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The simple two-oscillators model is suggested to illustrate the phase dependent interaction
of vibrating spheres in hydrodynamics (the C. Bjerknes’s problem). The integrability of this
model is shown. Correspondence with the Fermi–Bose statistics in quantum mechanics is
underlined.
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1. Introduction. The C. Bjerknes’s problem

The eminent Norwegian physicist C.A. Bjerknes discovered in 1875 the analogy
between the motion of bodies in hydrodynamics and that of charged bodies in elec-
trodynamics [1]. He considered two spheres plunged into incompressible fluid and
separated by the large distance 𝐿, with their radii 𝑅1, 𝑅2 ≪ 𝐿 oscillating in accor-
dance with the law:

𝑅1 = 𝑅0 + 𝜖 cos𝜔𝑡, 𝑅2 = 𝑅0 + 𝜖 cos(𝜔𝑡+ 𝜙). (1)

Introducing the velocity potential 𝜑 of the fluid by the substitution v = −▽ 𝜑, one
gets for the single sphere the well-known expression

𝜑1 =
𝑅2

𝑟′
𝑅̇ (2)

equivalent to the Coulomb’s potential in electrodynamics, where 𝑟′ stands for the
distance from the center of the first sphere.

The influence of the potential (2) on the second sphere in the vicinity of the latter
one can be found as follows:

𝜑1 =
𝑅2

1

𝐿+ 𝑟 cos𝜗
𝑅̇1 ≈

𝑅2
1

𝐿
𝑅̇1

(︂
1− 𝑟

𝐿
cos𝜗

)︂
, (3)

where 𝑟, 𝜗 denote the spherical coordinates with the origin at the center of the second
sphere. In the dipole approximation the potential (3) induces the following potential
of the second sphere:

𝜑2 ≈
𝑅2

2

𝑟
𝑅̇2 −

𝑅2
1𝑅

3
2

2𝐿2𝑟2
𝑅̇1 cos𝜗. (4)

Using the resulting potential 𝜑 ≈ 𝜑1 +𝜑2 one deduces from the Bernoulli’s law the
pressure 𝑝 ≈ 𝜌𝜕𝑡𝜑 in the vicinity of the second sphere and the 𝑧–component of the
force acting on it:

𝐹2𝑧 = −
∮︁

𝑟=𝑅2

𝑝 cos𝜗d𝑆 = 𝜌
4𝜋𝑅2

2

3𝐿2

[︂
𝑅2

d
d𝑡

(𝑅2
1𝑅̇1) +

d
𝑅2

2d𝑡

(︁
𝑅2

1𝑅
3
2𝑅̇
)︁]︂
, (5)
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where 𝜌 signifies the density of the fluid. After time averaging one gets from (1)
and (5)

⟨𝐹2𝑧⟩ = −2𝜋𝜌
𝑅4

0

𝐿2
𝜖2𝜔2 cos𝜙. (6)

As follows from (6), one finds the attraction of the spheres for 𝜙 = 0 and their repul-
sion for 𝜙 = 𝜋. Using (6) C. Bjerknes tried to interpret the Coulomb’s interaction of
charges via hydrodynamical picture. However, the other interpretation of this result
is possible if one takes into account the quantum mechanical behavior of identical par-
ticles. Namely, the repulsion is typical for Fermions and the attraction—for Bosons.
Thus, the Bjerknes’s effect (6) appears to generate, within the scope of the hydrody-
namical model, the spin—statistics correlation in quantum mechanics.

2. The two–oscillators model of the C. Bjerknes’s
effect

Now we intend to illustrate the Bjerknes’s effect within the frame of the simple
two–oscillators mechanical model. Let us consider the dynamical behavior of two
identical oscillators with the proper frequency 𝜔, the equations of motion reading:

𝑞1 + 𝜔2𝑞1 = 𝑔
(︀
𝜔2𝑞1𝑞2 + 𝑞1𝑞2

)︀
, (7)

𝑞2 + 𝜔2𝑞2 = −𝑔
(︀
𝜔2𝑞1𝑞2 + 𝑞1𝑞2

)︀
. (8)

The motivation for choosing the special interaction of the oscillators in (7) and (8)
stems from the structure of the Bjerknes’s force (6). Really, for the small coupling
constant 𝑔 in (7) and (8) one gets in the first approximation:

𝑞1 ≈ 𝐴1 sin(𝜔𝑡+ 𝜙1), 𝑞2 ≈ 𝐴2 sin(𝜔𝑡+ 𝜙2),

and the force in the r.h.s. of (7) and (8) reduces to that of Bjerknes, i.e. to (6).
The pleasant feature of the dynamical system (7) and (8) is its integrability. To

show this fact we introduce the new variables by putting

2𝑄 = 𝑞1 + 𝑞2, 𝑞 = 𝑞1 − 𝑞2. (9)

Substituting (9) into (7) and (8), one gets the separated 𝑄–oscillator:

𝑄̈+ 𝜔2𝑄 = 0, 𝑄 = 𝐴 sin(𝜔𝑡+ 𝜙),

and the resulting 𝑞–dynamics:

𝑞 + 𝜔2𝑞 = 2𝑔𝜔2𝐴2 − 𝑔

2
(︀
𝜔2𝑞2 + 𝑞2

)︀
. (10)

The equation (10) can be integrated if one introduces the new variable

𝐼 =
1
2
(︀
𝜔2𝑞2 + 𝑞2

)︀
− 2𝜔2𝐴2 (11)

satisfying the equation
𝐼 + 𝑔𝐼𝑞 = 0. (12)

The equation (12) admits the evident integral of motion:

𝐼 exp(𝑔𝑞) = 𝐼0 = const. (13)

From (11) and (13) one deduces the quadrature

𝑡 = ±
𝑞∫︁

𝑞0

d𝑞
[︀
𝜔2(4𝐴2 − 𝑞2) + 2𝐼0 exp(−𝑔𝑞)

]︀−1/2
,

that illustrates the Bjerknes’s effect in the limit of small coupling constant 𝑔.
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Предложена простая двухосцилляторная модель, иллюстрирующая зависящее от фа-
зы взаимодействие пульсирующих шаров в гидродинамике (задача Бьеркнеса). Доказы-
вается интегрируемость модели. Проводится соответствие с Ферми–Бозе–статистиками
в квантовой механике.




