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In the paper we are presenting a heuristic approach to solve the problem of changing
network topology by minimally extending a digraph G’ through adding edges from a given
spanning supergraph G of G’, such that the sum of the costs of the new edges is minimum,
and in the new graph the end-to-end delay between two distinguished vertices s and ¢ meets
a predefined time constraint(ME problem). We develop a heuristic based upon the Genetic-
type algorithm technique. Moreover, the application of this heuristic is justified and is shown
that the solution of ME problem belongs to the NP-hard computational class.

Key words and phrases: networks, Genetic Algorithm, NP-hard, delay and cost con-
straints.

1. Introduction

A huge number of services offered by modern communication networks to the users
very often still cannot satisfy highly changeable requirements. A network topology and
natural restrictions related to it (such as delays) may prevent clients from implement-
ing new services and introducing new network functions. It is especially true when we
are talking about real-time networks. In this paper we are considering a problem of
changing network topology by adding additional edges to the network graph in such
a way that time constraints will be met and all added edges will have a minimum
possible cost. We are also going to assess the performance of the solution by using as
an example a specific class of weighted digraphs (which will be defined in 3). We chose
this example because of the following two reasons. First of all the structure of the
graphs in the class closely corresponds to the structure of a big class of applications
— real-time networks for distributed objects (such as communication and control sys-
tems of linear gas and oil pipelines). Second — it is easy to find an analytical optimal
solution that can be used to evaluate the performance of the algorithm developed in
the paper.

Let G = (V, E) be a weighted digraph with vertex-set V', and edge-set E. Edge-set
has weight functions 7' : E — R* and C : E — R* (where R* are non-negative real
numbers).

Let s and ¢t be two distinguished vertices of G. A path P = (V,E)
is a digraph with vertex-set V. = {vj,vq,...,u5} C V, and edge-set F =
{(v1,v2), (v2,v3), ..., (Vk—1,v%)} € E. If s = vy, and t = vy, then we call this path
a s,t-path. Moreover, given a path P, let 7(P) and €(P) represent the sum of the
weights of the edges of P with regard to the weight functions 7" and C|, respectively.
Let Pishort (G, T') be the shortest path between s and ¢ in G with respect to the weight
function T. Let G’ = (V, E’) be a spanning subgraph of G = (V, E) and let A be a
bound. We formulate the following optimization problem:

O : Minimize Z C(e) (1)
e€E"'C(E—E')
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Such that 7(Pgsport(G*,T)) < A, where G* = (V, E' JE").

Informally, this problem is to extend a digraph G’ with edges from its supergraph
G such that the sum of the costs of the new edges is minimum, and in the new graph
there exists a simple path between s and ¢ that meets the A\ — constraint. For future
references we are going to call this problem the Minimal Extension Graph Problem
or ME problem. One of the possible applications of the ME problem is an extension
of a real-time network. The problem arises, for example, when a node has to deliver
real-time data to another network destination node, and the transmission must meet
certain delay constraints. In the case that the delay constraints are not met, we want
to add additional edges such that the total cost of these edges is minimized, and the
transmission time is acceptable. This problem can be shown to be at least as hard as
the Constrained Shortest Path problem (CSP), known (see [1-3]) to belong to the NP-
hard computational class, as the CSP problem can be reduced to the ME problem: we
therefore propose an approximation algorithm using a Genetic Algorithm approach. In
Section 2 we present a Genetic-type approximation algorithm to solve the ME problem.
In Section 3 we evaluate this approximation technique for a class of weighted graphs
where the exact optimal solutions of the ME problem are known. Finally, in Appendix,
we formally prove that the ME problem is NP-hard, hence justifying the application
of an approximation technique; moreover we discuss the complexity of the algorithm
described in this paper.

2. A Generic-Type Algorithm for the Solution of
the ME Problem

2.1. General Description of the Algorithm

As we will show in Appendix, an exact solution of the ME problem requires, in the
worst-case, exponential computational time. In this section we develop a polynomial
iterative heuristic algorithm for the solution of the ME problem, using a Genetic
Algorithm approach.

Given a digraph G’ = (V,E’), with terminal vertices s and ¢, and supergraph
G = (V,E) of G'. Since we are concerned only with the costs of the added edges, we
define the fitness of an edge e = (u,v) of G as:

FITNESS(e) = ( o (6)0 ; :: 5/_ E,>. 2)

Moreover, the fitness function for a s, t-path P = (V, E) of G is defined as:

FITNESS(P) =Y _ FITNESS(e) (3)
eEE

Given the set of all s,t-paths of G, to find a s,t-path P of G with minimum
fitness, and with 7(P) < A, is equivalent to solve the ME problem, as the digraph
G* (see optimization problem in previous section) is obtained from G’ by adding the
edges of P that do not belong to G" ie., G* = (V,EUE') . As we follow a GA
algorithmic technique, each individual in the population represents a s, t-path P of G,
with 7(P) < A. Its corresponding chromosome contains the list of the edges e € F,
that makes up the path. Moreover, each edge e of the path will also contain the
information of its associated weight T'(e) and fitness FITNESS(e).

For the Genetic Algorithm, the implementation follows the simple pseudo-code:
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Procedure : ME Algorithm

Input : Weighted digraph G' = (V, E")
Corresponding supergraph G = (V, E);

Population Size; A — constraint; Numberlterations;
Output : Weighted digraph G™ representing the solution
yield by the M E algorithm.

Begin

Generation = 1;

(1) Pop = Generatelnitial Population(G);

(2) While(Generation < NumberlIterations)

(2.1) Pop = Selection(Pop);

(2.2) Pop = Reproduction(Pop);

Generation = Generation + 1;

End While

Let P = Best Individual(Pop);

Let G* = (V,(E(P)| JE'));

Return (G™);
End

3. Reproduction

Reproduction is accomplished by randomly selecting pairs of a population. Given
a pair of s,t-paths P; and P, of G , two new offsprings P; and P, are generated. We
start with the strong assumption that the end-to-end delay between vertices s and ¢
of both P; and P, meet the constraint A i.e., 7(P;) < A and 7(P) < A. Moreover, the
offspring of P, and P», Ps, will also meet this constraint (i.e.,7(P3) < A).

The original population is created by application of the k-shortest paths algorithm
with respect to the weight function T, and where k = PopulationSize (for further
references see for example [4-6]). If the i-path of the original population does not
meet the end-to-end constraint with respect to A (i.e., 7(P;) > A), then the solution
of the ME problem is obtained from one of the previous i — 1 paths of this population
with minimum fitness, thus we can assume that the original k-shortest paths meet the
A constraint. .

Let P = (V,FE) be a path of G and u,v € V; the Path(P,u,v) is a subpath of P
with end-vertices v and v.

Let P, = (V4, Eq1) and P, = (Va, Es) be two s, t-paths of a population. We assume

also that the vertex-set Vi = (s = vy, vq,vs3,...,t = v,) is an ordered n-tuple such
that e = (v;,v;41) is an edge of Ej.
Let Vo = (s = uy, u2,us,...,t = u,,) be also a ordered m-tuple with respect to the

edges of Ey. In addition let W = Vi NV, = (s = wy,wa, w3, ...t = w,), where W is
an ordered p-tuple such that if w; = v, and w;11 = v, then ¢ < r (i.e., the vertices of
W are ordered with respect to the order of the vertices of V7).

Let P’ = Path(Py,u,v) such that u = w. and v = w, for ¢ < r, and P’ does
not include any other vertices from W, then we call this subpath a forward-subpath
of P,. For example, in Fig. 1, P = Path(Ps, u1,us) is a forward-subpath of Py, but
P" = Path(Py,us,uy4) is not.

Let Ps be the path obtained from P; by replacing the subpath P’ = Path(Py, v;, v;)
of P, by the forward-subpath P” = Path(P,v;,v;), for some nodes v;,v;, and sup-
pose that 7(P3) < A, then we called P” a permissible-forward-subpath. For example
in Fig. 1, there are two forward-subpaths, but P” = Path(Ps,u1,us3) is the only
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permissible-forward-subpath. In Fig. 2, Ps is obtained by replacing the subpath P’ =
Path(Py,v1,v3) in Pj, by the permissible-forward-subpath P” = Path(Ps,u1,us)
of PQ.

Figure 1. Two paths P; and P> and the corresponding T-weights of their edges

3=Vi=1 Vi=llh vy =V:=ls

Figure 2. Ps3 is the offspring of P; and P>. Moreover, 7(P3) < A

From all the permissible-forward-subpaths (if any) of P, the reproduction algo-
rithm randomly chooses one, to generate P3. The second offspring, P, is obtained in
the same manner, but by allowing P, to be the first path in the pair (P;, P»). Since
there are k/2 pairs of paths in a population and each pair produces two offsprings,
the reproduction procedure generates k new s, t-paths of G.

4. Selection

Given a population Pop of ks, t-paths, as we mentioned in the previous section,
we assume that each path P of Pop has 7(P) < A. Recall from the Section 2.1 that
the fitness of a path P is defined as in (2) and (3).

In the Selection process, we determine how many copies of a particular path will
be passed to the next generation by ranking each path by an index function, involving
the Fitness of a path.

The average fitness of a population Pop composed of k paths Py, Py, Ps,..., Py is
defined as

A
AveragFitness(Pop) = Z (Z FITNESS(PQ) .
i=1

We also define the maximal fitness of a population Pop as

MaxFitness(Pop) = Jnax (FITNESS(P)).
€Pop

The numbers of copies of a path P that will be passed to the next generation is
determined by the following index:

MazxFitness(Pop) — FITNESS(P)

NumCopies(P) — :
umCopies(P) MaxFitness(Pop) — AverageFitness(Pop)
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Since the solution of the ME problem is obtained by adding to G’ the edges
of the path with minimum FITNESS in G, the larger the difference between
MaxFitness(Pop) and FITNESS(P), the more copies of P will be made. Also
the index umClopies is used to rank the paths of Pop in a non-ascending order, and
the paths with higher priority will be included first. This procedure will continue until
the size of the next generation is k.

5. Empirical Results

In this section we will assess the performance of the ME algorithm by comparing
the solution given by the algorithm with the optimal solution analytically obtained
for a specific class of weighted digraphs.

Consider the following weighted-digraph G = (V, E) with node-set V = (s =

V1,2, V3,...,t = v,), with corresponding weight functions on the edges (7" and C).
The edge-set E is partitioned in three subsets F1, F3, and Fs.
Let

By = {(U,Z), where u = v;, z = V(i+1)> 1<

Si1<n
Ey = {(u,2), where u = v;, 2 = v(i42), 1 <i<n
and E3 = {(u, z), where u = v;, 2 = v(;43), 1 <i<n—3}.
Regarding the weight function 7', we have T'(e) = 1, for e € E;,T(e) = 6, for
e € Ey, and T'(e) = 12, for e € E5. With respect to the weight function C, we have
C(e) =1, for e € E1,e = (v4,v(;41)), and C(e) = 0, for e € Ey,or e € E3 (see Fig. 3).
Let G’ = (V, E' = E>|J E3), that is, another way to see this problem is that we extend
G’ with edges from E; thus that the sum of the costs of the new edges from FE; is
minimized and the new graph meet the end-to-end delay constrained between s and t.
Equivalently, as we mentioned previously, the original population is composed of s, t-
paths of G that meet the A-constraint, and, by the application of the ME algorithm,
we will try to minimize the fitness of the paths under consideration.

Figure 3. Class of weighted-digraphs G

For each edge, the ordered pair (a,b) represents the t-weight and cost associated
with that edge. For this class of graphs, let n be the number of nodes of G. If we let
A = 2n, the analytical solution for the ME problem is represented by the path P with
edge-set E(P) = E*|JE*, where E* = {(u,z) such as u = v;, 2 = v(j11), 1 <@ <
n/2 — 1}, and E** = {(u, ) such as u = v, z = v(;19), n/2 < i <n — 2} (see Fig. 4).
The optimal solution is a path P with FITNESS(P) = (n—1)(n+1)/8. In Table 1
we compare the optimal solution obtained analytically and the ones obtained by the
ME algorithm for the case where A = 2n, for different values of n. Moreover, we let
PopulationSize = 100, and Numberlterations = 100. As Table 1 shows, the error
deviation is within nine percent.
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Figure 4. Optimal solution for the ME problem for the class of weighted-graphs G, and
for A =2n

Table 1
Experimental and Analytical Results
Number of Vertices | Optimal Solution | ME Algorithm Solution | Deviation
13 21 21 0
25 78 78 0
37 171 180 2
49 300 312 4
61 465 480 4
73 666 694 4
85 903 937 4
97 1176 1231 4.5
109 1485 1527 2.8
121 1830 1874 2.4
241 7260 7863 7
361 16290 17334 6
481 28290 31254 7
601 45150 47107 4
721 64980 70988 9
841 88410 94413 6
961 115440 119215 6
1081 146070 155687 6.5

6. Appendix

First we would like to show that the minimal extension of a communication network
to meet an end-to-end delay constraint problem belongs to the NP-hard computational
class. As the ME problem, the Constrained Shortest Path problem (CSP) is to find
a minimum cost path P of G between s and ¢ (see (1)) such that 7(P) > A (i.e., find
among all s, t-paths of GG that meet the time constraint A, the one that has minimum
cost). If we restrict G’ = (V,@) to be the subgraph of G = (V,E) (i.e.,, G’ is an
spanning subgraph of G with no edges), then to solve the ME problem for an instance
conformed of weighted digraphs G’ and G, is equivalent to solve the CSP for the
instance G. Thus the ME problem is at least as hard as the CSP problem. Since in [1]
it was shown that a CSP problem is NP-hard, then by restriction the ME problem
also belong to this computational class.

Let consider next the computational complexity of the heuristic presented in this
paper. Given a digraph G = (V, E), an algorithm was introduced in [4] to find
the k-shortest path between two vertices s and ¢ in a digraph G = (V, E) in time
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O(kn(e + nlogn)), where n number of nodes in V' and e number of edges in E. Let
k = PopulationSize and i = Numberlterations. The original population Pop (step
1 of the algorithm presented in Section 2.1) for the digraph G = (V, E) was created
by using the k-shortest path Algorithm (see [4]) with respect to the weight function
T of G. Given two s,t-paths Py, P>, assuming both have lengths n, the complexity
of generating their offspring P is of order O(n). For a population of size k, since
there are k/2 pairs of paths and since each pair produces two offsprings, Ps; and
Py, the reproduction (step 2.2) will take O(kn). In the Selection (step 2.1) to find
the MaxFitness of Pop, as well as to determine the AverageFitness of Pop will take
O(kn). Step 2 (while structure) will take O(ikn), thus the complexity of the algorithm
is O(ikn + kn(e 4+ nlogn)), thus the complexity of the ME algorithm is the same as
the one to generate the k-shortest paths of G.
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SBpI/ICTI/I‘-IeCKI/Iﬁ Imoaxoa K I'Ip06JIeMe MMNHHUMAJIBHOTI'O
pacoimpeHunda KOMMYHI/IKaI_II/IOHHOﬁ CeTu 1 ero oleHkKa,
OCHOBaHHas Ha MCIIOJIB30BaHMUU CIIennaJIbHOI'O KJlacCa I‘paCl)OB
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B CcTaTbe IIpeJICTaBJICH SBPHCTI/I‘{eCKI/Iﬁ II0aX0oa K HpO6JIeMe N3MEHEHNA TOIIOJIOTHUN CETU
yTéM MUHUMAJBHOI'O PACIIUPEHUsI OPUEHTUPOBAHHOIO rpada G’ ¢ MoMoNpo 100aBIeHUs
péGep u3 cyneprpada G rpada G’ TakuM 006pa3OM, YTO CyMMa CTOMMOCTEH HOBBIX PEOGEp M-
HUMaJIbHa U OOLIas 3aJep:KKa MEXKIYy JBYMs BBIIEJIEHHBIMU Y3JIaMH S U © YIOBJIETBOPSIET
3apaHee OIpPEJIeIEHHBIM OrpaHudeHusiM. J[yis pertennst 3Toit 1pobyieMbl aBTOpaMu pas3pado-
TaH aJITOPUTM I'€HETUIECKOI'O THUIIa. Bo.nee TOrO, IIPpOBEEHAa OIEHKAa IBPUCTUYIECKOI'O IIOAX0Ia
C HCIOJIb30BAHUEM CIIEIUAJILHOIO KJIACCA OPUEHTUPOBAHHLIX IpadOB, U MOKA3aHO, YTO pellle-
HUEe HpO6HeMbI MHUHHUMAJIBHOT'O PaCIIUPEHUA KOMMyHI/IKaI_[I/IOHHOI‘/JI CeTU C OrpaHUYCHUAMU HA
3aJICPKKY IIPUHAIJICZKUT K KJIaCCy NP-HOJIHI)IX BBIYHCJINTEJIBHBIX 3a/Jda4.





