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The computational scheme for solving heat conduction problem with periodic source func-
tion in multilayer cylindrical domain is suggested. The domain has a non-trivial geometry
and the thermal coefficients are non-linear functions of temperature and have discontinu-
ity of the first kind at the borders of the layers. The computational scheme is based on an
algorithm for solving difference problem using the explicit-implicit method. The OpenCL re-
alization of the suggested algorithm for calculations performed on a GPU is also compared to
calculations performed using a CPU. It is shown that the scheme can be successfully applied
to simulations of thermal processes in pulsed cryogenic cell, which is intended for pulse feed-
ing the working gases into the working space of the ion source within the millisecond range.
The results are given for a simulation of one of the particular cell structures, which is as-
sumed to correspond to the practical realization. The computational scheme can be used for
the optimization problem of the cell model parameters.

Key words and phrases: heat evolution, periodical heating source, multilayer cylin-
drical structure, finite-difference scheme, OpenCL realization.

Introduction

In modern science and technology of thermal conductivity, there is a very common
phenomena for the study of objects with complex geometric and physical structure.
The main goal of this work is to suggest a computational scheme for solving heat
conduction problem with a periodic source in multilayer cylindrical domain. This
problem describes the thermal processes inside a pulsed cryogenic cell in frame of
previously suggested model [1, 2]. The function of this cell is pulse feeding (in the
millisecond range) the working gases into the working space of the ion source [3].
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Figure 1. Schematic view of the object slice. The slice of the object: 0 – cooler,
1 – electrical insulator, 2 – heat source (conductive layer), 3 – external

insulator, 4 – liquid helium temperature terminal with 𝑇 = 4.2K
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The thermal processes can be described by the following system of parabolic partial
differential equations with temperature depended coefficients [4]:
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where 𝑟 ∈ [0, 𝑟max(𝑧)], 𝑧 ∈ [0, 𝑧max(𝑟)] (or (𝑟, 𝑧) ∈ Ω) and 𝑡 ≥ 0. The domain consists
of different layers with different densities and thermal coefficients; thus, the index 𝑚 is
corresponds to a layer. The source function in Eq. (1) is 𝑋𝑚(𝑇 ) ≡ 0 for the layers
𝑚 = 0,1, and 3 (there is no source) and has a periodical time dependence.

In a common case, the thermal coefficients are nonlinear functions of the tempera-
ture and the spatial coordinates with discontinuities of the first kind (for 𝑚+1 layers,
there are 𝑚 points of discontinuities). The initial and the boundary conditions are
taken as ⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑇

𝜕n
= 0 ∀ (𝑟, 𝑧) ∈ 𝛿Ω ∖ {(𝑟, 𝑧) : 𝑧 = 𝑧max},

𝑇 = 𝑇0 ∀ (𝑟, 𝑧) ∈ {(𝑟, 𝑧) : 𝑧 = 𝑧max},

𝑇 (𝑟, 𝑧, 𝑡 = 0) = 𝑇0, ∀ (𝑟, 𝑧) ∈ Ω,

(2)

where 𝛿Ω is the boundary of the Ω, and n is the normal vector of 𝛿Ω. The temperature
at the right side is always equal to 𝑇0 because of contact with thermostat.

The parameter 𝜌 and the functions 𝑐𝑉 , 𝜆 and 𝑋𝑖 = 𝑋(𝑇𝑖) have discontinuities
of the first kind at the following surfaces with radii: 𝑟*0 , 𝑟

*
1 , and 𝑟*2 in the interval

[0 . . . 𝑟max]. Conjugation conditions between materials are considered to be ideal,i.e.
at the discontinuity points, the temperature and the heat currents from left side and
right side are equal.

1. Numerical Sheme

The initial-boundary value problem Eqs. (1)–(2) has been approximated by the
following mixed explicit-implicit finite difference scheme [5,6]:

𝜌𝑖,𝑗 𝑐𝑉 𝑖,𝑗

̂︀𝑇𝑖,𝑗 − 𝑇𝑖,𝑗
𝜏

=Λ𝑖 [ ̂︀𝑇𝑖,𝑗 ] +Λ𝑗 [ 𝑇𝑖,𝑗 ] +𝑋𝑖,𝑗 , (3)

where ̂︀𝑇𝑖,𝑗 is temperature on the next time step, 𝑇𝑖,𝑗 – temperature on the current
time step, 𝜏 is time-step.

Numerical solutions of Eq. (3) can be obtained using a special non-uniform grid [5]:

𝜔 = {(𝑡, 𝑥, 𝑧) | 0 6 𝑡 <∞, 𝑡𝑖 = 𝑘 · ℎ𝑡, 𝑘 ∈ N0;

0 6 𝑟 6 𝑟max, 𝑟𝑖+1 = 𝑟𝑖 + ℎ𝑖+1, 𝑖 = 0, . . . , 𝑁𝑗 − 1; (4)

0 6 𝑧 6 𝑧max, 𝑧𝑗+1 = 𝑧𝑗 + 𝜂𝑗+1, 𝑗 = 0, . . . ,𝑀𝑖 − 1}.

The spatial finite difference operator is:
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where 𝑖 = 1, . . . , 𝑁𝑗 − 1, 𝑗 = 1, . . . ,𝑀𝑖 − 1, ℎ𝑖 = 𝑟𝑖 − 𝑟𝑖−1, 𝜂𝑗 = 𝑧𝑗 − 𝑧𝑗−1,

~𝑖 = (ℎ𝑖+1 + ℎ𝑖) /2, 𝜂𝑗 = (𝜂𝑗+1 + 𝜂𝑗) /2, 𝑇𝑖,𝑗 = 𝑇 (𝑟𝑖, 𝑧𝑗 , 𝑡𝑘), ̂︀𝑇𝑖,𝑗 = 𝑇 (𝑟𝑖, 𝑧𝑗 , 𝑡𝑘+1),



Ayriyan A. S. et al. Computational Scheme for Solving Heat Conduction . . . 55

𝜆𝑖,𝑗 = 𝜆𝑚(𝑇𝑖,𝑗), 𝑐𝑉 𝑖,𝑗 = 𝑐𝑉 𝑚(𝑇𝑖,𝑗), 𝑋𝑖,𝑗 = 𝑋𝑚(𝑇𝑖,𝑗), 𝑟𝑖± 1
2
= (𝑟𝑖 + 𝑟𝑖±1)/2,

𝜆𝑖± 1
2 ,𝑗

= 𝜆𝑚(𝑇𝑖,𝑗 + 𝑇𝑖±1,𝑗)/2, 𝜆𝑖,𝑗± 1
2
= 𝜆𝑚(𝑇𝑖,𝑗 + 𝑇𝑖,𝑗±1)/2.

The indices 𝑖 and 𝑗 are global for the whole computational domain. The index 𝑚,
which marks the material is chosen correspondingly to the domain region, from which
the pair (𝑖, 𝑗) is taken.

The difference equation (Eq. (3)) could be soved by the Thomas algorithm [7]. For

that, one needs to initialize values 𝛼0, 𝛽0, and ̂︀𝑇𝑁𝑗 ,𝑗 for the forward sweep and back
sweep of the method respectively. These values have to be initialized to satisfy the
boundary conditions (2): ⎧⎪⎨⎪⎩

𝛼0 = 1, 𝛽0 = 0.

̂︀𝑇𝑁𝑗 ,𝑗 =
𝛽𝑁𝑗−1

1− 𝛼𝑁𝑗−1
.

(7)

Note that in the case of a non-uniform grid or discontinuities of the first kind of the
thermal coefficients, Scheme (3) has the first order difference approximation via spatial
coordinates1 [4, 5]. Therefore, for approximations of the boundary and conjugation
conditions, it is enough to use the difference approximation of the first order.

The coefficients for the forward sweep of the Thomas algorithm 𝛼𝑖* and 𝛽𝑖* at the
discontinuity point (on the border between layers) are given as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝛼𝑖* =
𝜆*𝑚+1ℎ𝑖*

𝜆*𝑚+1ℎ𝑖* + 𝜆*𝑚ℎ𝑖*+1(1− 𝛼𝑖*−1)
,

𝛽𝑖* =
𝜆*𝑚ℎ𝑖*+1𝛽𝑖*−1

𝜆*𝑚+1ℎ𝑖* + 𝜆*𝑚ℎ𝑖*+1(1− 𝛼𝑖*−1)
.

(8)

The difference scheme (3)–(8) has unconditional stability related to spatial step ℎ𝑖
and conditional stability related to 𝜂𝑗 [6]:

𝜏 6
min |𝜂𝑗 |

2
min

⃒⃒⃒⃒
𝜌(𝑇, 𝑟, 𝑧)𝑐𝑉 (𝑇, 𝑟, 𝑧)

𝜆(𝑇, 𝑟, 𝑧)

⃒⃒⃒⃒
. (9)

Generally, the conditional stability could be a strong limitation for the practical
usage of a difference scheme. However, our scheme is practical in the cases where
spatial step is sufficiently large in one direction, especially, where the step in other
direction is too small; and that is the case of our model.

Of course, one could discuss the Alternating Direction Implicit (ADI) method [4,7]
which is absolutely stable with relation to the choice of spatial step. The motivation
for our choice of method derives from the relative simplicity of technical realization
when compared to ADI and the natural affinity for parallel computing (parallelization
in direction when it has conditional stability).

The numerical algorithm, described above, we implemented by means of the OpenCL
language, and this realization is based on the following idea. In each time step, the
cycle for 𝑗-index from 1 to 𝑀 − 1 is parallelized. Each called thread simultaneously
calculates the sought-after function by the Thomas algorithm, see Fig. 2. In the fig-
ure, we show the discretization of the function domain. Particularly, we group a set
of points corresponding to one 𝑗th thread. We also show the points involved in the
calculation of the given (𝑖, 𝑗) point (bold point and crossed points on the Fig. 2).

1Actually, the order of difference approximation depends on the choice of a norm [4,5].
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Figure 2. Schematic representation of discretization of the function domain

2. Results of Numerical Simulations and Discussion

In this work we discuss the results of the numerical simulations only for one par-
ticular choice of the configuration of the object (Fig. 1). Its geometrical charac-
teristics have been taken as follows: 𝑟0 = 0.12 cm, 𝑟1 = 0.125 cm, 𝑟2 = 0.13 cm,
𝑟max = 0.1301 cm, 𝑧0 = 4 cm, 𝑧max = 5 cm. In the frame of this work, physical and
engineering needs of the object geometry are not discussed.

The temperature dependencies of thermal coefficients, 𝑐𝑉 𝑚 specific heat capacity
and 𝜆𝑚 thermal conductivity, for each materials are given as it is in [1, 2]. For the
chosen materials the corresponding data points have been taken from [8]. The densities
of the chosen materials are 𝜌0 = 8.92, 𝜌1 = 𝜌2 = 2 and 𝜌3 = 2.5 in units g/cm3. For
this concrete configuration, the value 10−5 s is suitable for time-step 𝜏 (9)). The period
of source switching is 𝑡prd = 25ms, where the heating time is 𝑡src = 1ms. The critical
value of temperature is taken as 𝑇crit = 42K (temperature of evaporation of working
gases).

The initial temperature has been taken to be equal 𝑇0 = 4.2K (the temperature of
liquid helium). Note that because of the structural features of the object, especially
because of existence of tiny layers covering the core cylinder, the choice of spatial step
in the radial direction has to be smaller in comparison to the size of the layers (at least
in order of magnitude) to guarantee the stability of the solution. Therefore, our choice
of the difference scheme (see Section 1), which is suitable for the technical realization
is justified.
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a At 𝑡 = 1ms after switching on the heat
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Figure 3. Temperature profile 𝑇 (𝑟, 𝑧) at different times

In Fig. 3 we show the temperature profiles at the very beginning. The temperature
inside the object at 𝑡 = 1ms is shown in the left (Fig. 3,a). At the same moment, the
source is switching off in the first period of source function. Because the radius of the
cylinder is much smaller than its length, the heat first flows to the central axis and
then to the right border, where the cryostat (the liquid helium temperature terminal)
is located at 𝑧max = 5 cm.
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Figure 4. Time evolution of the surface temperature at 𝑧 = 0 (solid line), critical
temperature for evaporator and condensation of working gas (dashed line)

In the Fig. 3,b we show the temperature distribution at 𝑡 = 25ms (after first
period). One period of the source switching 𝑇prd is enough time to equilibrate the
temperature in radial direction (see Fig. 3,b). Such behavior repeats for approximately
5 ∼ 10 sec (setting time) until a stable periodic regime is achieved (see Fig. 4). The
setting time varies depending on the design of the object and switching time of the
source.

The time calculations for different 𝑁 ×𝑀 are given in the Table 1 (here and in
the table: 𝑁 = max

∀𝑗
𝑁𝑗 and 𝑀 = max

∀𝑖
𝑀𝑖). To demonstrate the results of OpenCL

algorithm, the calculations for temperature evolution in time interval 𝑡 ∈ [0, 0.0765]
with time-step 𝜏 = 10−6 s have been carried out. In the table we use the following
notations: CPU – Core i7 3517U (Ubuntu 11.0) and GPU – GF GTX 470 (Core
2 Duo, Debian 6.0). During the compilation of programs -O2 optimization flag has
been used. It is shown that there is an interval of increasing number of points of
discretization in axial direction (𝑀) where the calculation time using GPU remains
the same. In the Table 1 we compare the calculation times for 𝐶𝑃𝑈 and 𝐺𝑃𝑈 using
3 different grids with the same 𝑁 = 431 and two with the same 𝑀 = 401. Therefore,
the choice of our algorithm allows us increase the density of our computational grid
in the axial direction, practically without loss of calculation time.

Table 1
Calculation time (in seconds) of OpenCL implementation for different grid size

𝑁 ×𝑀 𝑇CPU 𝑇GPU 𝑇CPU/𝑇GPU

431× 101 309 345 0.896
431× 201 607 349 1.739
431× 401 1315 357 3.683
631× 401 1968 509 3.866

3. Conclusion

We have suggested a computational scheme for solving heat conduction problem
with periodic right side (source) in multilayer cylindrical domain. The scheme is based
on explicit–implicit method. Because of the complex srtucure of the domain, the
choice of the method is suitable for the technical realization. Its OpenCL realization
has been developed. It is shown that there is an interval of increasing number of points
of discretization in axial direction, where the calculation time using GPU remains the
same.

The scheme has been applied for simulation of heat conduction process with a
periodical source in criogenic cell. The results show that the temperature regime
on the surface of the cryogenic cell has non-negligible setting mode (around 5 ∼ 10
seconds) which is larger in comparison to the working period of the device. The key
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characteristics of the device is working thermal process that has been achieved by a
particular choice of the model parameters.
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Вычислительная схема решения задачи теплопроводности

в многослойной цилиндрической области
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В работе предложена вычислительная схема решения задачи теплопроводности с пе-
риодической функцией источника в многослойной цилиндрической области. Область
имеет нетривиальную геометрию и теплофизические коэффициенты являются нелиней-
ными функциями, зависящими от температуры, и имеют разрывы первого рода на гра-
ницах слоёв. Вычислительная схема основана на алгоритме решения разностной задачи
с явно-неявной пространственно-временной аппроксимацией. Обсуждается реализация
алгоритма на языке OpenCL для проведения расчётов на ГПУ, дано сравнение с вычис-
лениями, выполненными на ЦПУ. Показано, что схема может быть успешно применена
для моделирования тепловых процессов в импульсной криогенной камере, предназна-
ченной для импульсной подачи рабочих газов в рабочую область ионного источника
в миллисекундном диапазоне. Результаты приведены для моделирования конкретной
структуры криогенной камеры, которая удовлетворяет требованиям для его практиче-
ской реализации.

Ключевые слова: уравнение теплопроводности, периодический источник, много-
слойная цилиндрическая структура, конечно-разностная схема, OpenCL.
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