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A particular case of discrete spacetime on a microscopic level is considered. The model
is a directed acyclic dyadic graph (an x-graph). The dyadic graph means that each ver-
tex possesses no more than two incident incoming edges and two incident outgoing edges.
The sequential growth dynamics of this model is considered. This dynamics is a stochas-
tic sequential addition of new vertices one by one. The probabilities of different variants of
addition of a new vertex depend on the structure of existed x-graph. It is proved that the
algorithm to calculate probabilities of this dynamics is a unique solution that satisfies some
principles of causality, symmetry and normalization. The algorithm of sequential growth can
be represented as following tree steps. The first step is the choice of the addition of the new
vertex to the future or to the past. By definition, the probability of this choice is 1/2 for
both outcomes. The second step is the equiprobable choice of one vertex number V. Then
the probability is 1/N, where N is a cardinality of the set of vertices of the x-graph. If we
choose the direction to the future, the third step is a random choice of two directed paths
from the vertex number V. A new vertex is added to the ends of these paths. If we choose
the direction to the past, we must randomly choose the two inversely directed paths from the
vertex number V. The iterative procedure to calculate probabilities is considered.
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1. Introduction

By assumption spacetime is discrete on a microscopic level. In this paper I continue
the previous investigation [1] of a particular model of such discrete pregeometry. This
is a directed acyclic dyadic graph. The dyadic graph means that each vertex possesses
no more then two incident incoming edges and two incident outgoing edges. The vertex
with 4 incident edges forms an x-structure. Then such graphs are called x-graphs.

The goal of this model is to describe particles as some repetitive symmetrical self-
organized structures of an x-graph. This self-organization must be the consequence of
dynamics. In this paper, I introduce an example of dynamics.

Some vertices of a finite x-graph have less than four incident edges. These vertices
have free valences instead the absent edges. These free valences are called external
edges as external lines in Feynman diagrams. They are figured as edges that are
incident to only one vertex. There are two types of external edges: incoming external
edges and outgoing external edges. The number of incoming external edges is equal
to the number of outgoing external edges for any x-graph.

Fach x-graph is a model of a part of some process. The task is to predict the future
stages of this process or to reconstruct the past stages. We can reconstruct the x-graph
step by step. The minimal part is a vertex. We start from some given x-graph and
add new vertices one by one. This procedure is called ‘a classical sequential growth
dynamics’.

We can add a new vertex to external edges only. This procedure is called an
elementary extension. There are four types of elementary extensions. There are two
types of elementary extensions to outgoing external edges. This is a reconstruction
of the future of the process. First type is an elementary extension to two outgoing
external edges. Second type is an elementary extension to one outgoing external edge.
Similarly, there are two types of elementary extensions to incoming external edges.
These elementary extensions reconstruct the past evolution of the process. Third
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type is an elementary extension to two incoming external edges. Fourth type is an
elementary extension to one incoming external edge. We can prove that we can get
every connected x-graph from one vertex by a sequence of elementary extensions of
these four types.

By assumption, the dynamics of this model is a stochastic dynamics. If we have
an algorithm to calculate the probabilities of elementary extensions for any x-graph,
we can calculate the probabilities of any variant of the future or the past for any given
x-graph as a classical stochastic sequence of elementary extensions.

2.  An Amplitude of Causal Connection

Define an amplitude of causal connection. All probabilities of elementary exten-
sions are functions of these amplitudes.

Consider a directed path. If we choose a directed path from any incoming external
edge number «, we must choose one of two edges in each vertex (Fig. 1). Assume the
equal probabilities for both outcomes independently on the structure of the x-graph.
Then this probability is equal to 1/2. Consequently if a directed path includes k
vertices, the choice of this path has the probability 27*. We have the same choice for
opposite directed path.

o

e

Figure 1. A choice of a directed path is a sequence of binary alternatives

a

Number outgoing external edges by lowercase Latin indices. Number incoming
external edges by lowercase Greek indices. These Latin and Greek indices range from
1 to n, where n is the number of outgoing or incoming external edges. Introduce an
amplitude a;, of causal connection of the outgoing external edge number ¢ and the
incoming external edge number «. By definition, put

M
Qjq = Qi = Z 27k(m)7 (1)
m=1

where M is the number of directed paths from the incoming external edge number
a to the outgoing external edge number i, and k(m) is the number of vertices in the
path number m. This is the probability to reach the edge number i if we start from
the edge number «.

We can start from any vertex. Number vertices by capital Latin indices. These
indices range from 1 to N, where IV is the number of vertices in the x-graph. Introduce
an amplitude a;y of causal connection of the outgoing external edge number ¢ and the
vertex number V. By definition, put

M
aiv =ay; = y_ 27, (2)
m=1
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where M is the number of directed paths from the vertex number V to the outgoing
external edge number i, and k(m) is the number of vertices in the path number m
including vertex number V.

Similarly, introduce an amplitude a,y of causal connection of the incoming external
edge number « and the vertex number V. By definition, put

M
AV = AVa = Z 2—k(m)7 (3)
m=1

where M is the number of directed paths from the incoming external edge number «
to the vertex number V', and k(m) is the number of vertices in the path number m
including vertex number V.

3. An Algorithm to Calculate the Probabilities

Consider a following algorithm to calculate the probabilities of elementary exten-
sions [2]. There are three steps.

The first step is the choice of the elementary extension to the future or to the past.
By definition, the probability of this choice is 1/2 for both outcomes.

The second step is the equiprobable choice of one vertex number V. Then the
probability is 1/N, where N is a cardinality of the set of vertices of the x-graph.

The third step is the choice of external edges that take part in the elementary
extension. If we choose the elementary extension to the future at the first step, and
the vertex number V at the second step, the probability of the choice of the first edge
number i is a;y and the probability of the choice of the second edge number j is a;y .
If we choose the elementary extension to the past at the first step, the probability of
the choice of the first edge number « is a,y and the probability of the choice of the
second edge number [ is agy .

We get for the probability of the elementary extension of the first type

1 N

2N
V=1

N
1
P = (aiVajV + (Ljvaiv) = N g a;va;v. (4)
V=1

We have two summands because if we choose the edge number ¢ at first and the edge
number j secondly or we choose these edges in the reverse order, we get the same
elementary extension.

If : = j, we get for the probability of the elementary extension of the second type

1 N

= ox (@), )
V=1

]Di .

Similarly, we get for the probabilities of the elementary extensions of the third and
fourth types

N N
1 1
P.p = N Z(aaVaﬁV +apyaay) = N Z AoV agy, (6)
v=1 V=1
N
Paa = L Z(aaV)2- (7)
2N =

Consider a following form of the third step. Suppose we choose the direction to the
future and the vertex number V at the first and second steps. In this case, the third
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step is a random choice of two directed paths from the vertex number V' (Fig. 2). The
ends of these paths are the outgoing external edges that take part in the elementary
extension. If we choose the direction to the past at the first steps, we must randomly
choose the two inversely directed paths from the vertex number V.

X

|

v

Figure 2. Two directed paths

4. Physical Foundations of the Algorithm to Calculate the
Probabilities

Consider a following form of the algorithm to calculate the probabilities of ele-
mentary extensions and prove that this algorithm is a consequence of the causality
principle.

The first step is the same. This is the equiprobable choice of of the elementary
extension to the future or to the past.

A new vertex is added to one or two external edges. The second step is the choice
of one external edge that takes part in the elementary extension. This is an outgoing
external edge if we choose the future evolution at the first step. Otherwise this is an
incoming external edge. In the previous paper [1] the trivial case was considered. This
is the equiprobable choice. The probability is 1/n for each outcome. In this paper we
consider the case that satisfies the causality principle. Denote by p; the probability to
choose the outgoing external edge number ¢. Denote by p, the probability to choose
the incoming external edge number a.

In this model, causality is defined as the order of vertices and edges. But the
causality has a real physical meaning only if the dynamics agrees with causality. The
probability to choose an outgoing external edge can only depend on the x-subgraph
that precedes this edge. Similarly, the probability to choose an incoming external edge
can only depend on the x-subgraph that follows this edge.

According to the causality principle the normalization constant cannot depend on
the structure of the x-graph. By definition, it is equal to N~!, where N is the number
of vertices in the x-graph. This is the number of the steps of the sequential growth if
we start from the empty x-graph. In the previous case [1] the normalization constant
1/n depends on the structure of the x-graph. This contradict the causality principle.

Consider the x-graph G. By definition, put P(V) = {W € G | W < V}. The set
P(V) is called the past set of the vertex number V. By definition, put F(V) = {W €
G|V < W}. The set F(V) is called the future set of the vertex number V. If the
outgoing external edge number i is incident the vertex number V', by definition, put
P(i) = P(V). If the incoming external edge number « is incident the vertex number
V', by definition, put F(a) = F(V).

Theorem 1. Consider the z-graph Gy that consists of N wertices. Consider the
probability p;(Gn) to choose the outgoing external edge number i that is normalized

by 1. If pi(Gn) is a function of P(i) and the normalization constant is N~1, then
pi(Gy) = N~1 Zgzl a;v(Gn).
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Proof. The proof is by induction on N. If N = 1, p1(G1) = p2(G1) = 1/2 by
symmetry.

By the inductive assumption, the theorem is truth for any x-graph Gy_; that
consists of N — 1 vertexes. Consider any x-graph Gy that consists of N vertices. We
can get this x-graph by an addition a new vertex number N to some Gn_1. Let the
vertex number N be a maximal vertex. If it is not a maximal vertex, choose some
maximal vertex number W in Gy and remove it. Reverse the numbers W and N. The
new vertex get the number W, and the removed vertex get the number N. We get
GNn_1. It can be unconnected. The theorem is truth for Gy_; by assumption. Add the

vertex number N to Gy_1. There are two cases. In the first case, the vertex number
N is added to two outgoing external edges numbers ¢ and j as for an elementary
extension of the first type. In the second case, the vertex number N is added to one
outgoing external edge number i as for an elementary extension of the second type.

Denote by n the number of outgoing external edges in Gy _1.
Consider the first case. We have the normalization condition for Gn_.

n

Z Z asv(Gn_1) + Z <an (Gn_1) +ajv(Gn- )) =N-1. (8

(s=1)A(s#D)A(s7) V=1

Two outgoing external edges numbers ¢ and j become internal edges. We get two
free numbers of outgoing external edges: ¢ and j. Two new outgoing external edges
appear. Number these new outgoing external edges by ¢ and j. If s £ i and s # 7,
P(s) is not changed. We have

N—-1

N
= % Z asV gN 1 Z asV (9)

V=1 V=1

Z\H

We have the normalization condition for Gy.

n

N
Z Z asv(Gn) + Npi(Gn) + Np;j(Gn) = N. (10)
(s=1)A(s70)A(s2£5) V=1

In Gy, P(i) = P(j) and p;(Gn) = pj(Gn). Using (8) and (10), we get

LS N-1
pi(Gn) = p;(GN) = (Z a;v( QN 1) + Zajv gN 1 +1) (11)

= =1

The last equation is the rule to calculate the amplitudes. New outgoing external
edges are included in the same paths in which the old outgoing external edges numbers
7 and j are included. These paths pass through one new vertex. Then we must multiply
by 1/2. Also we must add the amplitude of the new vertex that is equal to 1/2. We
get

=

pi(Gn) = p;(GN) = Z v(GN) = N Z a;v(Gn). (12)

v:

Consider the second case. We have the same normalization condition (8) for Gy _;.
One outgoing external edge number ¢ becomes an internal edge. We get i as free num-
ber of an outgoing external edge. Two new outgoing external edges appear. Number
these new outgoing external edges by i and n+ 1. If s # i, P(s) is not changed. We
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have the equation (9). We have the normalization condition for Gy .

Z Z asv(Gn) + Npi(Gn) + Nppy1(Gn) = N. (13)

(s=1)A(s#i) V=1

In Gy, P(i) =P(n+1) and p;(Gn) = pnt1(Gn). Using (8) and (13), we get

pi(On) = Pnt1(Gn) = % (Z aiv(Gn-1) + 1). (14)

The last equation is the rule to calculate the amplitudes. New outgoing external
edges are included in the same paths in which the old outgoing external edge number
1 is included. These paths pass through one new vertex. Then we must multiply by
1/2. Also we must add the amplitude of the new vertex that is equal to 1/2. We get

N N
1 1
pi(gN) = pn+1(gN> = N aiV(gN) = N Z a(n+1)v(gN)- (15)
V=1 V=1
We have proved the theorem for all cases. 0

Cons 1. Consider the x-graph Gy that consists of the N vertices. Consider the
probability p, to choose the incoming external edge number « that is normalized by
1. If p, is a function of F(a) and the normalization constant is N~!, then p, =

]\/T_1 Z\Jyzl aqV -

The proof is the same.
The third step is the choice of the second external edge. Denote by p;;j; the

probability to choose the outgoing external edge number j if we choose the outgoing
external edge number i at the second step. According to the causality principle pj|;

can only depend on the x-subgraph that precedes the edges numbers ¢ and j. Denote
by pag|a the probability to choose the incoming external edge number f3 if we choose
the incoming external edge number « at the second step. Similarly, p,g|, can only
depend on the x-subgraph that follows the edges numbers « and .

Consider the condition of symmetry. If Dijli = Pij|j> We get the algorithm for Dijli
that is considered in [1]. But in this case, PiDijli 7 PjPij)j- The physical condition is
PiPij|i = PjDijlj-

Let prove that (4)—(7) is a unique solution that satisfies the principles of causality,
symmetry, and normalization.

Theorem 2. Consider the x-graph Gy that consists of N vertices and has n outgo-
ing external edges. Consider the conditional probability pijh-(QN) to add a new mazximal

vertex number N + 1 to the outgoing external edges numbers i and j if we choose the
outgoing external edge number i. The edges i and j can coincide. If

= p4j|i(GnN) is a function of P(N + 1) (the causality principle),
- E;L:lpmi(gzv) =1 (the normalization), and
— pi(GN)Pij1i(GN) = i (GN)Pij 1 (GN) (the symmetry), then

1N
Pi(gN)pz‘j\i(gN) = N Z aiv(Gn)ajv(GN)-
v=1

Proof. The proof is by induction on N. If N =1,

P1(GN)P1111(GN) = P1(GN)P12)1(GN) = P2(GN)P2112(9N) = P2(GN)P22j2(Gn) = 1/4,
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by symmetry.

By the inductive assumption, the theorem is truth for any x-graph Gy_1 that
consists of N — 1 vertices. Consider any x-graph Gy that consists of N vertices. We
can get this x-graph by an addition a new vertex number N to some Gn_71. Let the
vertex number N be a maximal vertex. If it is not a maximal vertex, choose some
maximal vertex number W in Gy and remove it. Reverse the numbers W and N. The
new vertex get the number W, and the removed vertex get the number N. We get
Gn_1. It can be unconnected. The theorem is truth for Gy _1 by assumption. Add the

vertex number N to Gy_1. There are two cases. In the first case, the vertex number
N is added to two outgoing external edges numbers i and j as for an elementary
extension of the first type. In the second case, the vertex number N is added to one
outgoing external edge number i as for an elementary extension of the second type.

Denote by n the number of outgoing external edges in Gy _1.

Consider the first case. We have n normalization conditions for Gy_1.

. n N-1 ) R
T Z Z asy (Gn_1)amyv (Gn_1)+

(s=1)A(s#£i)A(s#£7) V=1

%1 i amV(g~N—1)<aiV(g~N—1) + ajV(GN_l)) =
V=1

:pm(QNNfl) = ﬁ Z_ amV(ngl)v (16)
V=1

where m ranges from 1 to n. Two outgoing external edges numbers ¢ and j become
internal edges. We get two free numbers of outgoing external edges: ¢ and j. Two
new outgoing external edges appear. Number these new outgoing external edges by ¢
and j. If s #1i, s # j, m # i, and m # j, P(s) and P(m) is not changed. We have

N -1 ~ -
m(gN)pms|m(gN) = Tpm(gN—l)pms\m(gN—l) =
1 N-1 N 1 N
N CLSV amv(g = N 2 asV(GN>amV(gN)- (17)
V=1 V=1

We have n — 2 normalization conditions for Gy.

% Z Z asv(GN)amv(Gn)+

(s=1)A(sEDA(s75) V=1

- pm(gN N Z amv gN) N

V=1

Pm(gN 1), (18)

where m ranges from 1 to n, m # i, and m # j. Using the symmetry of edges numbers
i and j, (16), and (18), we get

Pm(GN)Pmiim (GN) = pm(gN)pmﬂm(gN) =

Zamv (azv(gN 1)+ av(Gn - 1))- (19)
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The last equation is the rule to calculate the amplitudes. New outgoing external
edges are included in the same paths in which the old outgoing external edges numbers
1 and j are included. These paths pass through one new vertex. Then we must multiply
by 1/2. We get

1 (aiV(QN—l) + ajv(gN—1)>-

a;iv(Gn) = a;v(GN) = 5

The outgoing external edge number m is not changed, and a,,v (QN_l) = amv(Gn).
We have

P (GN)Pmiim (IN) = Pm(GN)Pmjim (GN) =
—1

By symmetry, we have
Pi(GN)Pii)i(Gn) = Pi(GN)Pij1i(GN) = pi(GN )il (GN) = Pi(GN )P (9N ).

We have two last equal normalization conditions for Gy .

Pi(GN)Pii)i(Gn) + pi(GN)pij)i(Gn )+

n

+ > Pi(GN)Pim)i(GN) =
(m=L)A(m#i)AN(m#j)
N -1 ~ ~ 1
=pi(Gn) = W( i(GN-1) +pj(gN—1)> + N (21)

There is an analogous normalization condition for permuted 7 and j indices. By
the assumption, p;(Gn )Pim|i(IN) = Pm(GN)Pmijm(Gn). Using (16) for m =4, m = j,
and (20), we get

pi(gN)Pim(gN) = pi(gN)pij|i(gN) =

1 N-1

— i <Z (aiV(éN—l) + ajV(GN—l)) (aiV(gN—l) + ajV(QN_l)) + 1), (22)
V=1
The last equation is the rule to calculate the amplitudes. We get
Pi(G)psiti () = P3(Gn)pis13(Gn) = pi(gmpim(gN) -

(gN)pz]|z(gN Z ayv(Gn)ajv(Gn) =

z

Mz

v(Gn)aiv(Gn) = Z v(n)av(Gn). (23)

V: V:
Consider the second case. We have n normalization conditions for Gy_1.

N-1

S Y Gy Gy )t

(s=1)A(s#i) V=1
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S i Gvtany (Gn1) = pa(Gvor). (24)
V=1

where m ranges from 1 to n. One outgoing external edge number 7 becomes an internal
edge. We get i as free number of an outgoing external edge. Two new outgoing external
edges appear. Number these new outgoing external edges by ¢ and n+ 1. If s # ¢ and
m # i, P(s) and P(m) is not changed. We have the equation (17). We have n — 1
normalization conditions for Gy .

1 n N
N Z Z asv (GN)amyv (Gn) + pm(gN)sz|m(gN)
(s=1)A(s#£3) V=1
N -1 ~
+Pm(gN)pm(n+1)|m(gN) =pm(9n) = Tpm(gN—l)a (25)

where m ranges from 1 to n and m # i. By symmetry, we have
P (GN)Pmiim(GN) = P (GN)Pm(n+1)|m (GN)-
Using (24) and (25), we get

N-1

N Z amv(Gn_1)aiv(Gn_1). (26)

P (GN)Pmim (GN) = P (GN)Pm(n+1)|m (GN) =

The last equation is the rule to calculate the amplitudes. New outgoing external
edges are included in the same paths in which the old outgoing external edge number
¢ is included. These paths pass through one new vertex. Then we must multiply by
1/2. We get

1 ~
—a;v(GN-1).

aiv(Gn) = a(ny1yv(GN) = 5

The outgoing external edge number m is not changed, and a,,y (QNN,l) = amyv(GnN).
We have

P (GN)Pmijm (ON) = (QN)pm(n+1)|m(gN) =

N
1
N E amv (Gn)aiv(Gn) =N E v(GN)amyv(Gn).  (27)
V=1 V=1

By symmetry, we have

Pi(GN)Pii)i(GN) = Pi(GN)Di(nt1)): (ON) =
= Pn1(ON)P(n+1)iln+1(GN) = Dj (GN)P(n+1)(n41)n+1(GN).  (28)

We have two equal last normalization conditions for Gy .

Pi(GN)Piii(GN) + Pi(GN)Pitn+1))i (GN )+

n

+ > Pi(GN)Pim|i(GN) = pi(Gn) = N pz(gzv )+ 5%

(m=1)A(m#i)A(m#n+1)

2N (29)

There is an analogous normalization condition for permuted ¢ and n 4 1 indices.
By the assumption, p;(Gn)pim|i(9N) = Pm(GN)Pmiim(Gn). Using (24) for m = i,
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and (27), we get

N-1

Pi(GN)Pii)i(GN) = Pi(GN)Pitnt1):(GN) = 4;7 (Z aiv(Gn-1)aiv(Gn-1) + 1). (30)

V=1

The last equation is the rule to calculate the amplitudes. We get
pn+1(gN)p(n+1)i\n+1(gN) = pn+1(QN)p(n+1)(n+1)\n+1(gN) =

= pi(Gn)piiti(Gn) = i(GN)Pitn1)1: (9N) = Z aiv(Gn)aiv(Gn) =

V=1
1 1 &
=N Z aiV(gN)a(n+1) N Z a(n+1)V (Gn) “(n+1 v(Gn). (31)
V=1 V=1

We have proved the theorem for all cases. O

Cons 2. Consider the x-graph Gy that consists of N vertices and has n incoming
external edges. Consider the conditional probability pa5|a(g ~) to add a new minimal
vertex number N + 1 to the incoming external edges numbers a and S if we choose
the incoming external edge number «. The edges o and S can coincide. If

— Papla(Gn) is a function of F(N + 1) (the causality principle),
- Zgzlpam(g]v) =1 (the normalization), and

— Pa(GN)Pap|a(ON) = pﬁ(gN)pﬂa\ﬁ(gN) (the symmetry), then

Pa(GN)Papla(9N) = & Z aav(Gn)asv(Gn).

V=1

The proof is the same.
The introduced algorithm to calculate the probabilities of elementary extensions is
a combinatorial rule that is a consequence of causality, symmetry, and normalization.

5. An Iterative Procedure to Calculate the Probabilities of
Elementary Extensions

Consider the x-graph Gy that consists of IV vertices and has n outgoing external
edges. We must calculate 2Nn amplitudes a;y (Gn) for the direct computation of all
probabilities of elementary extensions. But if we consider the sequential growth of
Gn, we can calculate all probabilities of elementary extensions using the probabilities
of elementary extensions for Gy _1. Consider this iterative procedure.

Denote Np;(Gn)pij1i(Gn) and Npa(Gn)pasia(Gn) by pij(Gn) and pags(Gn) respec-
tively for simplicity. Consider these probabilities of elementary extensions as elements
of matrixes. Introduce a matrix ps(Gy) of probabilities of elementary extensions to
the future. All matrixes are denoted by bold Latin letters. An element number ij
of ps(Gn) is equal to p;;(Gn). Introduce a matrix p,(Gn) of probabilities of elemen-
tary extensions to the past. An element number af of p,(Gn) is equal to pas(Gn).
The sum of the elements for each matrix is equal to N. We will need a;y (Gn), where
the vertex number V possesses the incident incoming external edge number «, and
aqv(Gn), where the vertex number V' possesses the incident outgoing external edge
number i. Such amplitudes is a;o(Gn). Introduce a matrix a(Gy) of amplitudes. An
element number i« of a(Gy) is equal to a;(Gn). The iterative procedure to calculate
a(gy) is considered in [1]. We need to calculate no more than n amplitudes for each
elementary extension. These three matrixes are square matrixes of size n, ps(Gn) and
pp(Gn) are symmetrical matrixes.
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This procedure starts from the x-graph G; that consists of 1 vertex.

1/4 1/4).

/(00 =pu(@) = (17 1)y (32)

We considered the iterative calculation of the probabilities in the proof of Theo-
rem 2. Rewrite the equations in the more useful form for py and add the equations
for p,.

First type is an elementary extension to the future. Two outgoing external edges
numbers ¢ and j become internal edges. We get two free numbers of outgoing external
edges: ¢ and j. Two new outgoing external edges appear. Number these new outgoing
external edges by ¢ and j. We have

pn‘(gN) = pij(gN) = ij(gN) =

— %(pij(GN—l) +pji(Gn-1) + pii(Gn-1) +Pj;(GNn-1) + 1), (33)
pis(Gn) = pa(Gx) = 5 (is(Gv1) + 1s(G 1)), (34
pms(gN) = pms(gN—1)7 (35)

where s and m range from 1 ton, s # i, s # j, m # i, and m # j. We have the
addition of a new summand to the elements of p, that describes the addition of the

new vertex.
Pas(ON) = Pap(Gn-1) + aia(GN)aig(GN)- (36)

Second type is an elementary extension to the future too. One outgoing external
edge number i becomes an internal edge. We get ¢ as free number of an outgoing
external edge. Two new outgoing external edges and one new incoming external edge
appear. Number these new outgoing external edges by ¢ and n + 1, and new incoming
external edge by n+ 1. We have new column number n + 1 and new row number n + 1
in py and p,. We have

Pii(GN) = Pitn+1)(GN) = P(nt1)(nt+1)(ON) = i(pii(gN—l) + 1)7 (37)
Pis(On) = D)o G) = gpia(Gn 1), (39)
Pms(ON) = Pms(GN-1), (39)
where s and m range from 1 to n, s # i, and m # 1.
Pap(ON) = Pap(GN-1) + aia(GN)ais(GN). (40)
fg=n+1
a1 (Gn) = 3410 (G), (a)
ifa=pg=n+1
Pn+1)(n+1) (ON) = % (42)

If we interchange the Latin and Greek indices in (33)-(42), we get the equations
for the elementary extensions of the third and fourth types.

We must calculate no more than n? elements of Pp, 1 elements of py, and n

elements of a for each elementary extension. If n growth as N/2, we have the linear
growth of the number of calculations.
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6. Properties of the Sequential Growth

Theorem 3. The mazimal values of P;; and P,p are equal to 1/4 if i # j and
a # B respectively. The mazimal values of Py and P,s are equal to 1/8.

Proof. There are N summands in Z]‘Ll a;vajy and the maximal value of the
amplitude is 1/2, then 25:1 a;vajy < N/4. Using (4), we get P;; < 1/4. Using (5),
we get P;; < 1/8. Similarly, P, < 1/4 and P,, < 1/8. 0

We have the maximal values of probabilities for G;.

Theorem 4. The probability to add a set V of vertices to Gn does not depend on
the order of additions of these vertices if these vertices are causally independent.

Proof. Number the vertices of V. The probability Py to add a vertex number V'
is a product of normalization constant and a function of the past set of this vertex.
Denote this function by p(V'). By assumption, p(V') does not depend on the addition
of other vertices of V. Denote by K the cardinality of V. Add the vertices of V to Gy
in some order. We have for the probability of this addition

A) p(B) p(C X
Papc..x = PAPgPc... Py = pgv) ]Z\;(+)1 ]Z\)f<+)2 . ;f’&;{. (43)

If we change the order of addition of these vertices, we rearrange the functions
p(A)...p(X) in this product. We get the same probability. 0

7. Conclusion

The considered dynamics is a consequence of causality, symmetry and normaliza-
tion. We do not postulate any properties of self-organization. But this dynamics can
be the model of quantum gravity if it can describes stable objects (particles). In this
case, the algorithm must generates stable repetitive self-organized structures. This is
the task for further investigation.

This model is useful for numerical simulation like the previous algorithm [3]. It
is necessary to develop the methods to detect and analyze structures during the nu-
merical simulation of the sequential growth. For example, such method is considered
in [4]. Another approach to the numerical simulation of self-organization of causal
sets is considered in [5].
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VYIK 530.12:539.12
YacTHBIl ciry4ail mocjieIoBaTeJIbHOTO pocTa X-Tpada

A. JI. Kpyrabrii

Omoen npursadHot MAMEMAMUKY U UHBOPMATIUKY
Hayuno-uccaedosamenverudi uncmumym cucmemunr uccaedosanuti PAH
Haxumosckuti np-m, 9. 36-1, Mockea, Poccus, 117218

Paccemorpena dactHass MOzesb JUCKPETHOTO MPOCTPAHCTBa-BpeMeHH B Mukpomupe. Ona
IpeJICTaBIIsieT COOON OPUMEHTUPOBAHHBIM AlMKINYeCKHi quajndeckuii rpad (x-rpad). Ina-
JUYecKuil rpad O3HAYAET, YTO KaK/ias BepIInHa 06J/1a1aeT He O0JIbIIe, YeM JIBYMs WHITUIEHT-
HBIMU BXOJISAIIMA PEOPAMHU U JIBYMsI WHIIMIEHTHBIMU BBIXOmAIMME pEOpamu. Paccmorpena
JUHAMUKA, ITOCJIEIOBATEIBHOTO POCTA STOW MOJEJN. DTa JUHAMUKA, IPEJCTaBIsSIeT COOO# cTO-
XaCTUYECKOe T0C/IeOBATE/ILHOE JT00aBIEHNEe HOBBIX BEPINUH OJIHA 3a JApyroil. BepositHocTH
PA3/IMYIHBIX BAPUAHTOB J00OABJIEHUSI HOBON BEPIMUHBLI 3aBUCSAT OT CTPYKTYDPBI CYIIECTBOBAB-
mero x-rpada. /lokazaHo, 9TO aJropuTM pacdéra BEPOSITHOCTEH SIBJISIETCS €TUHCTBEHHBIM
pelreHreM, KOTOPOe YIOBJIETBOPSIET HEKOTOPBHIM TPeOOBAHUSM NPUIUHHOCTH, CUMMETPUU U
HOPMHUPOBKHU. AJICOPUTM TIOCJIEI0OBATEILHOIO POCTa, MOYKET OBITH IIPEJICTABJIEH TPeMs Iara-
mu. [lepBbrit mar — 310 BBIOOP J00aB/IeHUsT BEPIIUHBI B OyayIiee uian B mporuioe. [lo ompe-
JIEJIEHUIO, BEPOSITHOCTH 0OOMX BAPMAHTOB PaBHBbI 1/2. Bropoii mar — T0 paBHOBEPOSITHBIA
BBIOOP OJIHOI BEPINWHBI ¢ HEKOTOPBIM HOMepoM V. BepostHOCTH 3TOrO BBIGOpa 1/N, TIe N
qucyio BepmuH B X-rpade. Ecian Mbl BeIOpasn HanpaBjieHue B Oy/Iyliiee, TO TPETU IIar — 3TO
CJIy4aiHbBIN BBIOOD JIByX OPHEHTHPOBAHHBIX MapIIPyTOB U3 BepiuHbl HOMep V. HoBas Bep-
IIIAHA T00ABJISIETCS K KOHIIAM 9TUX MapHIpyToB. Ecii Mbl BEIOpAJIN HAIIpABJIEHUE B IIPOIILIOE,
TO TPETHHl Iar — 3TO CJAy4YailHbII BBIOOD JBYX OOPATHO OPMEHTHPOBAHHBIX MapIIPYTOB U3
Bepmmabl HOMep V. NTepamnuonnas mporeypa paciéra BEpOsSTHOCTEN pacCMOTPEHA.

KimroueBble ciioBa: TPUYMHHOCTHOE MHOXKECTBO, CJIydYaiiHbIA rpad, OpUeHTHUPOBAHHBIN
rpad.
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