) according to the standard corresponding scalar product:

(u,9) = / (ud + gy )de,
Q

:] () is the set of infinitely differentiable vector functions and B has been defined by
a€ B={ac Ly(S)/Tac Wy (Q),diva =0, als = a}

with ||« = Inf{||a||W21(Q) ca € Wi (Q), diva =0, a|s = a}.
In [1], it was shown that by choosing w = maz(cz, c3) with the operators M and

g, satisfying the conditions (5) — (8) and if there is a number wy > 0 such that for any
w, we have 0 < w < wg then the problem

M) = vAd(z) + M(z,9(x), VI(x)) + /k'(w, v)9(y, I(y)VI(y))dy = Vp(z) + f(z),

divd(z) =0,
s (z) = a(z)

has a unique solution ¥ = A(f,«) for all f € J3 and o € B and more:

1) A:J} x B— W3(Q) is s— continuous and s— differentiable on Ji x B;

2) the operator A is strongly differentiable on J! x B as a mapping on the space
(W3(),0), where o is a weak topology in W3 (£2).

We also obtained in [1], that when the solution ¥ = A(f,«) is s— continuous

and s— differentiable as a mapping from J} x B to U, then A is s—continuous and
s— differentiable as a mapping from Lo(Q) x B in W (). This is deduced from the

continuity of A from U in W} (Q) and Ly(€2) in (J%)/, this is (H () C Ly() C (le)/)
To obtain the result above stated, we had to show that the operators N and G are
s—continuous and s—differentiable on W3 (Q2) and G’ = K *G. Similary, it was shown
that, since K is a continuous linear map and that the operators G and N satisfy the
Lipschitz condition, then K o G also satisfies the Lipschitz condition.
Therefore, what conditions the command applied to the system (for disruption)

should be submitted to, so that the associated solution to the command coud be
unique?

The problem is to choose a command f from Uy, where Uy is a convex set in Lo (),

such that for the solution () of the system (1)-(3), depending of that command f,
constraints persist, which are given in the form of inequalities

Jk(f) <0, k= 1,81, (16)
given in the form of equalities
Jk(f) =0, k=s1+1,81 4+ 30, (17)

and that in addition to this, the functional Jy(f) takes the smallest possible value

Io(T) = it Jo(1). (18)
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Such control is called optimal.

Definition 1. The function v = A(f) is called generalized solution of system (1)—

3) in W3 (Q) , if it satisfies the integral identity I = 0, Vo = ¢(x) € J3(Q), where
2 p=¢ 2

I= v [puis [ |Ma,0te) + et - @) ployaz =o0. (19

Q Q

Suppose that ¢ is sufficiently smooth. Then

5. [ v, 0p; v;0? <p 3 0p;
_V/Z<3$j3$j> /Z dx—V/UZaxjnjdx:
q J=1 sq J=1
5. 92 3. 9p A
:V/ZUZaxQ /Uiz&zjd8:<y<A%_6n5s>’vi>’
Jj=1 J 90 J=1

3
> (v & i, v;) = (v A p,v) by condition (3).
=1

Thus we obtain

I'=(v oo+ (N'()+KG'(v)p,v) = (p f) =0. (20)

Theorem 1. Suppose that under the conditions of (4) (see [1]) v is a solution of
system (1)—(3), corresponding to the control f(x) € Uy, where

F@) =) +=(f0) - Fl@) ), <<
and v¢(x) is a solution relative to the control f¢(z) € Uy. Then
[0°(@) = 5@y @ < C £ @) = F@) 0 (21)

Proof. Remark that dv(z) = v¢(x) — v(x) satisfy the integral identity:
V/apx&}x - /cp[]\/[e - M + /k(ge g)dy} dz + /¢5fdx =0, VpcJi(Q). (22)
Q Q ) Q

So, using condition (16) (see [1]) and the restriction (21) (see [1], for & = 0), we obtain
inequality (21). O

3. Derivation of the Functional

Consider the functional

/P (z,v( (z))dex, (23)

Let’s prove that J is differentiable in Lo (€2).
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3.1. Formula for the Gradient of the Function

Consider the problem (1)-(3) with a disrupted control f¢ € Ly(€2), which is linked
to the solution v (z) of the problem and the value of the functional J(f¢).

Denote the variations by: év = v® —v,6f = f — f. We have

AJ=AJf)=J(f)-J(f) = / [P(a:,ve, fe) — P(x,v, f)|dx

Q

P(z,0%, ) = P(,0, ) = P(2,v%, f*) = P(2,7,f%) + P(2,7, f°) = P(2,7, f) =

1
_ /Pv(ac,@ + 960, £9)60dd + P(x,7, f°) — P(z,7, F) =
0

= P(x,v, f¢) — P(x,v, f) + P,(z,, f)év + [ P,(z,v, f¢) — Py(x,7, f)} ovdd =

= P(z,v, f°) — P(z,7, ) + Py(2,7, f)ov +

O\H—‘ O\»—A

+ [Pv(x,v, %) — Py(x,, f)} ov.
Then

AJ:/{P(x,v,fE)— }dx—&—/P 5vdm+/7’1+7’2d

Q

where

1
. / [Pv(:c,ﬁ, ) = Py(x,m, fﬁ)] Svdd, T =T+ 9o,
0 (24)

ro = [Pv(a:,v, %) — Py(x,, f)} ov.

As the functions v and v satisfy respectively the integral identities (in this case we
use relation (20)), so their difference dv = v® — T also will satisfy the identity (20).
Taking into account this fact, we have:

AJ = [P(x,v, o) — }dx + [ Py(z, 7, f)dvdz+
/ [re

+(1/A<p+g0<M5—M+/k(ge—g)dy>,5v>—<<p,5f>+/(7“1+r2)dx. (25)
) )

In the last expression, taking into account the conditions on M and g, also taking into
account formulas (25) and (26) (see [1]), we rewrite the following:

[ ( >dx_/@< z)) — M(z,(x )))dm:

Q
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/ [/M xv+ﬁ5v)5vdﬁ}dx—/¢M (z,7(2))dv(z dx+/(p Jrada =

Q

:/ x)dv(x dx+/<,0 Jradx, (26)
Q

where

= /1[ (z,9(x)) — My,(x, v(:c))] dv(z)dd, v =71+ P, (27)
0

and

Q/‘P[Q/k(g8 _ g)dy} dx = /go(x) [Q/k(x,y) (g(y,vg(y)) _ g(y,v(y))>dy} e —

= /<p [/k’ {/ y,v+196v)5vd19] dy}
Q
— [ot)| [ Ko otsenas] as+ [ ot K]

Q Q Q Q

/w(w [/k z,y)g0(y, v(y ))5v(y)dy] dz = / Uso(w)k(w Y)gu(y, 0(y))ov(y )dy} da =

= [ | [ etaimta e . ootstan = [ [ [ k(o 2. 2. 5(@)ay] u(a)a
Q Q Q

- / G @) K* o7 (2)5v(x)dz,
Q

where (K*o1)(z) = / k(y, )T (r)dz. In what follows, as a matter of convenience,
Q

we will simply write ¢ but not ¢?. Thus,

[ot)| Kt ~a|ar = (6@ ppudos [ | [reirdy] ot
Q Q Q Q "Q

where .
1= [ 0.0 - (0.9 pvav. (29)
0
P(z,9, f*) = P(x,9, f) = P(2,7, f)0 f + 15, (29)
where .
T5 = / [Pf(;c,v, A) — Py(z,7, f)} dfdY, with f: f4+095f. (30)
0

Taking into account formulas (26), (27), (29) and (25) we obtain
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AT = /Pf 5fdx+/P (2,7, F)ovda+

+<1/Ag0+N (2,0)p + G™* (V)K" @, 6v) — (p,0f)+

+ /(rl + 7o+ 1r5)dr + /rggpdx + / (/kmdy) edz.  (31)
Q Q Q Q

Remark 1. The transformations in the formula (31) are true only for the func-
tions ¢, sufficiently “smooth” and are issued only by the evidence of obtaining the
conjugate form of the problem. For the following transformations, consider the fol-
lowing conjugate problem:

vA @+ N (v()p+ G (v(y)K o =—P,. (32)

From the existence (see Theorem 2 (see [3, p. 54] and Theorem of Hadamard) of
the solution of the conjugate problem (32), we finally have the expression for A J

AJ= /Pf 6fdm+/<p6fd:c+/r1+r2+r5)dx+
—|—/r3<pdx+/</kr4dy> pdx —/[Pf(x,v,f)+cp] dfdx + R,
Q Q Q Q
where

R= /(rl +ro+1r5)de + / (r3 + /kmdy) edr.
Q Q Q

In assessing the balance of development, one can show that R = o <||5f\|L2(Q)) .

Due to the fact that P, satisfies the Lipschitz condition with respect to the group of
arguments (v, f) and using Theorem 1, we have

/rldm _ Q/L/(P (2,5, f°) — Po(2,, ° )>5vdz9}d:c <

Q

//|P (2,0, fF) — Py(z, o, f7)| |ov| dddx <
1
J (1= Tz + 15 = Pl ) el a0 =
0

/
1
1
= [ [ 10160l 30 150l do = 5L 0]y [ 1601z <
Q0 Q

1 1 1 1 2
< 5 L(mesQ)2 (|60l (q) 10vllw; @) = 5 L(mesQ)? [|6v]ly1 o) <

1
<=

1
QL(mGSQ) ’c ||5’U”2Lz(sz) = o 1601l 1,0 ),
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Q/”’d"” = /[/(Pf(x»vaf)_Pf(iﬂ,v,f)>5fd19]dx <

Q "0

1
< [ [|Ps@.5.0) = Prte.5. | 31 dvdo <
Q0
1
< vV— 1 A_i =
< [ [e( o=y + [7-7],,, ) 1871000z
Q0
1 1
_ /LHf—ﬂ |5f|d19dac=//Lﬁ||5f|\L2(Q)d19dx:
Q0

1 1
L1y [ 1671de < 5LGmes®Fe 56170y = (16 1))
Q

L2($2)

and

/rgdac = /(Pv(x,v, o) —Pv(a:,v,f)>5vdx <
) o)

< /|Pv(x,@, f9) = Py(z,v, f)| |0v] dz <
Q

< [ 217~ gy + 157 = Tl oy ) 12 =
Q
= LU~ Tll gy 1901 do = L [ 15710y 901 d = L1611, 0 [ 1501 d <
Q Q Q

1 1 1 1
< 5 L(mesQ)2 (|6l L, q) 190l @) < §L(m639)20||5f\|32(9)-

The other members are evaluated in the same way. For the variation of the functional
A J, we have finally

8.7 = [|Prtem P+ ofosaz + 01610
Q

Let’s introduce the following function

def
H(z,v(z), f(z), p(x)) = H(z,v, f,¢) = P(z,v,f) + of.
In this case, the formula for the variation will take the following form

27 =[S ww F0) (57~ P+ (165 o))
Q

So we’ve just proved the following theorem

Theorem 2. Suppose that all the conditions of paragraph 1 [1] about functions M
and g are satisfied, as well as the requirements of paragraph 1 about P.
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Then the functional J(f) is differentiable with respect to f, and its derivatives at
_ _ H -
the point f are expressed by the formulae J¢(f) = %f (m,@, fs gp) .

4. Necessary Conditions of Optimality

Let f = f(z) € Uy, with f(z) an optimal control. Consider an arbitrary command
f(x), with f = f(x) € Up.
Let’s find the variation f¢ of the optimal control f in the direction of (f — f) as
follows: _ _
fo(@) = fla) +e(f(z) — f2))
of =f—Ff=e(f-1),

In the variations, ¢ is always the same and f¢ € U,. This is satisfied for example,
when ¢ € [0, 1], because Uy is a convex set.

(33)

4.1. First Variation of the Functionals

Consider a family of functions Hy, k = 0, s7 + s3, where

Hk;(l',’U,f,SOk):Pk(m,'l),f)‘f'@kf. (34)

The functions ¢y, are solutions of the conjugate problems. So

O0Hy,

6 d= [ 5@ fee)(f° = fde+o(19flly0)); k=085 +s2  (35)
Q

the first variation §.J;, of the functional Ji(f) at point f is determined as follows:

551 = 653(F) = tim 22D,

(36)
As f — f = e(f — f) and the norm | f — f| 1, for any fixed f, are fixed finite
quantities, then

1 OH _ 3

0 :gl—I)r(l)g of (x7vaf7%0k)5(f—?)dx—l—o(5) =
Q

— [GF@u ) - Fde (37)

where

(f = fdz, (38)

o —
where 0Hj, is the function Hy, with the arguments related to optimal control f.

4.2. Establishment of the Necessary Conditions of Optimality

Let v be a set of parameters:

y={Mf =T A20, €U} (39)



Bailly Balé, Yoro Gozo, Assui Kouassi Richard Necessary Optimality Condi. . . 29

Or simply , v = {A(f — f)}, giving the variation of the optimal control

fE=f+exf-f).

Then v is the family of variations of the functionals Z, = (8.J7, 6J7, ..., 6J] ,.),
where

5Jk_)\/a;jf (f = F)de, k=0,51F 5. (40)

All kinds of v, whose form looks like the family of variation of the functional {Z,} et

K, c Esits2tl Let’s show that K, is a cone in E*1T%2%! with its apex at the zero
point.

It is clear that Z, = 0 € E***52*! corresponds to the family v = {0}, with A\ = 0.
We have implicitly 0 € K.

Consider the family v = {/\( f— ?)} For that family, there is a vector of variation

of the functionals Z,, = (8.J7, 6.J7, ..., 6J] ,,,) € K.
Consider \Z,, = (adJy, adJ7, ..., a5ng+82), where
H
aéJ'y—a)\/G E(f—F)de, a> 0.

Consider the family ay = {aA(f — f)} too.

Such a family is admissible, like the corresponding vector of variation of the func-
tionals Z,, € K;. Moreover, it is clear that Z,, = aZ,, as 6J% = aé,],z , we conclude
that, aZ, € Ky and K, is a cone.

We now show that the cone K is convex. For this it is sufficient to show that
V2., Zy, € Ki their sum Z, + Z,, € K;. Consider Z,, generated by the family

1 = {\i(f = f)}, and Z,, generated by the family 72 = {X2(f — f)}. Consider the

set _
T+ ={Af =)}, or A=A+ Ay,

_ 1 B 2 A
f=o\f+Q1 ﬁx)f,oéﬁA—MJr)\Qé

As Uy is convex, the set ;3 + 72 is admissible. So is the correspondent vector of
variation of the functionals Z,, 1., € K.

In expression (40) for 6.J;* 772, k = 0,51 + sq, consider the expression

% iy fdw—@“?) O 31— (1= )57 e =
Q
OH,,

aHk —
Tf(fQ — f)dz.

(f1 fdz + Ao

Thus, §J* 772 = 6J) +0J77, k =0,s1 + s2, then Z,, + Z,, = Z, 4+, € K1 and
the cone K; is convex.

Definition 2. The contsraints at the point f, part of restrictions Jy(f) < 0, for

which Ji.(f) = 0 are called active. Those for which Ji(f) < 0 are called inactive at
that point.
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To begin, suppose that all the restrictions (16) are active.
Consider the set

K| = {c € Esrts2tl s o= (¢o,cq, .00y €6,,0, ..., 0), ¢ <0, 0= 0,51}
a negative angle in E¥175271 Tt is clear that K| is a cone in 5175211,
Lemma 1. The cone K1, built for optimal control and the cone K{ are divided

in E51452FL by the hyperplane T, defined by the nontrivial functional I*:

S1+s2
U= (lo,lh, oy Loysy) € (BT = puitsetl N1 >0, forl, >0, k=051,
k=0

and the rests ly, k= s1+ 1,51 + so may have any sign. The condition of separation
of K1 and K{ takes the following form

<l*, Z’Y>E31+S2+1 > <l*, C>E51+32+1, VZ’Y € Kla VC € Kl_ (41)
This follows from the known theorem (see [4], p.224 or [5], 3.1).

Theorem 3. Let X be a normed space, Uy a convex set in X, u* € Uy a local
minimum point in the problem

Jo(u) — inf,
Jl(u) SO, izl,Sl,
Ji(u) =0, i=s1+1,81+s2, uecl,

where J;, i = 0,81 + s2, s-differentiable at the point u* and J;, 1 = s1+ 1,81 + $2
continuous in the neighborhood of the point u*.
Then there are numbers ly,l1,la, ..., ls,+s, Such that

U= (loyl1, 0oy ooy lsytsy) 70, 19020, 11 20,...,1s, >0,
(Lu(u*,I"),u —u*) >0, VuelUy, LJ;(u)=0, i=15 +s2

here Lu(u*, 1*) = loJo(u*)+11 J1 (u*)+. . . AHlg 45,0 4o, (u*) the gradient of the function
L(u, I*) with variable v € Uy at the point u = u*.

Then, using inequality (41) in which ¢ — 0, we obtain
<l*, Z’Y>E51+52+1 > 0, VZ’Y € Kl, (42)

That is, for any family ~ like in (39).
Inequality (3) is well demonstrated, assuming that all restrictions (16) are actives.
Now consider the general case.

Let I = {k :1 < k < s1,J5(f) = 0} be the set of all constraints at the point
f among all the restrictions like (16). The other constraints in the formula (16) are
inactive at the point f, that is Ji(f) < 0, 1 < k < s1, but & ¢ I. So thanks to
the continuity of the functional J; with respect to the control f for small disrupted
controls, non-active constraints are not affected. Therefore, we can not take account
of them. In this case we will examine variations of functionals only for the active
constraints and their vectorial variations

Zy = {06J9, {0 ker, 6J) Loy 000 1o}
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Let’s build the cone K; = {Z,} C E¥mI*Ts1+1 The corresponding cone is
Kl_ — {C c Edim[+51+1 L c= (CO, {Ck}ke],o, ey 0), cr < O} s

and by taking the above steps till (42), we obtain

S1+82
106J) + > L)+ D WdJ] =0, VZ, € K. (43)
kel k=s1+1

Let I, =0 for all k: 1 <k < s1, k ¢ 1. Then (43) takes the form of (42).
Thus, for all inactive contraints Ji(f) < 0 corresponding to [, = 0, and for the
active contraints Ji(f) =0,

edi(f) =0, k=1,51 + 52 (44)
so the condition (42) is verified too. From this we deduce the necessary conditions of
optimality of the control.

Let’s introduce the following function: ¥ = ¥(z) = Zﬁjw lkor(z), where @ (x)

is the solution of the conjugate problem (32). Multiplying (32) by I, and making a

summation for all k& = 0,s; + s2, then the function ¥(x) will be a solution of the
problem:

s1+82
v A \I/(x) - N’(x,@(x))\lf(m) + G/(y7 ( K*‘Il = Z lkpkv (45)
Let’s introduce the functions
s1+82
H(z,v, £, 0) = Y LHy(z,v(z), f(z), ¥(z)). (46)
k=0

Using the formula (32) for Hj, and taking into account the introduced function (),
we can write formula (44) in expanded form:

s1+s2

H(z,v, [, V) = H(z,o(x), f(2),¥(2)) = > WPi(x,v(z), f(z)) + U(z)f(z). (47)

k=0

Let’s consider the family v = {f — f} for all f € Ly(£2). To this family we associate
the variation vector of the functional

= (67, 68J7, ..., 0J]

s1+82

)eKla

s1+s2
and inequality (43) persists: Z l6J] >0
k=0
Replacing §.J; by their respective expressions from (40) using formulas (47), we
obtain

| 5 @ 5@). F@), w(@)(f ~ Pidw >0, Vf € Vi ()
Q

So we have just proved the following theorem:

Theorem 4 (The principle of linearized minimum). Suppose that all of the
conditions of theorems 1 and 2 are satisfied. Then, for the optimal control f(z) € Uy
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1t 1s necessary that there exists a nontrivial vector

s1+582

"= (l07l17 R ls1+52)7 Z |lk| > 07
k=0

where I, > 0 for k =0,s1 and the conditions (48) as well as the conditions

leJi(f) =0 k=1,s1+s2 (conditions (45)),

are satisfied; where function v(xz) is the solution of the problem (1)—(3), ¥(x) is the

solution of the conjugate problem (46) associated to f(x) and the function H is defined
in (47).
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VIIK 517.917
Heobxoanmpble yci0BUsi ONITUMAJIBHOCTH JIJI CTAIlMOHAPHOMN
HeJIMHEMNHON BO3MYMIEHHON 3a/la4M TMJIPOJUHAMUKN B
OrpaHMYEHHOI 00JIacTu

Bane Baitnau*, I'o3o I/UIOpoT, Pumap Accioit Kyaccu?

¥ Qakyavmem mMamemamury u UHGopmMamury
Vwhusepcumem Koxodu Abuodocan
Kom JI’Ueyap, 22 BP 582 Ab6udscan 22

T Kagedpa mamemamuru v urgopmamury
Vrhusepcumem Ab6ob6o — Adotcams Abudocan
Kom /[’Hsyap, 02 Bp 801 Abudscan 02 UFR — SFA

i Kagedpa mamemamuru u ungopmamury
Hoarumezxnuveckuti uncmumym um. Peaukca Ypyem Byaenu HAmyccyrpo
Kom 0’Hsyap, a/s 1083, Amyccyrpo

Ilenms paboOTBI COCTOUT B TOM, UTOOBI YCTAHOBUTH ONTHUMAJIbLHBIE HEOOXOMMMBIE YCIOBUS,
KOTOpbIe MOTYT ITO3BOJINTH HAM PEIIUTH 3a7[a4y OTHOCUTEJHHO I'DAHUIl JAHHOU objactu. B
npeJijiaraeMoil cTaTbe UCCJIedyeTCd YaCTHBIN ciIydail, a UMeHHO, B JIMHEAPU30BAHHYIO CUCTEMY
J06aBJIEHBI HEJIMHEWHBIE WJIeHBI, TIO3BOJISIONINE 00Iee TOYHO OMUCATH JBUXKEHUE YKUKOCTH,
U BMeCTe C TeM JIOITYCKAIOIIHe O/THO3HAUYHYIO Pa3pelInMOCThb IOy YeHHON HeJIMHEHON BO3MYy-
MMEHHON KpaeBOU 3aJIa4H.

Kuro4deBbie cjioBa: HEOOXOIMMBIE YCJIOBUS ONITUMAJIBHOCTH, KOMaH/1a, ONITUMAJIbHAsT KO-
MaH/Ia, YHUKAJIbHOCTDb, BO3MYIIIEHNUE, JINHEAPU3AlUs, HEJTUHEHHOCTD.





