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We review some of the recent concepts and their realization exploiting the perfect destruc-
tive interference of light in micro and nano structures. One refers to optical structures where
the effective absorption can be controlled and maximized to perfect absorption. The re-
ported effects depend crucially on the coherent nature of the exciting radiation. Achieved
with a single (two or more) incident plane wave (waves) the effect carries the name of crit-
ical coupling (coherent perfect absorption). Thus in a system supporting critical coupling
(CC) or coherent perfect absorption (CPA) all the incident radiation can be absorbed leading
to null scattering. In particular all the incident light energy can be channeled into a speci-
fied mode of a multimodal structure if such modes are supported by the system. We present
a brief overview of CC and CPA in linear systems to recount their underlying concepts as
time-reversed lasing and some of their futuristic applications. Next we review our work on
the nonlinear extensions of CC and CPA where one or more of the layered media could be
nonlinear with Kerr-type nonlinearity. The dispersive nonlinearity is shown to offer a prac-
tical handle over the process of perfect absorption by incident laser power. Further we show
that the nonlinear periodic structure can support gap solitons which absorbs all the incident
energy and do not scatter any light outside the hetero-guide.

Key words and phrases: interference effects, optical periodic structures, optical non-
linearity.

1. Introduction

In recent years there has been a great deal of interest to exploit one of the funda-
mental properties of light, namely, its ability to interfere, to engineer the absorption
in a given structure. In a series of papers [1, 2], destructive and constructive inter-
ference with two coherent inputs were shown to lead to a perfectly absorbing or a
scattering structure. The original idea stems back to several decades back when Fred-
erick showed that two incoming waves falling on a metallic grating can render it to be
perfectly absorbing [3]. There was another interesting proposal by Yariv where back
scattered reflected waves were ruled out in a coupled fiber-disk resonator system [4].
Experimental realization came from a different group which clearly showed how to en-
gineer the absorptive properties in a system [5]. There were several reports on planar
geometries using absorptive polymers or metal dielectric composites on such systems,
wherein, all the incident radiation is absorbed by the structure [6, 7]. This phenom-
enon of total absorption with a single incident beam is now referred to as critical
coupling (CC). With two coherent inputs the same physical phenomenon of total ab-
sorption is called coherent perfect absorption (CPA) [1, 8]. Incidentally the standard
laser near threshold is a time-reversed analog of CPA. There have been recent efforts
to combine the notions of CPA and parity-time (𝒫𝒯 ) symmetry [9]. As of now linear
properties of CC and CPA are well understood. In view of the lack of the studies on
nonlinear systems, a detailed study was launched by Reddy et al., to investigate the
role of nonlinearity as an additional handle [10–12]. Note that, CC and CPA hinges
on a very delicate balance of phase and amplitude relations. A nonlinear counterpart
offers the remarkable possibility to achieve CC or CPA resonances by means of ad-
justing the laser power. In this review we present a brief overview of what has been
achieved so far on the linear and nonlinear systems exhibiting perfect absorption and
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super-scattering. The goal is to expose to the reader the wide variety of possibilities
and the potential applications in diverse areas of optics.

The organization of the review is as follows. In Section 2, we review critical coupling
and coherent perfect absorption in linear systems. We then investigate CC in Kerr
nonlinear structures in Section 3. In Section 4, we extend out studies to understand
CPA in Kerr nonlinear slab. Gap solitons in the context of CPA in a nonlinear periodic
structure are studied in Section. 5. In conclusions we summarize the important results
in Section 6.

2. Linear Coherent Perfect Absorption

2.1. Critical Coupling

Critical coupling (CC)refers to a case when all the incident radiation on micro- or
nano- surfaces is completely absorbed without any scattering. The coupling of optical
power between micro-resonators and dielectric waveguides was considered by Yariv
theoretically [4]. It was shown that when the internal losses of the resonator are equal
to the coupling losses (with waveguide), one has null transmission from the structure.
This was attributed to the destructive interference of the interfering waves. It was
also shown that this null transmission doesn’t depend on type of coupling and the
resonator. This was experimentally realized in a fiber taper to a silica-micro-sphere
system by Cai et al. [5].

Later, this was extended to a planar geometry with the help of layered stratified
media [6]. As shown in Fig. 1, the planar geometry consisted of a very thin (5 nm)
absorbing medium (organic dye), spacer layer and a distributed Bragg reflector (DBR).

Figure 1. Schematics of the critical coupling structure in planar geometry and
illumination

The DBR was chosen to ensure null transmission from the structure when the
wavelength of incident (at normal incidence) radiation falls in the stopgap. The thick-
ness of the spacer layer was tuned so as to ensure the perfect destructive inference
among all the reflected waves demanding equality in amplitudes and (2𝑛+1)𝜋 offset in
phase. Thus, one has no reflection and transmission from the structure, leading to per-
fect absorption of light. In such a situation one says that light is critically coupled to
the structure. The wavelength at which CC occurs depends mainly on the properties
of the absorber layer. For example, given an absorber like organic dye [6], one can-
not really have a good control over the location of CC dip. Note that heterogeneous
media can offer a true handle over the absorptive properties of the materials (both in
linear and nonlinear regimes) [13,14]. It was this property of the metal-dielectric com-
posite medium, which was exploited to demonstrate the flexibility over the location of
CC [7]. The volume fraction of metal inclusions offers the needed flexibility to control
the location of localized plasmon resonance and the oscillator strength. It was also
shown that for higher volume fraction of metal inclusions (higher oscillator strengths)
one can even have CC at two different wavelengths. Similar ideas were also extended
to oblique incidence case and CC was achieved for both TE and TM polarizations [15].
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It was also shown that for high oscillator strength one can excite longitudinal bulk
plasmons with TM polarized light which are absent in TE case. The reflecting prop-
erties of the meta-materials were also used to study CC in Fabry–Perot geometry [16].
CC was also demonstrated experimentally in plasmonic cavity arrays [17].

Apart from the fundamental studies, there have been proposals and demonstrations
to realize applications of CC. It was shown that by controlling the coupling between
the ring resonator and optical waveguide, one can realize switches, which operate at
very low thresholds [18]. An experimental demonstration showed that one can have a
good control over the transmitted power in the fiber by adjusting the internal losses of
the ring resonator near CC resonance. The wavelength selective optical amplification
and oscillations were also demonstrated by other group [19]. Since all incident energy
is stored in the structure at CC, there will be large buildup of fields in the absorbing
layer and one can mimic cavity QED in strong coupling regime [16,20].

2.2. Coherent Perfect Absorption

As noted in the Sec. 2.1, CC in the planar structures involves unidirectional
illumination geometry and perfect destructive interference among all the reflected
waves. A relatively much simpler geometry was proposed by Chong et al. to study
such destructive-interference-assisted absorption known as coherent perfect absorption
(CPA) [1]. CPA geometry consisted of a silicon wafer, illuminated at normal incidence
from both the sides. It was shown that absorption of the medium can be modulated
by changing the phase difference between the two incident beams. Later, this was ex-
tended to the oblique incidence case [8]. As noted earlier the absorbing slab was again
chosen to be a metal-dielectric composite to have greater flexibility.

We now briefly explain the mechanism of CPA following Ref. [8]. Consider the
system shown in Fig. 2(a), consisting of a slab of width 𝑑.

Figure 2. (a) Schematics of the CPA geometry and illumination. (b) Forward
and backward propagating waves in different media

We assume that the ambient medium are identical in nature to have inversion
symmetry. Let the slab be illuminated by coherent monochromatic plane polarized
light from opposite ends of the structure symmetrically with unit amplitudes. We
denote forward (backward) incident wave amplitude on the left (right) side of the slab
and the resulting reflection and transmission by subscript 𝑓 (𝑏). For example, for the
forward (backward) incidence the reflected and transmitted amplitudes are given by
𝑟𝑓 (𝑟𝑏) and 𝑡𝑓 (𝑡𝑏), respectively. By inherent symmetry we have 𝑟𝑓 = 𝑟𝑏 and 𝑡𝑓 = 𝑡𝑏
and this implies that the total scattering amplitudes on both the sided are same i.e.,
𝑟𝑓 + 𝑡𝑏 = 𝑟𝑏 + 𝑡𝑓 . The magnitude of intensity scattering depends crucially on the
interference effects. For example, the scattered intensity on the left side of the slab is
given by |𝑟𝑓+𝑡𝑏|2, this can be zero when the two conditions are met i.e., |𝑟𝑓 | = |𝑡𝑏| and
the phase difference between them (Δ𝜙 = |𝜙𝑟𝑓 − 𝜙𝑡𝑏 |) is an odd multiple of 𝜋. This
destructive interference cancels the scattering form the structure on both sides (by the
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virtue of symmetry) resulting in completing absorption of the incident light known as
CPA. Apart from destructive interference one can also have constructive interference
when Δ𝜙 is an even multiple of 𝜋 known as super-scattering (SS) [21]. There have
been extension of CPA to include the surface modes. Experimental demonstration of
CPA mediated by surface plasmons in silver gratings on silicon substrate was given by
Yoon et al. [22]. There were efforts to make CPA broadband [23]. A peculiar property
of bending of light on the same side of the normal was shown by exploiting CPA by
Shourya et al. [21]. The system consisted of a free standing corrugated metal film,
illuminated under CPA geometry, the zeroth order specular reflection was suppressed
by CPA leading to effective scattering of light only from the ‘-1’ order, while the ‘+1’
order being in resonance with the surface mode.

In literature one often discusses an interesting parallel of CPA as anti-laser or time
reversed laser [2]. The time reversed lasing action can be understood in the following
manner. A laser just above threshold amplifies the radiation in the active medium
and gives out the coherent light in either directions when imperfect mirrors are used.
Time reversal in this context amounts to the replacement of gain by loss and reversing
the outgoing radiation to incoming ones. Thus, one has complete absorption of the
incident radiation by the lossy medium. It is the destructive interference which nullifies
the scattering from the structure if proper phase and amplitude conditions are met.
Due to fundamental difference between the optical medium required for lasing (gain)
and anti-lasing (loss) actions can not coexist. It was shown by Longhi [9] that if the
medium obeys parity-time (𝒫𝒯 ) symmetry i.e., 𝜀*(𝑟) = 𝜀(−𝑟) it is possible to have
lasing action and CPA in the same medium with appropriate amplitude and phase
relations. There have been efforts to extend the ideas from time reversed laser to time
reversed surface plasmon amplification by stimulated emission of radiation (SPASER)
also [24, 25]. From a different angle, there have been investigations to extend the
notions of perfect absorption to infrared and terahertz domains in both CC and CPA
geometries using graphene [26–28], as patterned nano-structures of graphene support
plasmon resonances at infrared wavelengths [29].

Apart from the classical notions of perfect absorption, there have been investiga-
tions dealing with quantum aspects of radiation [30–32]. It was shown that one can
achieve 100% visibility in Hong–Ou–Mandel dip for two photon quantum interference
in a resonant tunneling plasmonic structure [33]. This was attributed to perfect de-
structive interference between the squares of amplitude reflection and transmission
coefficients. The idea of CPA was extended to single photons by using path entan-
gled single photons generated by a beam splitter [34]. There have been efforts to
understand CPA at a microscopic level also [35].

3. Nonlinear Critical Coupling

Having discussed the linear properties for CC and CPA, we review some of the
work pertaining to nonlinear systems. The time-reversed lasing action was extended
to optical parametric oscillations by Longhi [36]. The basic idea was to show that the
laser gain can be replaced by parametric oscillator gain and the same notions od time
reversal still holds and one can realize CPA with colored signal or idler inputs. CPA
in the context of homogeneously broadened two-level medium in an optical cavity was
investigated [37]. It was shown that because of the dispersive properties of the two-
level medium, exact time-reversal symmetry is broken. This results in the difference
in the frequencies at which CPA and the lasing mode occur. Furthermore, the time-
reversed lasing action has been extended to transient, chaotic, or periodic coherent
optical fields [38]. CPA devices that perfectly absorb a chaotic laser signal and a
frequency-modulated optical wave were also demonstrated.

Most of the investigations discussed above deal with the extensions of time-reversal
aspects of CPA to nonlinear regime. We explore the role of nonlinearity to control
CPA/CC resonances. We restrict our attention to Kerr nonlinear stratified medium
to probe the possibilities.
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Our system consists of the layered structure, shown in Fig. 1. The dielectric
function of the absorber layer (a metal-dielectric composite) is modeled using Maxwell–
Garnett formula as [7, 13]

𝜖1 (𝜔) = 𝜖ℎ +
𝑓𝑥 (𝜖𝑚 − 𝜖ℎ)

1 + 𝑓 (𝑥− 1)
, 𝑥 =

3𝜖ℎ
𝜖𝑚 + 2𝜖ℎ

, (1)

where 𝑓 is the volume fraction of the inclusion and 𝜖𝑚 (𝜖𝑑) is the dielectric function
of the inclusion (host). The dielectric function of silver is obtained from the proper
interpolation of the experimental data of Johnson and Christie [39]. It is clear from
Eq. (1) that for metal [Re(𝜖𝑚) < 0], there can be resonance when Re(𝜖𝑚) + 2𝜖𝑑 = 0
which is referred to as localized plasmon resonance. Further we assume the spacer
layer to be a Kerr nonlinear dielectric given by

𝜖2 = 𝜖2 + 𝛼|𝐸|2, (2)

with 𝐸 as the electric field, 𝛼 as the nonlinearity constant and 𝜖2 as the linear part
of dielectric function. 𝛼 > 0 (𝛼 < 0) corresponds to focusing (defocusing) nonlinear-
ity. From now on we consider only the case of focusing nonlinearity. The DBR is
made up of 2𝑁 + 1 slabs of alternating ‘𝑎’ and ‘𝑏’ type layers. The ‘𝑎’ (‘𝑏’) type layer
is characterized by refractive index 𝑛𝑎 (𝑛𝑏) and thickness 𝑑𝑎 (𝑑𝑏). Let this structure
be illuminated (at normal incidence) by TE polarized monochromatic plane waves of
wavelength 𝜆. The parameters are chosen such that the DBR reflects in the visible
range of electromagnetic spectrum and the localized plasmon resonance of the com-
posite medium occurs inside the rejection band of DBR. As discussed earlier, only for
certain widths of the spacer layer one satisfies both the conditions for perfect destruc-
tive interference at a specific wavelength of light in the stopgap. At this wavelength
all the incident light is perfectly absorbed by the structure and this is called critical
coupling. The linear CC can found very easily by evaluating the response of the linear
system using the standard characteristic matrices [7].

We now describe a method to evaluate the nonlinear response of the system. There
exists an analytical solution for the nonlinear slab but it is very involved in nature [40].
A very simple method, namely, nonlinear characteristic matrix theory (NCMT) was
developed based on slowly varying envelop approximation (SVEA) [41]. NCMT was
used extensively in the past to probe the underlying physics of optical bistability, gap
solitons, localization of photons in nonlinear structures, etc. [42–45]. We now follow
the route of NCMT to evaluate the nonlinear response of the system. The electric field
(tangential component) solution to the Maxwell equation inside the nonlinear slab can
be written as the superposition of forward and the backward propagating waves with
amplitude dependent phases given by [46]

𝐸𝑦 = 𝐴+𝑒
𝑖𝑘+𝑧 +𝐴−𝑒

−𝑖𝑘−𝑧, (3)

with 𝑘+ and 𝑘− as the wave vectors corresponding to the forward and backward
propagating waves with constant wave amplitudes given by 𝐴+ and 𝐴+, respectively.
𝑘± are given by

𝑘± = 𝑘0
√︀
𝜖2 (1 + 𝑈± + 2𝑈∓)

1/2
, (4)

with 𝑘0 = 𝜔/𝑐 and 𝑈± = 𝛼|𝐴±|2 as the normalized intensities. Note that 𝑘+ and 𝑘−
are different from each other giving rise to nonreciprocity. Starting from the right end
(see Fig. 1), for a given transmission amplitude 𝐴𝑡, the amplitudes in the nonlinear
spacer layer are given by [41](︃

1 1
𝑘+
𝑘0

−𝑘−
𝑘0

)︃(︂
𝐴+

𝐴−

)︂
=𝑀DBR

(︂
1

√
𝜖𝑓

)︂
𝐴𝑡, (5)
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where
√
𝜖𝑓 is the dielectric constant of the final medium and𝑀DBR is the characteristic

matrix of the DBR [47]. The relations for 𝑈± can be obtained from Eq. (5) as

(︂
𝑈+

𝑈−

)︂
=

⃒⃒⃒⃒
⃒⃒
(︃

1 1
𝑘+
𝑘0

−𝑘−
𝑘0

)︃−1

𝑀DBR

(︂
1

√
𝜖𝑓

)︂⃒⃒⃒⃒⃒⃒
2

𝑈𝑡. (6)

In the above equation 𝑈𝑡 = 𝛼|𝐴𝑡|2 is the normalized transmitted intensity and
| · · · |2 implies element wise absolute value squared of the vector components. It is
evident from Eq. (4) that 𝑘± are functions of 𝐴± and one doesn’t know 𝐴± in advance
to solve Eq. (6). But for a given 𝑈𝑡, Eq. (6) can be solved by fixed point iteration
scheme to yield 𝑘±. Using this information one can now calculate all the elements of
nonlinear characteristic matrix [41]. The characteristic matrix for the total structure
𝑀 can then be written as

𝑀 =𝑀1 ×𝑀2 ×𝑀DBR, (7)

where𝑀1 and𝑀2 denote the characteristic matrices for the absorber and spacer layers,
respectively. From the elements of 𝑀 the intensity reflection (𝑅) and transmission
(𝑇 ) coefficients can be computed in the usual manner [45,47]. 𝑈𝑖 can be calculated as

𝑈𝑖 = 𝑈𝑡/𝑇. (8)

The scattering from the structure as function of 𝑈𝑖 can then be found by treating 𝑈𝑡
as a parameter.

We now discuss the numerical results. It is evident form Fig. 3(a) that transmission
𝑇 (dashed curve) is nearly zero due to DBR and dip in the scattering 𝑅 + 𝑇 (solid
curve) around 𝜆 = 410 nm corresponds to CC resonance for the linear structure.
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Figure 3. (a) Intensity transmission coefficient 𝑇 (dashed curve) and total
scattering 𝑅+ 𝑇 (solid curve) as functions of the wavelength 𝜆 for a linear
system. (b) 𝑅+ 𝑇 as a function of incident intensity 𝑈𝑖 at three different

wavelengths, marked by crosses in Fig. 3(a). Corresponding curves are labeled
by 1, 2 and 3, respectively, in increasing order of wavelengths. (Plot

reproduced from Ref. [10])

We now investigate this at higher power levels to understand the effects of nonlin-
earity on CC. Fig. 3(b) shows the total scattering 𝑅+𝑇 as function of input intensity
𝑈𝑖 at three different wavelengths (marked by crosses in Fig. 3(a)). It is clearly evident
from Fig. 3(b) that nonlinearity drives the system away from the CC resonance. Note
that this is in deep contrast with the Fabry–Perot resonances, which survive even at
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higher power levels and shift to higher wavelengths by undergoing a nonuniform bend-
ing (resulting in multivalued character) [41, 45]. The fundamental difference between
optical bistability in Fabry–Perot resonator and the CC resonance can be understood
in the following way. Recall that CC demands the perfect balance in amplitude and
phase relations (for perfect destructive interference), whereas, in optical bistability
nonlinearity amounts to an increase in the effective cavity length and thereby to shifts
of the Fabry–Perot resonances.

Motivated by the changes induces by nonlinearity, an obvious question can be
posed: Can nonlinearity recover CC in the off-resonant system? We show that CC can
be recovered by adjusting the incident power levels. As can be seen from Fig. 4(a),
a linear system away from the CC resonance (solid curve) can be tuned to CC by
increasing the intensity 𝑈𝑖 for a specific detuning of the wavelength (see ‘curve 1’ of
Fig. 4(b)). 𝑅 + 𝑇 as a function of 𝜆 at 𝑈𝑖 corresponding to the minima of curve 1
[see Fig. 4(b)] is shown by dashed curve in Fig. 4(a). This again confirms the fact
that nonlinearity can recover CC in linear off-resonant systems. A system exhibiting
dual CC resonances [7] is also studied along these lines and we found that one can
easily recover CC at one of the wavelengths but it would be difficult to recover CC
simultaneously at both the wavelengths.
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Figure 4. Same in Fig. 3 but now (a) linear response is shown by solid curve and
the dashed curve show the response at higher input intensity 𝑈𝑖 (corresponding

to the minimum of curve 1 in Fig. 4(b)). (Plot reproduced from Ref. [10])

4. Nonlinear CPA

Consider the system shown in Fig. 2(b) consisting of a absorbing slab of thickness
𝑑 illuminated from opposite ends. The dielectric function 𝜖 of the gold-silica composite
(absorbing slab) is modeled using Bruggeman formulation [8,11]. As before, we use the
experimental data of Johnson and Christie [39] for gold and assume the host (silica)
to be dispersionless. We also assume the absorbing slab to be Kerr nonlinear as

𝜖2 = 𝜖+ 𝛼|𝐸|2. (9)

Note that such an inclusion leads to nonlinear absorption, implying complex 𝜒(3) [14,
48]. In order to retain the simplicity, we neglect absorption/dispersion in 𝜒(3) and
assume it to be a constant but retain them in 𝜒(1). Let this slab be illuminated by
𝑠-polarized monochromatic plane waves. In order to evaluate the nonlinear response
of the system, we again follow NCMT [41]. As before, the electric field inside the
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nonlinear slab can be written as

𝐸𝑦 = 𝐴2+𝑒
𝑖𝑘2𝑧+𝑧 +𝐴2−𝑒

−𝑖𝑘2𝑧−𝑧, (10)

with 𝐴2+ (𝐴2−) as the forward (backward) propagating wave amplitude. 𝑘2𝑧± for
oblique incidence are given by

𝑘2𝑧± = 𝑝2𝑧±𝑘0, 𝑝2𝑧± =
√︀
𝜖− 𝑝2𝑥 + |𝐴2±|2 + 2|𝐴2∓|2, (11)

where 𝑝2𝑧± and 𝑝𝑥 =
√
𝜖0 sin 𝜃 are normalized propagation constants along 𝑧 and 𝑥

directions, respectively, 𝐴2± = 𝛼|𝐴2±| are the new dimensionless amplitudes. Evalu-
ating the expression for the tangential component of the magnetic field and rewriting
them as elements of column vector and making use of the appropriate boundary con-
ditions at the interfaces at 𝑧 = ±𝑑/2 gives us(︂

𝐴1+

𝐴1−

)︂
= 𝑀̃−1

𝐼 𝑀̃
(︀
−𝑑/2

)︀(︂𝐴2+

𝐴2−

)︂
, (12)(︂

𝐴3+

𝐴3−

)︂
= 𝑀̃−1

𝐼 𝑀̃
(︀
𝑑/2
)︀(︂𝐴2+

𝐴2−

)︂
, (13)

where 𝑑 = 𝑘0𝑑 is the dimensionless width of the slab and 𝑀̃𝐼 and 𝑀̃
(︀
𝑑/2
)︀
are given

by

𝑀̃𝐼 =

(︂
1 1

𝑝1𝑧 −𝑝1𝑧

)︂
, (14)

𝑀̃
(︀
𝑑/2
)︀
=

(︂
exp (𝑖𝑝2𝑧+𝑑/2) exp (−𝑖𝑝2𝑧−𝑑/2)

𝑝2𝑧+ exp (𝑖𝑝2𝑧+𝑑/2) −𝑝2𝑧− exp (−𝑖𝑝2𝑧−𝑑/2)

)︂
, (15)

with 𝑝1𝑧 =
√︀
𝜖0 − 𝑝2𝑥 as the normalized (to 𝑘0) propagating constant in the ambient

media. CPA corresponds to 𝐴1− = 𝐴3+ = 0 i.e, null scattering for finite input. It
can be easily shown from Eqs. (12)–(15) that, in order to have CPA, the incident
intensities must be same (|𝐴1+|2 = |𝐴3−|2). This immediately implies that the field
solutions corresponding to CPA in the nonlinear slab can only be either symmetric
or antisymmetric in nature. For example, a symmetric (antisymmetric) solution can
be realized when 𝐴1+ = 𝐴3− = 𝐴in and 𝐴2+ = 𝐴2− = 𝐴2 (𝐴1+ = −𝐴3− = −𝐴in

and 𝐴2+ = −𝐴2− = −𝐴2). As a consequence, the 𝑧 component of the normalized
propagating constants for forward and backward propagating waves become equal
(𝑝2𝑧− = 𝑝2𝑧+ = 𝑝2𝑧). Eqs. (12)–(15) can then be written as(︂

1 ±1

𝑝2𝑧 ∓𝑝2𝑧

)︂(︂
𝐴

𝐴

)︂
=𝑀𝑑/2

(︂
1

−𝑝1𝑧

)︂
𝐴in, (16)

where𝑀𝑑/2 is the characteristic matrix for the nonlinear half slab. Note that Eq. (16)

includes the case of linear slab when 𝛼 = 0 and 𝑝2𝑧 =
√︀
𝜖− 𝑝2𝑥. Eq. (16) can be

further reduced to

𝐷𝑆 = 𝑝1𝑧 + 𝑖𝑝2𝑧 tan
(︀
𝑝2𝑧𝑑/2

)︀
= 0, (17)

𝐷𝐴 = 𝑝1𝑧 − 𝑖𝑝2𝑧 cot
(︀
𝑝2𝑧𝑑/2

)︀
= 0, (18)

for symmetric and antisymmetric solutions, respectively. Solving for 𝐷𝑆 = 0 (𝐷𝐴 = 0)
gives us the sufficient conditions for symmetric (antisymmetric) solutions of CPA. The
roots of the above equations when solved for complex 𝜆 yields us the location and the
characteristics of CPA dip.



120 Bulletin of PFUR. SeriesMathematics. Information Sciences. Physics. No 4, 2014. Pp. 112–133

A similar approach can also be employed to find the modes of the Kerr nonlinear
waveguide. A waveguide mode corresponds to finite evanescent output for null input
(𝐴1+ = 0 = 𝐴3−). The symmetric (antisymmetric) solutions to waveguiding imply
𝐴3+ = 𝐴1− = 𝐴𝑡 (𝐴3+ = −𝐴1− = 𝐴𝑡) and Eqs. (12)–(15) then become(︂

1 ±1

𝑝2𝑧 ∓𝑝2𝑧

)︂(︂
𝐴

𝐴

)︂
=𝑀𝑑/2

(︂
1

𝑝1𝑧

)︂
𝐴𝑡. (19)

Eq. (19) can be further reduced to

𝑝1𝑧 − 𝑝2𝑧 tan
(︀
𝑝2𝑧𝑑/2

)︀
= 0, (20)

𝑝1𝑧 + 𝑝2𝑧 cot
(︀
𝑝2𝑧𝑑/2

)︀
= 0. (21)

for symmetric and antisymmetric modes, respectively, with 𝑝1𝑧 = −𝑖𝑝1𝑧. Eqs. (20)–
(21) are also referred to as the mode dispersion relations for symmetric waveguide in
the literature [49].

We now draw an interesting parallel to CPA as anti-waveguiding. A compari-
son between Eqs. (16) and (18) reveals that CPA and waveguiding phenomena form
the opposite ends of a scattering events in the following fashion. CPA (waveguid-
ing) corresponds to finite (null) input and null (finite) output. It can be seen from
Eqs. (17)–(18) that for a linear system, CPA occurs for any input intensities. The
nonlinear system behaves completely different as 𝑝2𝑧 now becomes intensity depen-
dent and CPA can be satisfied only at discrete power levels [due to transcendental
character of Eqs. (17)–(18)].

We now present our numerical results and discuss them. We choose to work far
away from the plasmon resonance to justify our assumption that 𝜒(3) is purely a real
constant. In order to find the location of CPA in linear system we plot |𝐷𝑆 | (dashed
curve) |𝐷𝐴| (solid curve) as a function of 𝜆. It is evident from Fig. 5 that only 𝐷𝑆 = 0
has a root at 𝜆 = 596.4 nm and 𝐷𝐴 = 0 doesn’t have any root in this range. Thus,
CPA in linear system occurs at 𝜆 = 596.4 nm and it is symmetric in nature. To
confirm this we plot |𝐴𝑡/𝐴in|2 (scattering) as a function of 𝜆 in Fig. 6(a) for the same
system. The near-null dip in the scattering occurs exactly at the same 𝜆.
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Figure 5. |𝐷𝑆 | (dashed) and |𝐷𝐴| (solid) as a function of 𝜆 for linear system.
(Plot reproduced from Ref. [11])

The nonlinear response of the system can be found by treating 𝐴 as a parameter,
and relating 𝐴𝑡 with 𝐴in. Thus, CPA would mean 𝐴𝑡 going to zero. As before, we
study the effects of nonlinearity on a linear on-resonant system. Figs. 6(b)–(d) show
the nonlinear response of the system at three different wavelengths marked by crosses
in Fig. 6(a). We find that only for the wavelength tuned at the resonance (see Fig. 6(b))
one can achieve CPA even at discrete power levels, whereas, any other wavelength
detuning fails to do so (see Figs. 6(c)–(d)). It is again evident from Fig. 6(b) that
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CPA at very low power levels (linear regime) is again symmetric in nature which is
consistent with Fig. 5. We also demonstrate that one can recover CPA in the linear
off-resonant system by tuning the power incident power levels. Fig. 7(a) corresponds
to the response of the linear off-resonant system. Fig. 7(b)–(d) show the nonlinear
response of at three different wavelengths marked by crosses in Fig. 7(a). It can be
seen from Fig. 7(b) only for the detuning on the right of the dip of Fig. 7(a) one can
recover CPA at higher power levels. Note the multivalued character of 𝐴𝑡 for a given
𝐴in in the nonlinear response of Figs. 6 and 7 which can be very useful for switching
devices.
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Figure 6. (a) Intensity scattering (log10 |𝐴𝑡/𝐴in|2) as a function of 𝜆 for the
linear structure. 𝐴𝑡 as a function of 𝐴in for three different wavelengths marked

by crosses, namely, (b) 𝜆 = 596.4 nm, (c) 𝜆 = 592.0 nm, (d) 𝜆 = 600.8nm for
symmetric (dashed) and antisymmetric (solid) states. (Plot reproduced

from Ref. [11])
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Figure 7. Same as in Fig. 6, but now for the linear off-resonant system with (a)
𝑑 = 18.50 𝜇m (b) 𝜆 = 592.3, (c) 𝜆 = 588.2 𝜇m, (d) 𝜆 = 596.4 𝜇m. (Plot reproduced

from Ref. [11])
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As mentioned earlier, CPA (SS) corresponds to constructive (destructive) inter-
ference. One can switch from CPA to super-scattering by introducing an additional
phase difference of 𝜋 between the incident beams. The symmetric (𝐴1+ = 𝐴3−) and
antisymmetric (𝐴1+ = −𝐴3−) excitation scheme differ only by a phase difference of
𝜋. From this one finds that the CPA of symmetric solution corresponds the SS of an-
tisymmetric solution and vise versa. It can be seen from the nonlinear response of
Figs. 6 and 7 that the dip of symmetric solution doesn’t correspond to the peak of the
antisymmetric solution. This difference can be attributed to the changes introduced
by nonlinearity.

5. CPA with Gap Solitons

In this section, we further extend the investigations from a single slab to a periodic
layered medium. We consider a symmetric periodic layered medium with alternating
Kerr nonlinear and linear dielectrics illuminated in CPA-like geometry. In the context
of one sided illumination It was shown that the nonlinearity induced total transmis-
sion states correspond to soliton-like spatial profiles known as gap solitons [50, 51].
In addition to the case of normal incidence, gap solitons can be excited at oblique
incidence [43].

In the present context, we ask the question: Is it possible to channel all the inci-
dent light energy into these gap soliton modes? We show that for a symmetric periodic
structure illuminated from opposite ends one can excite gap solitons with null scat-
tering from the structure, resulting in complete transfer of energy into the gap soliton
modes.

We consider the system shown in Fig. 8, with 𝑎 (𝑏) type layer as Kerr nonlinear
(linear) dielectric layer.

Figure 8. Schematics of periodic layered media and illumination. The ‘𝑎’ (‘𝑏’)
type layers are nonlinear (linear) with dielectric function 𝜖𝑎 (𝜖𝑏) and width 𝑑𝑎

(𝑑𝑏). The layers are labeled from the center with even (odd) integer
corresponding to the nonlinear (linear) layers

The total number of periods (with each period composed of linear and a nonlinear
layer) are assumed to be 𝑁 resulting in 2𝑁 + 1 layers. We further assume that
the central layer is nonlinear and the extreme layers are linear. Let this structure
be illuminated by TE polarized monochromatic plane waves of wavelength of 𝜆, at
an angle 𝜃. Maxwell’s equations for the tangential components of the electric and
magnetic fields in any 𝑗𝑡ℎ layer are given by

d𝐸𝑗𝑦
d𝑧

= −𝑖𝐻𝑗𝑥, (22)

d𝐻𝑗𝑥

d𝑧
=

{︃
−𝑖[(𝜖𝑗 − 𝑝2𝑥) + |𝐸𝑗𝑦|2]𝐸𝑗𝑦 for even 𝑗,

−𝑖[(𝜖𝑗 − 𝑝2𝑥)]𝐸𝑗𝑦 for odd 𝑗,
(23)

with 𝑝𝑥 =
√
𝜖𝑖 sin 𝜃. Eqs. (22)–(23) are written in terms of dimensionless variables

given by 𝑧 → 𝑘0𝑧, 𝐸 →
√
𝛼𝐸. Note that 𝐸𝑗𝑦 and 𝐻𝑗𝑥 are in general, complex
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resulting in four coupled differential equations for real and imaginary parts. This set
of coupled differential equations can be solved numerically exactly (see below) and
also approximately.

We now outline a method to solve Eqs. (22)–(23) in a approximate method using
NCMT [41,43]. As before, the electric field in any 𝑗𝑡ℎ layer can be expressed as

𝐸𝑗𝑦 = 𝐴𝑗+𝑒
𝑖𝑝𝑗𝑧+(𝑧−𝑧𝑗) +𝐴𝑗−𝑒

−𝑖𝑝𝑗𝑧−(𝑧−𝑧𝑗), (24)

with 𝑧𝑗 ≤ 𝑧 ≤ 𝑧𝑗+1, 𝑧0 = 0 and 𝑝𝑗𝑧± are given by

𝑝𝑗𝑧± =

{︃√︀
𝜖𝑗 − 𝑝2𝑥 + (|𝐴𝑗±|+ 2|𝐴𝑗∓|) for even 𝑗,√︀
𝜖𝑗 − 𝑝2𝑥 for odd 𝑗.

(25)

In order to ensure that waves are propagating (evanescent) in nonlinear (linear) layers,
we restrict 𝜃 in the range

𝜖𝑎 − 𝑝2𝑥 > 0, 𝜖𝑏 − 𝑝2𝑥 < 0, (26)

so that the structure shown in Fig. 8 represents a system of 𝑁 coupled nonlinear
waveguides, coupled evanescently. Thus, the structure sandwiched between two high
index prisms represents a resonant tunneling geometry [52, 53]. When the resonant
modes (also called supermodes) are supported by the structure, one has complete
transmission from the structure [43,54].

As before, exploiting the symmetry in the central slab it can be shown that solu-
tions to CPA in the central layer can only be either symmetric (𝐴0+ = 𝐴0− = 𝐴0) or
antisymmetric (𝐴0+ = −𝐴0− = −𝐴0) in nature (see Sec. 3). Starting from the central
layer with 𝐴0 as a parameter, one can find the incident amplitude 𝐴𝑖+ (𝐴𝑓−) and the
scattered amplitude 𝐴𝑖− (𝐴𝑓−) on the left (right) side outside the layered medium.
For example, starting from 𝑧0 = 0 in the central layer, the amplitudes (𝐴−2±) in the
nonlinear layer labeled 𝑗 = −2 are given by(︂

𝐴−2+

𝐴−2−

)︂
=

(︂
1 1

𝑝−2𝑧+ −𝑝−2𝑧−

)︂−1

𝑀1(𝑑𝑏) ·𝑀0(𝑑𝑎/2)

(︂
1 1

𝑝0𝑧 −𝑝0𝑧

)︂(︂
𝐴0

±𝐴0

)︂
, (27)

with𝑀1(𝑑𝑎/2) and𝑀2(𝑑𝑏) as the characteristic matrices for nonlinear and linear layers
of widths 𝑑𝑎/2, 𝑑𝑏, respectively. Since Eq. (27) is a nonlinear equation as Eq. (5), we
solve them as outlined in Sec. 3. Repeating the same procedure for all the layers till
end, for example, on the left extreme we have(︂

𝐴𝑖+
𝐴𝑖−

)︂
=

(︂
1 1

𝑝𝑖𝑧 −𝑝𝑖𝑧

)︂−1

𝑀𝑁 (𝑑𝑏)𝑀𝑁−1(𝑑𝑎) · · ·

· · ·𝑀1(𝑑𝑏)𝑀0(𝑑𝑎/2)

(︂
1 1

𝑝0𝑧 −𝑝0𝑧

)︂(︂
𝐴0

±𝐴0

)︂
, (28)

with 𝑝𝑖𝑧 as the normalized propagation constant of the incident (𝐴𝑖+) and scattered
(𝐴𝑖−) amplitudes on the left side of the structure. The scattered (incident) amplitudes
𝐴𝑓+ (𝐴𝑓−) on the right side of the structure can also found by propagating towards
right from the center. As a consequence of inherent symmetry (about 𝑧0 = 0 ),
the symmetric (antisymmetric) solutions correspond to 𝐴𝑖+ = 𝐴𝑓− = 𝐴in (𝐴𝑖+ =
−𝐴𝑓− = −𝐴in), and 𝐴𝑖− = 𝐴𝑓+ = 𝐴𝑡 (𝐴𝑖− = −𝐴𝑓+ = −𝐴𝑡). We then define
normalized scattering intensity 𝑆 = |𝐴𝑖−/𝐴𝑖+|2 = |𝐴𝑓+/𝐴𝑓−|2 = |𝐴𝑡/𝐴in|2. For
nonlinear response, we plot 𝑆 as a function of 𝑈in = |𝐴in|2, 𝑆 → 0 would correspond
to CPA.
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We now exploit symmetry to solve Eqs. (22)–(23) exactly numerically. The solution
to electric and magnetic fields in the central layer under CPA-like illumination scheme
are either symmetric or antisymmetric with

𝐸𝑦(−𝑧) = 𝐸𝑦(𝑧), 𝐻𝑥(−𝑧) = −𝐻𝑥(𝑧), (29)

𝐸𝑦(−𝑧) = −𝐸𝑦(𝑧), 𝐻𝑥(−𝑧) = 𝐻𝑥(𝑧), (30)

respectively. Thus at 𝑧0 = 0 in the central layer we have 𝐻𝑥 = 0 (𝐸𝑦 = 0) for
the symmetric (antisymmetric) solutions. The nonvanishing components 𝐸𝑦 (𝐻𝑥)
at 𝑧0 = 0 for symmetric (antisymmetric) solution is taken as a parameter to find
to the normalized scattering intensity 𝑆 outside the structure in the following way.
Eqs. (22)–(23) can be integrated numerically (with two initial conditions given by 𝐸𝑦
and 𝐻𝑥 at 𝑧0 = 0) until the left/right end ensuring the continuity of the fields at
every interface. As the ambient media are assumed to be linear, the incident and the
scattered amplitudes can be computed in the usual way.

We now present the numerical results. We choose 𝜃 in the range 41∘ to 45∘ to
satisfy the condition in Eq. (26). Most of the results presented are exact, obtained by
numerically integrated Eqs. (22)–(23). We also present some of the results obtained
by approximate method in order to compare them with the exact ones.

We first present the linear results and discuss them. 𝑅 and 𝑇 as a function of 𝜃
for unidirectional illumination are shown in Fig. 9(a).
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Figure 9. Linear response (a) 𝑅 (dashed) and 𝑇 (solid) as a function of 𝜃 for
unidirectional illumination; (b) normalized intensity scattering 𝑆 in log10 scale
as a function of 𝜃 for bidirectional illumination with solid and dashed curves
corresponding to symmetric and antisymmetric solutions, respectively. The
CPA-like dips are labeled from the right edge with even (odd) integers for

symmetric (antisymmetric) cases. (Plot reproduced from Ref. [12])

The sharp resonances in the small range of 𝜃 are due resonant tunneling of electro-
magnetic radiation. The number of such resonances exactly coincides with the num-
ber of waveguides in the structure. At every resonance the phase difference between
(Δ𝜙 = |𝜙𝑟 − 𝜙𝑡|) the reflected and the transmitted light undergoes a characteristic
phase jump of 𝜋. If now one satisfies the equality |𝑟| = |𝑡| near any of the resonances,
for a bidirectional illumination this would mean CPA. We have plotted the normal-
ized intensity scattering 𝑆 from the structure for both symmetric and antisymmetric
solutions for bidirectional illumination in Fig. 9(b) to investigate linear CPA. The
CPA-like dips can be seen from Fig. 9(b), these are labeled from the extreme right
end by the integers 0, 2, 4 (1, 3, 5) for symmetric (antisymmetric) states. A prominent
CPA-like dip can be seen for the curve labeled 2 [see Fig. 9(b)] as the both conditions
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for perfect destructive interference are met i.e., |𝑟| ≈ |𝑡| and phase difference of 𝜋 due
the characteristic phase jump at the resonance.

We now investigate the nonlinearity induced changes in the stopgap of the linear
structure by increasing the incident power levels. It is evident from Fig. 9(a) that the
stopgap of the linear structure begins at 𝜃 = 44.76∘ on the right end. We chose 𝜃 =
44.81∘ [a point marked by cross in Fig. 9] inside the stopgap as our operating point. For
nonlinear response we plot 𝑆 as a function of 𝑈𝑖 for both symmetric and antisymmetric
solution in Fig. 10(a) and 10(b), respectively. Fig. 10 clearly demonstrates that CPA
can be realized even in the stop at higher incident power levels. The CPA-like dips
are labeled following their linear counterparts in Fig. 9(b). It may be noted that,
since nonlinearity drives the on-resonant CPA system away from CPA, it would be
difficult to have prominent CPA dips both in the linear as well as nonlinear regimes.
The insets of Figs. 10(a) and 10(b) clearly demonstrate the nonlinear SS states for
symmetric and antisymmetric states, respectively. The increase in incident intensity
would correspond to extra optical path (for focusing nonlinearity) leading to a shift of
CPA-like dips towards the right edge (see Fig. 9(b)). These dips undergo a nonuniform
bending resulting in multivalued character as shown in Fig. 10.
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Figure 10. Nonlinear response for bidirectional illumination. Normalized
intensity scattering log10 𝑆 as a function of incident intensity 𝑈𝑖 for (a)
symmetric and (b) antisymmetric solutions with insets showing the

corresponding nonlinear SS states. The dips are labeled following Fig. 9. (Plot
reproduced from Ref. [12])

We also computed the electric field intensity |𝐸|2 in the total structure corre-
sponding to the CPA minima and SS maxima using both exact and the approximate
methods.

The typical field profiles corresponding to the symmetric and antisymmetric CPA-
like dips are shown in fig. 11. One can see one-, two-, many-, soliton-like intensity
profiles corresponding to CPA-like dips. For example, the field profile corresponding
to the CPA-like dip labeled by ‘0’ shown in Fig. 11(a) can be fitted with 𝐴/ cosh2(𝛽𝑧)
for both exact and approximate methods. Unlike the CPA case, the lower order SS
intensity profiles are localized away from the center of the structure (see Fig. 12).

It can seen from Figs. 11 and 12 that the approximate and the exact methods
differ very little with approximate method estimating the intensities slightly higher
than that of exact one. This good agreement validates the SVEA in the present
context.
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Figure 11. |𝐸|2 inside the total structure as a function of 𝑧 corresponding the
nonlinear CPA-like dips shown in Fig. 10. Solid (dashed) curves depict the

exact (approximate) solutions. Panels of Fig. 11(a)–(d) correspond to CPA-like
dips labeled 0-3, respectively. The dotted line in Fig. 11(a) shows the envelope

fitted with 𝐴/ cosh2(𝛽𝑧). (Plot reproduced from Ref. [12])
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Figure 12. Same as in Fig. 11 but now for nonlinear SS states (see insets of
Fig. 10) corresponding to (a) symmetric (0′) and (b) antisymmetric (1′)

solutions. (Plot reproduced from Ref. [12])

6. Conclusions

In conclusion, we have presented a brief review of linear and nonlinear effects in
systems supporting CC and CPA. We have shown how laser power plays an important
role in recovering the CC and CPA dips in detuned systems. Further, we demonstrate
recovery of CPA at discrete values of incident powers. Applied to a nonlinear periodic
structure, gap solitons are shown to exists which do not scatter any light. Results
reported here can find many applications in linear and nonlinear optical devices.

One of the authors (SDG) gratefully acknowledges the invitation for writing this
review.
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УДК 535.5: 537.87
Нелинейное когерентное полное поглощение

К. Нирикшан Редди, С. Датта Гупта
Институт физики

Университет Хайдерабада
Индия, Хайдерабад, 500046

Рассматриваются некоторые из последних направлений и их реализации с использо-
ванием идеальной деструктивной интерференции света в микро- и наноструктурах. Это
относится к оптическим структурам, в которых можно управлять эффективным по-
глощением и максимизировать его до полного поглощения. Рассматриваемые эффекты
в решающей степени зависят от когерентных свойств падающего излучения. Эффект,
достигаемый с одной (двумя или более) падающей плоской волной (волнами) носит на-
звание критической связи (когерентное полное поглощение). Таким образом, в системе,
поддерживающей критическую связь (КС) или когерентное полное поглощение (КПП),
всё падающее излучение может быть поглощено, что приводит к нулевому рассеянию.
В частности, вся энергия падающего света может быть передана определённой моде
многомодовой структуры, если такие моды поддерживаются системой. Дан краткий об-
зор КС и КПП в линейных системах с целью представить их основные принципы как
обращённый во времени лазерный эффект и обсудить некоторые из их будущих прило-
жений. Далее рассматриваются работы авторов в направлении расширения КС и КПП
в область нелинейных взаимодействий, где одна или более слоистых сред может быть
нелинейной с керровским типом нелинейности. Показано, что путём изменения пада-
ющей лазерной мощности дисперсионная нелинейность может служить практическим
инструментом управления процессом полного поглощения. Далее показано, что нелиней-
ная периодическая структура может поддерживать солитонные решения в запрещённой
зоне, которые поглощают всю падающую энергию, и не рассеивать свет за пределы
гетеро-волновода.

Ключевые слова: интерференционные эффекты, оптические периодические струк-
туры, оптическая нелинейность.
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