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The computational scheme for solving heat conduction problem with periodic source func-
tion in multilayer cylindrical domain is suggested. The domain has a non-trivial geometry
and the thermal coefficients are non-linear functions of temperature and have discontinu-
ity of the first kind at the borders of the layers. The computational scheme is based on an
algorithm for solving difference problem using the explicit-implicit method. The OpenCL re-
alization of the suggested algorithm for calculations performed on a GPU is also compared to
calculations performed using a CPU. It is shown that the scheme can be successfully applied
to simulations of thermal processes in pulsed cryogenic cell, which is intended for pulse feed-
ing the working gases into the working space of the ion source within the millisecond range.
The results are given for a simulation of one of the particular cell structures, which is as-
sumed to correspond to the practical realization. The computational scheme can be used for
the optimization problem of the cell model parameters.

Key words and phrases: heat evolution, periodical heating source, multilayer cylin-
drical structure, finite-difference scheme, OpenCL realization.

Introduction

In modern science and technology of thermal conductivity, there is a very common
phenomena for the study of objects with complex geometric and physical structure.
The main goal of this work is to suggest a computational scheme for solving heat
conduction problem with a periodic source in multilayer cylindrical domain. This
problem describes the thermal processes inside a pulsed cryogenic cell in frame of
previously suggested model [1,2]. The function of this cell is pulse feeding (in the
millisecond range) the working gases into the working space of the ion source [3].

Figure 1. Schematic view of the object slice. The slice of the object: 0 — cooler,
1 — electrical insulator, 2 — heat source (conductive layer), 3 — external
insulator, 4 — liquid helium temperature terminal with T'=4.2K

Received 13" January, 2015.
The work was supported by RFBR grants 14-01-00628 and 14-01-31227.



54 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No1,2015. Pp.53-59

The thermal processes can be described by the following system of parabolic partial
differential equations with temperature depended coefficients [4]:
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<r)\m(T)(Zz;> + % <Am(T)ZZ> + X (T'1), (1)

where 7 € [0, "max(2)], 2 € [0, Zmax(7)] (or (r,2) € Q) and ¢t > 0. The domain consists
of different layers with different densities and thermal coefficients; thus, the index m is
corresponds to a layer. The source function in Eq. (1) is X,,,(7") = 0 for the layers
m = 0,1, and 3 (there is no source) and has a periodical time dependence.

In a common case, the thermal coefficients are nonlinear functions of the tempera-
ture and the spatial coordinates with discontinuities of the first kind (for m + 1 layers,
there are m points of discontinuities). The initial and the boundary conditions are
taken as o7

%—0 V(r,z) € 6Q\{(r,2): 2 = zZmax},
T="T V(r,z) € {(r,z) : 2 = Zmax}, (2)
T(r,z,t =0)="Tp, Y (r, z) € Q,

where 6¢2 is the boundary of the 2, and n is the normal vector of ). The temperature
at the right side is always equal to Tj because of contact with thermostat.

The parameter p and the functions ¢y, A and X; = X (7;) have discontinuities
of the first kind at the following surfaces with radii: rj, 7], and r3 in the interval
[0...7max]. Conjugation conditions between materials are considered to be ideal,i.e.
at the discontinuity points, the temperature and the heat currents from left side and
right side are equal.

1. Numerical Sheme

The initial-boundary value problem Egs. (1)—(2) has been approximated by the
following mixed explicit-implicit finite difference scheme [5,6]:
T — T ~
pijevig—t——L = N[ T,; 1+ Nj[Ti; ] + Xij, (3)

T

where ﬁ] is temperature on the next time step, 7; ; — temperature on the current
time step, 7 is time-step.
Numerical solutions of Eq. (3) can be obtained using a special non-uniform grid [5]:
w ={(t,z,2)|] 0<t<oo, ti=k-hy k& Np;
0 <7 < Tmax; Ti+1:7'i+hi+1a i:Ow'wNj_l; (4)
0<2< Zmaxs Zj+1 =% +Mjp1, J=0,...,M; —1}.

The spatial finite difference operator is:
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where ¢ = 1,...,Nj - 1, j = 1,...,Mi - 1, hl = Ty —Ti—-1, 1j = Zj — Zj—1,
hi = (hi‘i’l + h’l) /2’ 71] = (77j+1 +77]) /2> Tl,j - T(Ti,Zj,tk), j—;,j = T(Ti)zj)tk+l>a
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Xij =Am(Tig),  cvig=cvm(Ti), Xij=Xm(Tiy), rizy = (ri+riz1)/2
Aixd ;= AMm(Tij + Tix1,5)/2,  Aijas = Am(Tij + Tija1)/2.

The indices ¢ and j are global for the whole computational domain. The index m,
which marks the material is chosen correspondingly to the domain region, from which
the pair (i, j) is taken.

The difference equation (Eq. (3)) could be soved by the Thomas algorithm [7]. For
that, one needs to initialize values oo, 8o, and T, ; for the forward sweep and back
sweep of the method respectively. These values have to be initialized to satisfy the
boundary conditions (2):

ap = 1, ﬁo =0.

~ _ 7
TN, ;= [ P, . @
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Note that in the case of a non-uniform grid or discontinuities of the first kind of the
thermal coefficients, Scheme (3) has the first order difference approximation via spatial
coordinates! [4,5]. Therefore, for approximations of the boundary and conjugation
conditions, it is enough to use the difference approximation of the first order.

The coefficients for the forward sweep of the Thomas algorithm a;« and (;« at the
discontinuity point (on the border between layers) are given as follows:

_ Ay 1l
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The difference scheme (3)—(8) has unconditional stability related to spatial step h;
and conditional stability related to n; [6]:

min [n;| | p(T,r,z)ey (T, 7, 2)
< — .
TS —— - min NT.r2) (9)

Generally, the conditional stability could be a strong limitation for the practical
usage of a difference scheme. However, our scheme is practical in the cases where
spatial step is sufficiently large in one direction, especially, where the step in other
direction is too small; and that is the case of our model.

Of course, one could discuss the Alternating Direction Implicit (ADI) method [4,7]
which is absolutely stable with relation to the choice of spatial step. The motivation
for our choice of method derives from the relative simplicity of technical realization
when compared to ADI and the natural affinity for parallel computing (parallelization
in direction when it has conditional stability).

The numerical algorithm, described above, we implemented by means of the OpenCL
language, and this realization is based on the following idea. In each time step, the
cycle for j-index from 1 to M — 1 is parallelized. Each called thread simultaneously
calculates the sought-after function by the Thomas algorithm, see Fig. 2. In the fig-
ure, we show the discretization of the function domain. Particularly, we group a set
of points corresponding to one ;' thread. We also show the points involved in the
calculation of the given (i,7) point (bold point and crossed points on the Fig. 2).

! Actually, the order of difference approximation depends on the choice of a norm [4,5].
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Figure 2. Schematic representation of discretization of the function domain

2. Results of Numerical Simulations and Discussion

In this work we discuss the results of the numerical simulations only for one par-
ticular choice of the configuration of the object (Fig. 1). Its geometrical charac-
teristics have been taken as follows: rg = 0.12cm, r; = 0.125cm, ro = 0.13cm,
rmax = 0.1301cm, zg = 4cm, zmax = dHem. In the frame of this work, physical and
engineering needs of the object geometry are not discussed.

The temperature dependencies of thermal coefficients, ¢y ,,, specific heat capacity
and ), thermal conductivity, for each materials are given as it is in [1,2]. For the
chosen materials the corresponding data points have been taken from [8]. The densities
of the chosen materials are py = 8.92, p; = p» = 2 and p3 = 2.5 in units g/cm?. For
this concrete configuration, the value 107 s is suitable for time-step 7 (9)). The period
of source switching is t,,q = 25ms, where the heating time is ts;,c = 1 ms. The critical
value of temperature is taken as Ty = 42K (temperature of evaporation of working
gases).

The initial temperature has been taken to be equal Ty = 4.2 K (the temperature of
liquid helium). Note that because of the structural features of the object, especially
because of existence of tiny layers covering the core cylinder, the choice of spatial step
in the radial direction has to be smaller in comparison to the size of the layers (at least
in order of magnitude) to guarantee the stability of the solution. Therefore, our choice
of the difference scheme (see Section 1), which is suitable for the technical realization
is justified.
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Figure 3. Temperature profile T'(r, z) at different times

In Fig. 3 we show the temperature profiles at the very beginning. The temperature
inside the object at ¢ = 1 ms is shown in the left (Fig. 3,a). At the same moment, the
source is switching off in the first period of source function. Because the radius of the
cylinder is much smaller than its length, the heat first flows to the central axis and
then to the right border, where the cryostat (the liquid helium temperature terminal)
is located at zpmax = Dcm.
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Figure 4. Time evolution of the surface temperature at z = 0 (solid line), critical
temperature for evaporator and condensation of working gas (dashed line)

In the Fig. 3,b we show the temperature distribution at ¢ = 25ms (after first
period). One period of the source switching Tpyq is enough time to equilibrate the
temperature in radial direction (see Fig. 3,b). Such behavior repeats for approximately
5 ~ 10sec (setting time) until a stable periodic regime is achieved (see Fig. 4). The
setting time varies depending on the design of the object and switching time of the
source.

The time calculations for different N x M are given in the Table 1 (here and in
the table: N = néz;x Nj and M = HIV%X M;). To demonstrate the results of OpenCL
algorithm, the calculations for temperature evolution in time interval ¢t € [0,0.0765]
with time-step 7 = 107 %s have been carried out. In the table we use the following
notations: CPU — Core i7 3517U (Ubuntu 11.0) and GPU — GF GTX 470 (Core
2 Duo, Debian 6.0). During the compilation of programs -O2 optimization flag has
been used. It is shown that there is an interval of increasing number of points of
discretization in axial direction (M) where the calculation time using GPU remains
the same. In the Table 1 we compare the calculation times for CPU and GPU using
3 different grids with the same N = 431 and two with the same M = 401. Therefore,
the choice of our algorithm allows us increase the density of our computational grid
in the axial direction, practically without loss of calculation time.

Table 1
Calculation time (in seconds) of OpenCL implementation for different grid size
NxM | Tcpy | Tapu | Tepu/Tapu
431 x 101 309 345 0.896
431 x 201 607 349 1.739
431 x 401 | 1315 357 3.683
631 x 401 | 1968 509 3.866

3. Conclusion

We have suggested a computational scheme for solving heat conduction problem
with periodic right side (source) in multilayer cylindrical domain. The scheme is based
on explicit-implicit method. Because of the complex srtucure of the domain, the
choice of the method is suitable for the technical realization. Its OpenCL realization
has been developed. It is shown that there is an interval of increasing number of points
of discretization in axial direction, where the calculation time using GPU remains the
same.

The scheme has been applied for simulation of heat conduction process with a
periodical source in criogenic cell. The results show that the temperature regime
on the surface of the cryogenic cell has non-negligible setting mode (around 5 ~ 10
seconds) which is larger in comparison to the working period of the device. The key
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characteristics of the device is working thermal process that has been achieved by a
particular choice of the model parameters.
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B pabore mpejjioxkeHa BBIYMUCIUTEIbHAST CXEMa PEIEHUsI 3a/1a9l TEIJIOITPOBOIHOCTH C I1e-
proaudeckoii PyHKIMEH MCTOYHMKA B MHOTOCJIOWHON ImmHApudecKoit obsactu. Ob6gacTh
“MeeT HETPUBHAJILHYIO TEOMETPHIO U TelTopu3ndeckre KO3 UINEHTD! ABIAIOTCS HeJTUHEeR-
HBIMU (DYHKIIASIMHU, 3aBUCSIIIIIME OT TEMIIEPATYPhl, 1 UMEIOT Pa3pbIBbI IIEPBOTO POjIa, HA I'Pa-
HUIIAX CJI0EB. BbluucimresibHast cxeMa OCHOBAaHA Ha aJIFOPUTME PEIleHUs] PA3HOCTHOMN 331841
C SIBHO-HESIBHOM IPOCTPAHCTBEHHO-BPpEMEHHOI amnmpokcuMareit. O0CyK1aeTcst peaTu3aust
airopurma Ha a3bike OpenCL a1 npoBenenus pacuéros ua ['IIY, nano cpaBHeHnme ¢ Bbrauc-
JseHusiMu, BoinosineHHbIME Ha LIITY. ITokazano, 4To cxeMa MoOXKeT ObITH YCIEITHO MPUMEHEeHa
JJIsl MOJIEJIMPOBAHUSI TENJIOBBIX IIPOIECCOB B UMITYJILCHOII KPHUOTE€HHOII KaMepe, IpeHa3Ha-
YEeHHOM I MMITYJILCHOM TOadn pabodYux ra3oB B Pabodyio 00/1aCTb MOHHOTO MCTOYHUKA
B MUJIJIMCEKYH/IHOM Jnalta3oHe. Pe3ynbraTshl NpUBEEHBI JJIsi MOJEJTUPOBAHUST KOHKDPETHOMN
CTPYKTYPBI KPDHOIMEHHOW KaMephl, KOTOPasl YI0BJIETBOPsieT TPeOOBAHUSM JIJIsI €TI0 ITPaKTHIe-
CKOIl peaJiu3aIiuu.

KurogeBrbie cjioBa: ypaBHEHHE TEIIONPOBOIHOCTH, MEPUOJNIECKUN UCTOUYHUK, MHOTO-
CJIOMHAS IUINHIPUIECKas CTPYKTYpa, KOHeUYHO-pasHocTHasa cxeMa, OpenCL.
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