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In the physical geometry (i.e. in geometry, described completely by its world function)
identical geometric objects have identical description in terms of the world function. As
a result spacelike straight segment is a three-dimensional surface even in the space-time
geometry of Minkowski. Tachyons have two unexpected properties: (1) a single tachyon
cannot be detected and (2) the tachyon gas can be detected by its gravitational influence.
Although molecules (tachyons) of the tachyon gas moves with superluninal velocities, the
mean motion of these molecules appears to be underluminal. The tachyon gas properties
differs from those of usual gas. The pressure of the tachyon gas depends on the gravitational
potential and does not depend on temperature. As a result the tachyon gas may form huge
halos around galaxies. These halos have almost constant density, and this circumstance can
explain the law of star velocities at the periphery of a galaxy. Properties of the tachyon gas
admit one to consider it as a dark matter.

Key words and phrases: discrete geometry, tachyon, dark matter, dark energy, rota-
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1. Introduction

At the metric approach to geometry the space-time geometry is described in terms
of the world function and only in terms of the world function. All geometrical objects
and all geometrical quantities are expressed in terms of the world function 𝜎. Such a
representation of geometrical quantities will be referred as 𝜎-immanent representation.
At the metric approach two different regions ℛ1 and ℛ2 of the space-time may have
different geometries described relatively be world functions 𝜎1 and 𝜎2. Let a physical
body, having the shape 𝐺1 = 𝑔1(𝜎1) in the region ℛ1 evolves as a free moving body
and appears in the region ℛ2 with other geometry. The shape of the body is described
now as 𝐺2 = 𝑔2(𝜎2). How are functions 𝑔1 and 𝑔2 connected? As far as the physical
geometry is a monistic construction, which is described completely by the only quantity
(world function), the only possibility may take place

𝑔1(𝜎) = 𝑔2(𝜎) = 𝑔(𝜎). (1)

The conventional (Riemannian) space-time geometry is pluralistic. It is described
by several basic geometrical quantities, whose properties are described by axioms. In
the pluralistic conception of geometry it is very difficult to consider the problem of
geometrical objects identification in different geometries. This problem is not consid-
ered in the general relativity, which uses different geometries for different regions of
the space-time. The only geometric object which is considered in the general relativ-
ity is the world line of a free pointlike body. It is supposed that the world line of a
free body is a geodesic.

In the framework of Riemannian space-time geometry the shape of a geodesic is
determined by the metric tensor. This conventional definition of the world line of a
free body agrees with the definition (1) for timelike world lines. However it disagrees
with (1) for spacelike world lines, because in the physical geometry a spacelike straight
segment is not a one-dimensional line. It is a three-dimensional surface. It is easy to
verify, using definition of the straight segment 𝒯[𝑃0𝑃1] between points 𝑃0 and 𝑃1

𝒯[𝑃0𝑃1] =
{︁
𝑅|
√︀

2𝜎(𝑃0, 𝑅) +
√︀

2𝜎(𝑅,𝑃1) =
√︀

2𝜎(𝑃0, 𝑃1)
}︁
. (2)
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Indeed, in the 4-dimensional space-time one equation (2) describes 3-dimensional sur-
face, in general. For timelike distances this surface degenerates into one-dimensional
line, because in this case the distance satisfies the anti-triangle axiom√︀

2𝜎(𝑃0, 𝑃2) +
√︀

2𝜎(𝑃3, 𝑃1) 6
√︀

2𝜎(𝑃0, 𝑃1), 𝜎(𝑃𝑖, 𝑃𝑘) > 0, 𝑖, 𝑘 = 0, 1, 2. (3)

For spacelike distances the triangle axiom (3) is not fulfilled, and the set of points 𝑅
satisfying equation (2) is 3-dimensional.

Of course, points of any segment of the “straight” line x = v𝑡 + x0, |v|2 > 𝑐2

satisfy the relation (2), but it is only a small part of points 𝑅 satisfying (2).
Our conceptual logical consideration disagrees with the general opinion that the

segment of straight is a one-dimensional set in any geometry. For instance, Blumental
constructed the distance geometry [1], where he used metric approach to geometry
with distance which does not satisfy the triangle axiom. Blumental failed to construct
a curve in the framework of the metric approach. He was forced to define a curve
as continuous mapping of a segment of the numerical axis onto the space, where the
geometry is given. According to this definition the straight line is a one-dimensional
set, that cannot be formulated in terms of a distance. It is a remnant of the pluralistic
geometric conception.

Ellipsoid ℰℒ𝑃0𝑃1𝑃3 is defined in terms of distance

ℰℒ𝑃0𝑃1𝑃3 =
{︁
𝑅|
√︀
2𝜎(𝑃0, 𝑅) +

√︀
2𝜎(𝑃1, 𝑅) =

√︀
2𝜎(𝑃0, 𝑃3) +

√︀
2𝜎(𝑃1, 𝑃3)

}︁
, (4)

where points 𝑃0, 𝑃1 are focuses of the ellipsoid, and 𝑃3 is some point on the surface
of the ellipsoid.

Degenerated ellipsoid, where the point 𝑃3 on its surface coincides with one of
focuses is by definition segment 𝒯[𝑃0𝑃1] = ℰℒ𝑃0𝑃1𝑃1 of straight between focuses 𝑃0, 𝑃1.
In the geometry, where distance satisfies the triangle axiom the degenerated ellipsoid is
a one-dimensional set. However, when triangle axiom is not satisfied the degenerated
ellipsoid is a (𝑛− 1)-dimensional surface in 𝑛-dimensional space.

The straight segment is defined in the Euclidean geometry by the relation (2). In
the same form it is defined in the space-time geometry of Minkowski. In the proper
Euclidean geometry any smooth curve line is defined as a limit of a broken line, when
lengths of its links (straight segments) tend to zero. In the physical geometry a curve
is defined in the same form. If the curve describes a world line of a free particle, the
vectors describing adjacent links of the broken line are equivalent. Equivalence of vec-
tors means that vectors are in parallel and their lengths are equal. For timelike world
line these conditions lead to one-dimensional straight line. For the spacelike world line
(tachyon) these conditions lead to a world chain with wobbling links. Amplitude of
this wobbling is infinite and any link is an infinite three-dimensional surface. A single
tachyon described by such a world chain cannot be detected. However, the tachyon
gas may be detected by its gravitational field.

Tachyon gas is considered here, because the tachyon gas has characteristic proper-
ties of so-called dark matter. On one hand, one failed to detect single particles of the
dark matter. On the other hand, the dark matter form a huge halos around galax-
ies with almost constant mass distribution inside the halo. Existence of such halos is
discovered by its gravitational influence on the star velocities in the galaxy periphery.
Tachyon gas has similar properties. A single tachyon cannot be detected according to
geometric properties. Besides, tachyon gas has almost constant mass density in the
gravitational field of a galaxy.

Tachyon is a hypothetical faster-than-light particle. Its rest mass is imaginary.
Such particles have not been detected. First such particles were considered by A. Som-
merfeld [2]. Particles with negative and imaginary masses were investigated by
Ya. P. Terletsky [3]. Tachyons were investigated also by other investigators [4–7].
One considered not only tachyons, but also tachyonic fields which are results of the
tachyon quantization.
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Unfortunately, effective description of tachyons is possible only in a discrete space-
time geometry. Conventional consideration of tachyons in the continuous Riemannian
space-time geometry leads to conclusion that tachyons do not exist, whereas investi-
gations of tachyons in the framework of a discrete space-time geometry leads only to
the conclusion that a single tachyon cannot be detected. Impossibility of the tachyon
detection does not mean that tachyons do not exist. Tachyons may exist, but one
cannot detect a single tachyon, even it will appear that a tachyon may interact with
some elementary particle. For instance, neutron decays spontaneously into proton,
electron and neutrino. However, one cannot be sure that this decay is not a result of
collision with tachyon, because the tachyon gas may fill the whole universe with al-
most constant density. In this relation the tachyon gas properties remind the vacuum
properties.

Such unusual properties of tachyons are conditioned by the fact that in the discrete
space-time geometry there are world chains instead of smooth world lines. Links of
the tachyon world chain are spacelike segments. Two adjacent points of the tachyon
world chain are divided by very large spatial distance. Discovering one point of this
world chain, one cannot detect the another point of the world chain.

Crucial point of our investigation is a use of the discrete space-time geometry,
whose properties differ strongly from properties of the Riemannian geometry and other
continuous geometries. Conventional mathematical technique of differential geometry
is inadequate in the discrete geometry. Linear vector space, which is a foundation of the
differential geometry, cannot be introduced in the discrete geometry. Introducing the
linear vector space formalism in the discrete geometry, one obtains multivalence of such
operations as summation of vectors and decomposition of a vector into components.
The only quantity which is common for continuous geometry and the discrete one is

the distance 𝑑 or the world function 𝜎 =
1

2
𝑑2.

If one considers a discrete space-time geometry, one may not use quantum princi-
ples, because for usual particles of positive rest mass (tardions) the quantum princi-
ples are corollaries of the space-time geometry discreteness. Consideration of quantum
principles in the discrete space-time geometry reminds description of Brownian mo-
tion in terms of thermogen (in terms of axiomatic thermodynamics). If the elementary
length 𝜆0 of discrete space-time geometry is connected with the quantum constant ~
by means of the relation 𝜆20 = ~/𝑏𝑐 (constants ~, 𝑏, 𝑐 are universal constants), the
quantum effects for tardions can be explained as geometrical effects of the discrete
space-time geometry [8]. In such a situation it is useless to quantize tachyons and to
consider tachyonic fields. One should consider tachyons as classical particles in the
discrete space-time geometry.

Mathematical technique of differential (continuous) geometry cannot be applied
to a discrete geometry. In the discrete geometry there are no continuous world lines,
there are no differential equations and differential relations. One may not use the
phase space of coordinates and momenta for description of the particle state, because
the momentum is a result of differentiation along the continuous world line. But one
cannot use differentiation in the discrete geometry. In the discrete space-time geometry
the particle state is described by two points 𝑃𝑠, 𝑃𝑠+1. Vector P𝑠P𝑠+1 describes the
geometric momentum of a particle, and its geometric mass 𝜇 = |P𝑠P𝑠+1| determines
the usual particle mass 𝑚 by the relation

𝑚 = 𝑏𝜇, (5)

where 𝑏 is an universal constant. The particle dynamics in the discrete space-time
geometry is described by the skeleton conception [9], where instead of the continuous
world line one uses the world chain 𝒞 (broken line), whose links are vectors P𝑠P𝑠+1

of the same length 𝜇

𝒞 =
⋃︁
𝑠

P𝑠P𝑠+1, |P𝑠P𝑠+1| = 𝜇 = const, 𝑠 = . . . 0, 1, 2, . . . . (6)
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For free particle the adjacent vectors P𝑠P𝑠+1 and P𝑠+1P𝑠+2 are equivalent
(P𝑠P𝑠+1 ≡ P𝑠+1P𝑠+2). It means that(︀

(P𝑠P𝑠+1.P𝑠+1P𝑠+2) = |P𝑠P𝑠+1| · |P𝑠+1P𝑠+2|
)︀
∧ (|P𝑠P𝑠+1| = |P𝑠+1P𝑠+2|). (7)

If the vector P𝑠P𝑠+1 is fixed the equivalence relation (7) determines the adjacent
vector P𝑠+1P𝑠+2 ambiguously, provided the space-time geometry is discrete. As a
result the world chain wobbles. Amplitude of this wobbling is of the order of the
elementary length 𝜆0 for tardions (𝜇2 > 0). This wobbling is a reason of quantum
effects. For tachyons (𝜇2 < 0) amplitude of this wobbling is infinite.

For tachyons the spatial distance between adjacent points 𝑃𝑠 and 𝑃𝑠+1 is random,
and it may be infinitely large. As a result one cannot detect a single tachyon. In
other words, single tachyons were not discovered in experiments, because they are
unobservable, but not because they do not exist.

However, if one cannot detect a single tachyon, it does not mean that one cannot
observe the gravitational influence of the tachyon gas, consisting of many unobserv-
able tachyons. Unobservable tachyons may form so-called dark matter, which form
large spherical halo around some galaxies. Existence of such a halo is necessary for
explanation of the rotational velocities of stars (rotation curves) in some galaxies [10].
In these galaxies the rotational velocities of stars do not depend practically on the
distance 𝑟 from the galaxy core. Sometimes the star velocities increase arise with in-
creasing of the distance 𝑟. If the gravitating mass is concentrated in the galaxy core,
then the Newtonian force of gravitation is proportional to 𝑟−2, and rotational velocity
is to be proportional 𝑟−1/2. Inside the gravitating sphere with uniform distribution
of the mass the Newtonian gravitation force is proportional to 𝑟, and the rotational
velocity is proportional to 𝑟.

In this paper we try to calculate parameters of the tachyon gas in order to deter-
mine, whether the tachyon gas can fill the halo of galaxies with necessary density.

2. Discrete Space-Time Geometry

Discrete geometry is obtained as a generalization of the proper Euclidean geom-
etry 𝒢E, which is constructed usually as a logical construction. Conventionally one
uses the Euclidean method, when all statements of 𝒢E are deduced from a system of
axioms, describing properties of simplest geometrical objects of 𝒢E. The Euclidean
method is inadequate for construction of the discrete geometry 𝒢d. Inadequacy of the
Euclidean method is connected with the fact, that one does not know how the simplest
geometrical objects of 𝒢E look in other geometries. For instance, the straight segment
𝒯[𝑃0𝑃1] between the points 𝑃0 and 𝑃1 is one-dimensional line in 𝒢E, whereas 𝒯[𝑃0𝑃1] is
a surface in 𝒢d. There is only one quantity, which is common for 𝒢E and 𝒢d. It is the
distance 𝑑(𝑃0, 𝑃1) between two arbitrary points 𝑃0 and 𝑃1 of the point set Ω, where

the geometry is given. It is more effective to use the world function 𝜎 =
1

2
𝑑2 instead

of the distance 𝑑, because the world function 𝜎 is always real (even in the geometry
of Minkowski, where 𝑑 may be imaginary).

The world function 𝜎 is a real single-valued function. It is defined by the relation

𝜎 : Ω× Ω → R, 𝜎(𝑃,𝑄) = 𝜎(𝑄,𝑃 ), 𝜎(𝑃, 𝑃 ) = 0, ∀𝑃,𝑄 ∈ Ω. (8)

To generalize 𝒢E onto 𝒢d, one needs to describe 𝒢E in terms of the Euclidean world
function 𝜎E. Thereafter replacing 𝜎E by the world function 𝜎d of 𝒢d in all statements
of 𝒢E, one obtains all statements of 𝒢d. The world function 𝜎d of 𝒢d may be taken in
the form

𝜎d(𝑃,𝑄) = 𝜎M(𝑃,𝑄) +
𝜆20
2
sgn
(︀
𝜎M(𝑃,𝑄)

)︀
, ∀𝑃,𝑄 ∈ Ω, (9)
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where 𝜎M is the world function of the Minkowski geometry 𝒢M, and 𝜆0 is the elemen-
tary length. Due to relation (9) in 𝒢d all distances satisfy the relation

|𝜌d(𝑃,𝑄)| =
⃒⃒⃒√︀

2𝜎d(𝑃,𝑄)
⃒⃒⃒
/∈ (0, 𝜆0), ∀𝑃,𝑄 ∈ Ω. (10)

Being presented in terms of the world function 𝜎E, the proper Euclidean geometry
𝒢E contains two kinds of relations: (1) general geometric relations, which contains only
world function 𝜎E, and (2) special relations of the geometry 𝒢E, which are constraints,
imposed on the world function 𝜎E. The approach, when a geometry is described in
terms and only in terms of the world function, will be referred to as metric approach.
Any geometry described completely by the world function will be referred to as a
physical geometry.

Let us adduce some general geometric definitions which are important in the par-
ticle dynamics:

Vector PQ is an ordered set {𝑃,𝑄} of two points 𝑃,𝑄 (but not an element of the
linear vector space as usually). Scalar product (P0P1.Q0Q1) of two vectors P0P1 and
Q0Q1 is defined by the relation

(P0P1.Q0Q1) = 𝜎(𝑃0, 𝑄1) + 𝜎(𝑃1, 𝑄0)− 𝜎(𝑃0, 𝑄0)− 𝜎(𝑃1, 𝑄1). (11)

The length |PQ| of the vector PQ is defined by the relation

|PQ|2 = (PQ.PQ) = 2𝜎(𝑃,𝑄), (12)

𝑛 vectors P0P1, P0P2, . . . . P0P𝑛 are linear dependent, if and only if the Gram
determinant

𝐹𝑛(𝒫𝑛) = det ‖(P0P𝑖.P0P𝑘)‖ , 𝑖, 𝑘 = 1, 2, . . . 𝑛, 𝒫𝑛 ≡ {𝑃0, 𝑃2, . . . 𝑃𝑛} (13)

vanishes
𝐹𝑛(𝒫𝑛) = 0. (14)

Two vectors P0P1 and Q0Q1 are equivalent (equal) (P0P1 eqvQ0Q1), if the vectors
are in parallel

(P0P1 � Q0Q1) : (P0P1.Q0Q1) = |P0P1| · |Q0Q1| , (15)

and their lengths are equal

𝜎(𝑃0, 𝑃1) = 𝜎(𝑄0, 𝑄1). (16)

According to (15), (16) the equivalence definition has the form (7)

P0P1eqvQ0Q1 : (P0P1.Q0Q1) = |P0P1|2 ∧ |P0P1|2 = |Q0Q1|2 . (17)

All general geometric relations (11)–(17) are obtained as properties of the linear
vector space. However, they do not contain any reference to the linear vector space.
They are written in terms of the world function 𝜎E of the proper Euclidean geometry,
and they may be used in any physical geometry even in the case, when one cannot
introduce linear vector space in this geometry. To use the relations (11)–(17) in a
discrete geometry, it is sufficient to use the world function 𝜎d of the discrete geometry
𝒢d in them.

Formally general geometric relations (11)–(17) realize some processing of informa-
tion, contained in the world function. Such a processing is to be universal, i.e. it is
uniform for all generalized geometries. This method of processing is known for the
proper Euclidean geometry 𝒢E. It may be applied for construction of general geomet-
ric relations for other generalized geometries. In the case, when one can introduce
linear vector space, such a processing admits one to construct the particle dynamics
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in the space-time geometry, equipped by the linear vector space. As far as the gen-
eral geometric relations (11)–(17) are universal in the sense that they do not refer
to the linear vector space, they may be used for construction of the particle dynam-
ics in those space-time geometries, where introduction of the linear vector space is
impossible.

Such a construction of geometry is very effective, because it does not need proofs
of numerous theorems and a test of the axioms compatibility. Besides, the geometry
can be constructed in the coordinateless form. Monistic character of the geometry (de-
scription in terms of one basic quantity — world function) provides automatically a
correct connection between all secondary quantities in all physical geometries. Ascer-
tainment of a connection between different geometric quantities is the main problem of
a pluralistic construction of a geometry, which is based on a use of several independent
basic quantities.

The special relations of the proper Euclidean geometry have the form [11]:

I. Definition of the metric dimension:

∃𝒫𝑛 ≡ {𝑃0, 𝑃1, ...𝑃𝑛} ⊂ Ω, 𝐹𝑛(𝒫𝑛) ̸= 0, 𝐹𝑘(Ω
𝑘+1) = 0, 𝑘 > 𝑛, (18)

where 𝐹𝑛(𝒫𝑛) is the 𝑛-th order Gram’s determinant (13). Vectors P0P𝑖, 𝑖 = 1, 2, . . . 𝑛
are basic vectors of the rectilinear coordinate system 𝐾𝑛 with the origin at the point
𝑃0. The covariant coordinates of the point 𝑃 in the coordinate system 𝐾𝑛 are defined
by the relation

𝑥𝑖(𝑃 ) = (P0P𝑖.P0P), 𝑖 = 1, 2, . . . , 𝑛. (19)

The metric tensors 𝑔𝑖𝑘(𝒫𝑛) and 𝑔𝑖𝑘(𝒫𝑛), 𝑖, 𝑘 = 1, 2, . . . , 𝑛 in 𝐾𝑛 are defined by the
relations

𝑘=𝑛∑︁
𝑘=1

𝑔𝑖𝑘(𝒫𝑛)𝑔𝑙𝑘(𝒫𝑛) = 𝛿𝑖𝑙 , 𝑔𝑖𝑙(𝒫𝑛) = (P0P𝑖.P0P𝑙), 𝑖, 𝑙 = 1, 2, . . . , 𝑛. (20)

II. Linear structure of the Euclidean space:

𝜎E(𝑃,𝑄) =
1

2

𝑖,𝑘=𝑛∑︁
𝑖,𝑘=1

𝑔𝑖𝑘(𝒫𝑛)
(︀
𝑥𝑖(𝑃 )− 𝑥𝑖(𝑄)

)︀(︀
𝑥𝑘(𝑃 )− 𝑥𝑘(𝑄)

)︀
, ∀𝑃,𝑄 ∈ Ω, (21)

where coordinates 𝑥𝑖(𝑃 ), 𝑥𝑖(𝑄), 𝑖 = 1, 2, . . . , 𝑛 of the points 𝑃 and 𝑄 are covariant
coordinates of the vectors P0P, P0Q respectively in the coordinate system 𝐾.

III: The metric tensor matrix 𝑔𝑙𝑘(𝒫𝑛) has only positive eigenvalues 𝑔𝑘

𝑔𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛. (22)

IV. The continuity condition: the system of equations

(P0P𝑖.P0P) = 𝑦𝑖 ∈ R, 𝑖 = 1, 2, . . . , 𝑛 (23)

considered to be equations for determination of the point 𝑃 as a function of coordinates
𝑦 = {𝑦𝑖}, 𝑖 = 1, 2, . . . , 𝑛 has always one and only one solution. Conditions I–IV
contain a reference to the dimension 𝑛 of the Euclidean space, which is defined by the
relations (18).

Special relations of the proper Euclidean geometry 𝒢E may be not valid for other
physical geometries. In some cases these relations may used partly. For instance,
the metric dimension may be defined locally. Instead of constraint (18) one uses the
condition

∀𝑃0 ∈ Ω, ∃𝒫𝑛 ≡ {𝑃0, 𝑃1, ...𝑃𝑛} ⊂ Ω, 𝐹𝑛(𝒫𝑛) ̸= 0, 𝐹𝑘(𝒫𝑘) = 0, 𝑘 > 𝑛, (24)
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where all skeletons 𝒫𝑛 contain only infinitely close points. The conditions (24) deter-
mine the metric dimension for locally flat (Riemannian) geometry.

All relations I–IV are written in terms of the world function. They are constraints
on the form of the world function of the proper Euclidean geometry.

The proper Euclidean geometry looks in the 𝜎-representation quite different, than
in conventional representation on the basis of the linear vector space. For instance,
such a quantity as dimension has two different meanings in the 𝜎-representation. On
one hand, the metrical dimension 𝑛m is the maximal number of linear independent
vectors, which is determined by the relations (18). On the other hand, the coordinate
dimension 𝑛c, is the number of coordinates, which is used at the description of the
point set Ω. In the proper Euclidean geometry 𝒢E the coordinate dimension coincides
with the metric dimension (𝑛c = 𝑛m), and this fact is a corollary of special (not general
geometric) relations (18), (19).

In general, the coordinate labelling of points of Ω has no relation to the geometry.
In the proper Euclidean geometry the two dimensions coincide, because the coordinate
dimension 𝑛c is determined by the special conditions (18), (19), which are character-
istic for the proper Euclidean geometry. In the geometry 𝒢d the number 𝑛m of linear
independent vectors is more, than the number of coordinates 𝑛c. For instance, for six
points 𝒫5 = {𝑃0, 𝑃1, . . . , 𝑃5} and five vectors

P0P1 = {𝑙, 0, 0, 0} , P0P2 = {0, 𝑙, 0, 0, 0} , P0P3 = {0, 0, 𝑙, 0} ,
P0P4 = {0, 0, 0, 𝑙} , P0P5 = {𝑎, 0, 0, 0} ,

the Gram determinant 𝐹5(𝒫5) does not vanish in the geometry 𝒢d with the world
function (9). One obtains for the case 𝑑 = 𝜆20/2 ≪ 𝑎2, 𝑙2

𝐹5(𝒫5) = 𝑑(−𝑎2𝑙6 + 3𝑎𝑙7 − 𝑙8) +𝑂(𝑑2). (25)

For five points 𝒫4 = {𝑃0, 𝑃1...𝑃4}one obtains

𝐹4(𝒫4) = −𝑙8 − 4𝑙6𝑑+𝑂(𝑑2). (26)

It means that, in general, the metric dimension 𝑛m > 5 in 𝒢d. In 𝒢d the metric
dimension 𝑛m cannot coincide with the coordinate dimension 𝑛c. It means essentially
that one cannot introduce a finite number of linear independent basic vectors and
expand space-time vectors over these basic vectors. It is very unexpected, because the
conventional construction of a differential geometry (for instance, the Riemannian one)
starts, giving 𝑛-dimensional manifold with a coordinate system on it. Of course, one
assumes, that the maximal number of linear independent basic vectors at any point is
equal to 𝑛 = 𝑛m = 𝑛c. Only in this case one can expand vectors over basic vectors and
use operations, defined in the linear vector space. In the case of a discrete space-time
geometry, where 𝑛m ̸= 𝑛c, the linear vector space cannot be introduced, although the
coordinate system can be introduced, and the coordinate dimension 𝑛c = 4 as in the
space-time geometry of Minkowski. Four coordinates 𝑥 =

{︀
𝑥0, 𝑥1, 𝑥2, 𝑥3

}︀
, 𝑥𝑘 ∈ R are

defined as usually.
Note, that the conditions (18), defining metric dimension 𝑛m contain a lot of

constraints, and all they are special conditions of 𝒢E. It means that there is a lot of
physical geometries, where 𝑛m ̸= 𝑛c, and one cannot introduce a linear vector space
there. In the limit 𝑑 → 0, 𝐹5(𝒫5) = 0 in (25), and 𝒢d transforms to 𝒢M. In this
case the metric dimension 𝑛m = 4 coincides with the coordinate dimension 𝑛c = 4.
It means that one may use approximately the space-time geometry 𝒢M in the case,
when typical lengths 𝑙 of vectors is much greater, than the elementary length 𝜆0. In
this case one may set approximately 𝜆0 = 0, and suppose that 𝑛m = 𝑛c.

The set of the Gram determinants values 𝐹𝑛(𝒫𝑛), 𝑛 = 2, 3, . . . may be such, that
one cannot introduce the metric dimension 𝑛m. Apparently, the discrete space-time
geometries are geometries without a definite metric dimension. Such “dimensionless”
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geometries look especially exotic. Contemporary researchers deal only with the Eu-
clidean method, which uses only space-time geometries of definite dimension. They
can hardly conceive properties of “dimensionless” space-time geometries. On the other
hand, the classical particle dynamics does not work in microcosm, described by the
geometry of Minkowski. As far as the discrete (“dimensionless”) space-time geome-
tries are not known for most researchers, they use quantum dynamics, which imitates
the discrete geometry properties. This imitation is arbitrary and desultory. Besides,
this imitation is not complete. There are such properties of real particle dynamics,
which cannot be imitated by quantum dynamics in the space-time of Minkowski.

We see that coincidence of metric dimension 𝑛m with the coordinate dimension 𝑛c
and a construction of a smooth manifold with the dimension 𝑛 = 𝑛m = 𝑛c is a special
property of the proper Euclidean geometry 𝒢E, which is not a general geometric prop-
erty. The conventional Euclidean method of the differential geometry construction
starts from the definition of a smooth manifold with fixed dimension. Such a method
is not a general method of the generalized geometries construction, because it uses
special properties of 𝒢E, which, generally speaking, are not characteristic for all gen-
eralized geometries. In general, a use of the coordinate description for the generalized
geometries construction is a use of special properties of the proper Euclidean geome-
try 𝒢E for such a construction. Such an approach cannot be a general method of the
generalized geometries construction. Using special properties of 𝒢E, one obtains only
a part of possible generalized geometries. In particular, a use of the coordinate de-
scription does not admit one to construct geometries with indefinite metric dimension
and with intransitive equality relation. However, the coordinate labelling of points
of Ω has nothing to do with a construction of a manifold. The coordinate labelling
of points may be used always, and it has no relation to a construction of generalized
geometries. The coordinate labelling becomes to deal with the generalized geometry
construction, when one imposes the condition 𝑛c = 𝑛m.

The relation 𝑛c = 𝑛m is a special property of the proper Euclidean geometry 𝒢E,
and it may be wrong for many physical geometries, because physical geometries may
have no definite metric dimension. Using the relation 𝑛c = 𝑛m at the construction
of a generalized geometry, one may meet such a situation, when the real space-time
geometries appear beyond the scope of consideration.

3. Dynamics of Particle with Two-Point Skeleton

In the discrete space-time geometry the state of a particle (physical body) is de-
scribed by its skeleton 𝒫𝑛 = {𝑃0, 𝑃1, . . . , 𝑃𝑛}, consisting of 𝑛 + 1 space-time points,
connected rigidly. The skeleton may be considered as a discrete analog of a frame con-
nected rigidly with a physical body (particle). Tracing the motion of the skeleton one
may trace the motion of the particle. The state of a pointlike particle is described by
two-point skeleton 𝒫1 = {𝑃0, 𝑃1}. The vector P0P1 describes energy-momentum of
the particle, and 𝜇 = |P0P1| is a geometric mass of the particle, connected with usual
mass by the relation (5). Information on position of two skeleton points is sufficient
for description of the state of a pointlike particle. Dynamics of the pointlike particle
skeleton 𝒫1 is described by the world chain (6), (7). According to these relation and
definition of the scalar product (11) the dynamic equations for the pointlike particle
are written in the form

𝜎(𝑃𝑠−1, 𝑃𝑠) = 𝜎(𝑃𝑠, 𝑃𝑠+1), 𝑠 = . . . 0, 1, 2 . . . , (27)

𝜎(𝑃𝑠−1, 𝑃𝑠+1) = 4𝜎(𝑃𝑠−1, 𝑃𝑠), 𝑠 = . . . 0, 1, 2 . . . . (28)

In the inertial coordinate system of the Minkowski geometry, where 𝑠 = 1, the
points 𝑃0, 𝑃1, 𝑃2 have coordinates

𝑃0 = {𝑥0,x} , 𝑃1 = {𝑥0 + 𝑝0,x+ p} , 𝑃2 = {𝑥0 + 2𝑝0 + 𝛼0,x+2p+ 𝛼} . (29)

The 4-vector 𝛼 = {𝛼0, 𝛼} is a discrete analog of the acceleration vector.
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Let us choose world function 𝜎M in the form, which it has in the extended general
relativity [12,13] with slight gravitational field described by the gravitational potential
𝑉 (𝑥)

𝜎M(𝑥, 𝑥′) =
1

2

(︁(︀
𝑐2 − 2𝑉 (y)

)︀
(𝑥0 − 𝑥′0)

2 − (x− x′)2
)︁
, y =

x+ x′

2
, (30)

where 𝑉 = 𝑉 (y) is a gravitational potential at the point y, and the world function 𝜎d
has the form (9). One obtains in 𝒢d

(𝑐2 − 2𝑉 )(𝑝0 + 𝛼0)
2 − (p+ 𝛼)2 + 𝜀𝜆20 = (𝑐2 − 2𝑉 )𝑝20 − p2 + 𝜀𝜆20 = 𝜇2,

𝜀 = sgn(𝜇2), (31)

(︀
(𝑐2 − 2𝑉 )(2𝑝0 + 𝛼0)

2 − (2p+ 𝛼)2
)︀
+ 𝜀𝜆20 = 4

(︀
(𝑐2 − 2𝑉 )𝑝20 − p2 + 𝜀𝜆20

)︀
,

𝜀 = sgn(𝜇2). (32)

Here quantities 𝑥 = {𝑥0,x} , 𝑝 = {𝑝0,p} are supposed to be given and 4-vector
𝛼 = {𝛼0, 𝛼} is to be determined from dynamic equations (31), (32). It is supposed
that

𝑝0 =

√︁
p2 + 𝜀 |𝜇|2 − 𝜀𝜆20√

𝑐2 − 2𝑉
. (33)

The dynamic equations have the same form for timelike (𝜇2 > 0, 𝜀 > 0) and spacelike
(𝜇2 < 0, 𝜀 < 0) world chains. We have two equations for four components of 4-vector
𝛼. As a result the solution is not unique, in general.

After transformation of equations (31), (32) one obtains two relations

𝛼0 =
2𝛼p+ 3𝜀𝜆20
2𝑝0(𝑐2 − 2𝑉 )

, (34)

𝜀

(︂
𝑐2 − 2𝑉 − 𝑣2

𝑐2 − 2𝑉

)︂(︂
𝛼‖ −

3𝜀𝜆20
2𝑝0(𝑐2 − 2𝑉 − 𝑣2)

𝑣

)︂2

+ 𝜀𝛼2
⊥ = 𝑟2, (35)

where 𝑟 is the radius of the sphere, where ends of the 4-vectors 𝛼 are placed

𝑟2 = 3𝜀𝜆20 +

(︃
3𝜆20

2𝑝0
√︀

(𝑐2 − 2𝑉 )

)︃2
2𝑣2 − (𝑐2 − 2𝑉 )

(𝑐2 − 2𝑉 − 𝑣2)
, (36)

v =
p
√︀
(𝑐2 − 2𝑉 )√︁

p2 + 𝜀 |𝜇|2 + 𝜀𝜆20

, 𝑣 = |v| , (37)

𝛼‖ = v
(𝛼v)

v2
, 𝛼⊥ = 𝛼− 𝛼‖, 𝛼2

‖ =
(𝛼v)2

v2
, 𝛼‖ =

𝛼v

𝑣
, v2 = 𝑣2. (38)

Here 𝛼‖ is the component of 3-vector 𝛼 which is in parallel with the vector v, whereas
𝛼⊥ is the component of 3-vector 𝛼, which are perpendicular to the vector v.

In the case of timelike vector P0P1 𝜀 = 1 and v2 < 𝑐2. In the nonrelativistic case,
when v2 ≪ 𝑐2, 𝑉 ≪ 𝑐2, equation (35) has the form(︂

𝛼‖ −
3𝜆20
2𝜇

𝑣

)︂2

+ 𝛼2
⊥ = 𝑟2, 𝑟2 ≃ 3𝜆20 +𝒪(𝜆20). (39)
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Solution of this equation has the form

𝛼‖ =
3𝜆20
2𝜇

𝑣 +
√
3𝜆0 cos𝜗, 𝛼⊥1 =

√
3𝜆0 sin𝜗 cos𝜙, 𝛼⊥2 =

√
3𝜆0 sin𝜗 sin𝜙, (40)

𝛼0 =
3𝜆20
2𝜇

𝑣2 +
√
3𝜆0𝑣 cos𝜗+

3

2

𝜆20
𝜇
, (41)

Here 𝜗, 𝜙 are arbitrary real numbers. It means that the difference between adjacent
vectors P0P1 and P1P2, described by the 4-vector 𝛼, is determined nonuniquely. The
particle world chain wobbles with amplitude of the order of 𝜆0. Statistical description
of this wobbling leads to the Schrödinger equation [8], provided 𝜆20 = ~/(𝑏𝑐).

In the case of tachyon, when vector P0P1 is spacelike, 𝜀 = −1 and v2 > 𝑐2.
Equation (35) takes the form(︂

𝑣2 + 2𝑉 − 𝑐2

𝑐2 − 2𝑉

)︂(︂
𝛼‖ −

3𝜆20
2𝑝0(𝑣2 + 2𝑉 − 𝑐2)

𝑣

)︂2

− 𝛼2
⊥ = 𝑟2, (42)

𝑟2 = 3𝜆20 −
(︃

3𝜆20

2𝑝0
√︀
(𝑐2 − 2𝑉 )

)︃2
2𝑣2 + 2𝑉 − 𝑐2

(𝑣2 + 2𝑉 − 𝑐2)
. (43)

Solution of equation (42) is also nonunique

𝛼‖ =
3𝜆20

2𝑝0
(︀
𝑣2 − (𝑐2 − 2𝑉 )

)︀𝑣 + 𝑟
√
𝑐2 − 2𝑉√︀

(𝑣2 − 𝑐2 + 2𝑉 )
cosh𝜗, (44)

𝛼⊥1 = 𝑟 sinh𝜗 cos𝜙, 𝛼⊥2 = 𝑟 sinh𝜗 sin𝜙, 𝑣 =
𝑝

𝑝0
=

𝑝
√︀

(𝑐2 − 2𝑉 )√︁
p2 − |𝜇|2 + 𝜆20

, (45)

𝛼0 =
2𝛼p− 3𝜆20

2𝑝0(𝑐2 − 2𝑉 )
=

2𝑝

(︂
3𝜆2

0

2𝑝0(𝑣2−(𝑐2−2𝑉 ))𝑣 +
𝑟
√

(𝑐2−2𝑉 )√
(𝑣2−𝑐2+2𝑉 )

cosh𝜗

)︂
− 3𝜆20

2𝑝0(𝑐2 − 2𝑉 )
. (46)

Here 𝜗, 𝜙 are arbitrary real numbers. But now the wobbling amplitude is infinite
because of functions cosh and sinh. The wobbling amplitude is infinite even in the
case of space-time geometry of Minkowski, when 𝜆0 = 0. In this case equation (42)
takes the form (︂

𝑣2 + 2𝑉 − 𝑐2

𝑐2 − 2𝑉

)︂
𝛼2
‖ − 𝛼2

⊥ = 0, (47)

and its solution has the form

𝛼‖ =

√︂
𝑐2 − 2𝑉

𝑣2 + 2𝑉 − 𝑐2
𝑟0, 𝛼0 =

√︂
𝑐2 − 2𝑉

𝑣2 + 2𝑉 − 𝑐2
𝑟0𝑣,

𝛼⊥1 = 𝑟0 cos𝜙, 𝛼⊥2 = 𝑟0 sin𝜙.

(48)

Here 𝜙 is an arbitrary real number, and 𝑟0 is an arbitrary positive number. In this
case the wobbling amplitude is infinite because of infinite values of 𝑟0.

In relations (44)–(47), (48) one chooses the positive sign for radical√︂
𝑐2 − 2𝑉

𝑣2 + 2𝑉 − 𝑐2
=

⃒⃒⃒⃒
⃒
√︂

𝑐2 − 2𝑉

𝑣2 + 2𝑉 − 𝑐2

⃒⃒⃒⃒
⃒ .
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Such a choice corresponds to the fact that tachyon does not turn into antitachyon
in the process of its motion. This is an additional constraint. It is connected with a
definite direction of the time arrow (direction of the time flow). Apparently, the time
arrow does exist, but it is taken into account in the solutions, but not in dynamic
equations. Equation (42) is invariant with respect to transformation 𝑡→ −𝑡.

Arguments in virtue of the time arrow are as follows. The Maxwell equations are
invariant with respect to transformation 𝑡→ −𝑡. However, real electromagnetic inter-
action between the charged particles is described by the retarded Liėnard-Wiechert po-
tential, whereas the advanced potential is not used. This fact may be interpreted as an
existence of the time arrow (causality principle). Besides, the universe is asymmetric
with respect to existence of particles and antiparticles. Particle differs from antipar-

ticle by direction of the time flow along the world line. Fixed sign of

√︂
𝑐2 − 2𝑉

𝑣2 + 2𝑉 − 𝑐2
prevents from permanent transition from tachyon to antitachyon along the world chain
of tachyon.

4. Averaging of the Dynamic Equations Solutions

We try to obtain parameters of the tachyon gas, averaging solution of dynamic
equations for single tachyons over distributions (44)–(46). We shall average over pa-
rameters 𝜗, 𝜙

𝐷 =
𝜕
(︀
𝛼‖, (𝛼⊥)1, (𝛼⊥)2

)︀
𝜕(𝑟, 𝜗, 𝜙)

= 𝑟2 sinh𝜗. (49)

The norm 𝑁 has the form

𝑁 =

Θ∫︁
0

sinh𝜗 d𝜗

2𝜋∫︁
0

d𝜙 = 2𝜋(coshΘ− 1) = 4𝜋 sinh2
Θ

2
. (50)

It is supposed, that Θ → ∞ at the end of averaging. According to (44)

⟨𝛼‖⟩ = 𝑁−1

Θ∫︁
0

sinh𝜗d𝜗×

×
2𝜋∫︁
0

(︃
3𝜆20

2𝑝0
(︀
𝑣2 − (𝑐2 − 2𝑉 )

)︀𝑣 + 𝑟
√︁(︀

(𝑐2 − 2𝑉 )
)︀√︁(︀

𝑣2 − (𝑐2 − 2𝑉 )
)︀ cosh𝜗

)︃
d𝜙 =

=
3𝜆20𝑣

2𝑝0
(︀
𝑣2 − (𝑐2 − 2𝑉 )

)︀ + 𝑟
√︀

(𝑐2 − 2𝑉 )

2
√︁(︀

𝑣2 − (𝑐2 − 2𝑉 )
)︀(coshΘ + 1). (51)

As a result one obtains

⟨𝛼‖⟩ =
𝑟
√︀

(𝑐2 − 2𝑉 )

2
√︁(︀

𝑣2 − (𝑐2 − 2𝑉 )
)︀ coshΘ +𝒪(Θ0), ⟨(𝛼⊥)1⟩ = ⟨(𝛼⊥)2⟩ = 0. (52)

According to (46) one obtains

⟨𝛼0⟩ =
𝑝

𝑝0
⟨𝛼‖⟩+𝒪(Θ0) =

𝑟𝑝
√︀

(𝑐2 − 2𝑉 )

2𝑝0

√︁(︀
𝑣2 − (𝑐2 − 2𝑉 )

)︀ coshΘ +𝒪(Θ0). (53)
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One obtains for the module 𝑢 of the mean 3-velocity vector u =

⟨
p+ ⟨𝛼⟩
𝑝0 + ⟨𝛼0⟩

⟩
,

defined by the mean vector ⟨P1P2⟩

𝑢 =

⟨⃒⃒⃒⃒
𝑑x

𝑑𝑡

⃒⃒⃒⃒⟩
=

⟨𝛼‖⟩
⟨𝛼0⟩

=
𝑝0
𝑝
(𝑐2 − 2𝑉 ) +𝒪(Θ−1), (54)

According to (33) and (54) the mean velocity is less, than speed of the light

𝑢 =
𝑝0
𝑝
(𝑐2 − 2𝑉 ) =

√︃
1− |𝜇|2 − 𝜆20

𝑝2

√︀
𝑐2 − 2𝑉 < 𝑐. (55)

The mean tachyon gas velocity 𝑢 = 0, if 𝑝2 = |𝜇|2 − 𝜆20.

The mean vector ⟨P1P2⟩ is timelike although vector P1P2 is spacelike. It means
that averaged particles of the tachyon gas look as tardions. In other words, the mean
tachyon is a tardion. It is unexpected, but the tachyon gas may be considered as a
usual gas.

One obtains for components of the mean squared velocity⟨(︂
d𝑥‖

d𝑡

)︂2
⟩

=
⟨𝛼2

‖⟩
⟨𝛼2

0⟩
=

(︂
𝑝0
𝑝

)︂2

(𝑐2 − 2𝑉 )2 +𝒪(Θ−1) = 𝑢2 +𝒪(Θ−1), (56)

⟨(︂
dx⊥

d𝑡

)︂2
⟩

=
⟨𝛼2

⊥1⟩
⟨𝛼2

0⟩
+

⟨𝛼2
⊥2⟩

⟨𝛼2
0⟩

=

(︂
𝑝0
𝑝

)︂2

(𝑣2 − 𝑐2 + 2𝑉 )(𝑐2 − 2𝑉 ) +𝒪(Θ−1). (57)

Taking into account (37), one obtains⟨(︂
dx

d𝑡

)︂2
⟩

=
⟨𝛼2

⊥1⟩+ ⟨𝛼2
⊥2⟩+ ⟨𝛼2

‖⟩
⟨𝛼2

0⟩
= (𝑐2 − 2𝑉 ) +𝒪(Θ−1). (58)

The pressure 𝑃 of the tachyon gas is defined by the relation

𝑃 =
1

3
𝜌

(︃⟨(︂
dx

d𝑡

)︂2
⟩

−
⟨⃒⃒⃒⃒

dx

d𝑡

⃒⃒⃒⃒⟩2
)︃
. (59)

Here 𝜌 = 𝜌(x) is the tachyon gas mass density. It follows from (58) and (54) that

𝑃 (𝑥) =
1

3
𝜌(x)

(︀
𝑐2 − 2𝑉 (x)− 𝑢2(𝑥)

)︀
. (60)

All tachyon gas parameters 𝜌, u, 𝑃 are considered as function of the space-time points
𝑥 =

{︀
𝑥0,x

}︀
.

In the gravitational field of a galaxy the tachyon gas is at rest (𝑢 = 0), if the
balance condition is fulfilled

∇𝑃 = 𝜌∇𝑉. (61)

According (60) this condition is written in the form

1

3

(︀
𝑐2 − 2𝑉 (x)

)︀
∇𝜌 =

5

3
𝜌∇𝑉 (x). (62)

Equation (53) is integrated in the form
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𝜌 =
𝜌0𝑐

5√︁
|𝑐2 − 2𝑉 (x)|5

. (63)

Here 𝜌0 = const.
In the case of spherically symmetric gravitational field of a galaxy one obtains

instead of (63)

𝜌(𝑟) =
𝜌0𝑐

5√︁
|𝑐2 − 2𝑉 (𝑟)|5

. (64)

If the gravitational field is not strong and 𝑉 (𝑟) ≪ 𝑐2, the potential 𝑉 (𝑟) may be
approximated by the expression

𝑉 (𝑟) =
𝐺𝑀

𝑟
+

4𝜋𝐺

3
𝜌0𝑟

2. (65)

Here 𝐺 is the gravitational constant and 𝑀 is the mass of the galaxy. The expres-
sion (65) takes the form

𝜌(𝑟) =
𝜌0𝑐

5√︁⃒⃒
𝑐2 − 2𝐺𝑀

𝑟 − 8𝜋
3 𝐺𝜌0𝑟

2
⃒⃒5 ≈ 𝜌0

(︂
1 +

5𝐺𝑀

𝑟𝑐2
+

20𝜋𝐺

3𝑐2
𝜌0𝑟

2

)︂
. (66)

If 𝜌0 is large enough and 20𝜋𝜌0𝑟
2 > 15𝑀𝑟−1, the density 𝜌(𝑟) may even increase with

increase of 𝑟. At any rate the second term in (66) slacks the decrease of density 𝜌(𝑟)
with increase of 𝑟.

It follows from (63) that the tachyon gas density is larger in regions with larger
gravitational potential. It means that the tachyon gas is attracted to massive bodies
as usual tardion gas. Besides, the tachyon gas density changes rather slowly with the
change of the gravitational potential, whereas in isothermal atmosphere this depen-
dence is exponential. Slowly dependence the tachyon gas density on the gravitational
potential facilitates formation of halo with the almost constant tachyon gas density.

Remark. Averaging solutions of the dynamic equations, one supposed, that the
gravitational potential 𝑉 was constant. In general, one should take into account the
fact that potential 𝑉 depends on coordinates and, hence, on the 4-vector 𝛼. We hope
that our approximation does not change the tachyon gas properties essentially. Two
main properties of the tachyon gas (its strong mobility and very high pressure) depend
slightly on the form of gravitational potential.

5. Dark Energy

There is an impression that many cosmological problems are connected with a
use of Riemannian space-time geometry, which is inadequate in application to general
relativity, because the methods of differential geometry describe only a small part
of possible space-time geometries. Observation of accelerated expansion of universe
is explained usually by so-called dark energy. There are different version of the dark
energy nature [14,15], but all these versions try to explain cosmic antigravitation which
is a reason of of accelerated expansion of universe. Conventional general relativity,
based on the Riemannian space-time geometry can explain antigravitation only by
means of negative mass, by negative pressure or by so-called Λ-term, taken with a
proper sign.

The expanded general relativity (EGR) uses more general class of possible space-
time geometries. In the physical geometries of EGR [12, 13] a spherical dust cloud of
radius 𝑅 and of the mass 𝑀 cannot collapse and form a black hole. Decreasing radius
𝑅, the parameter 𝜀 = 2𝐺𝑀/(𝑐2𝑅) becomes large enough, a region of antigravitation
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arises in the center of the cloud. The antigravitation prevents from appearance of
the dark hole. Impossibility of collapse prescribes another scenario for gravitational
contraction of the dust cloud, than the conventional scenario. When the radius𝑅 of the
cloud decreases as a result of gravitational contraction, the parameter 𝜀 increases, and
inside the cloud the region of antigravitation appears which prevents from the further
contraction. However, the cloud contraction continue by inertia. When parameter 𝜀
becomes large enough, the contraction stops, and the opposite process begins. The
central region of the cloud begin to expand. There are different stages of expansion. At
some stages this expansion may be accelerated. At other stages the speed of expansion
may be decreased. It is possible that different parts of the central region of the cloud
may be at different stages of expansion. It is important that there is no necessity to
invent mythical essences like negative pressure and quintessence. One needs only to
construct a true model of the universe expansion, based on a correct conception of the
space-time geometry.

6. Concluding Remarks

Our conclusions depend on existence and properties of tachyons, and these prop-
erties seem to be rather unexpected. This surprise is conditioned by a fundamental
change of approach to geometry. Here one uses the metric approach to geometry,
when geometry is considered as a science on the shape and dispositions of geometric
objects. At such an approach any geometry is described completely by its world func-
tion and only by its world function. Although nobody deny the metric approach, the
mathematical formalism of differential geometry is based on the idea that any geom-
etry is a logical construction, and all statements of a geometry can be deduced from
several geometric axioms. The logical structure of a geometry is considered as a princi-
pal property of geometry. So-called symplectic geometry is considered as a geometry,
because its logical structure reminds the logical structure of the Euclidean geome-
try, although the symplectic geometry has no relation to a description of geometric
objects.

Mathematical technique adequate to metric approach was unknown. Attempts of
constructing such a technique failed [1,16]. Formalism of world function was suggested
by J.L. Synge, who used it for description of the Riemannian space-time geometry [17].
But he failed to obtain coordinateless description of space-time geometry.

Tachyons and their properties can be effectively described only in the framework
of a discrete space-time geometry. However, the discrete geometry is nonaxiomati-
zable geometry, and it cannot be constructed by the Euclidean method as a logical
construction. As a result tachyons appeared outside the scope of the space-time ge-
ometry, and one considered them as hypothetical objects, and their properties were
unknown.

Now tachyon gas is a real gas, whose gravitational influence can be identified with
the gravitational influence of the mysterious dark matter. One succeeded to construct
the tachyon gas statics only due to developed coordinateless technique of metric ap-
proach to space-time geometry. The tachyon gas dynamics is not yet constructed.
Possibility of the tachyon existence follows from the mathematical formalism based on
a use of the world function. No new hypotheses on properties of tachyons were used.
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УДК 531.55+514.85
Тахионный газ как кандидат на тёмную материю

Ю. А. Рылов
Институт проблем механики, РАН

Россия, 119526, Москва, Пр. Вернадского, 101-1

В физической геометрии (т. е. геометрии полностью описываемой её мировой функци-
ей) тождественные объекты имеют одинаковое описание в терминах мировой функции.
В результате пространственно-подобный отрезок прямой представляет собой трёхмер-
ную поверхность даже в пространственно-временной геометрии Минковского. В дис-
кретной геометрии пространства–времени тахионы имеют два неожиданных свойства:
1 — отдельный тахион не может быть обнаружен; 2 — тахионный газ может быть об-
наружен по его гравитационному воздействию. Хотя молекулы (тахионы) тахионного
газа движутся со сверхсветовыми скоростями, средняя скорость движения этих моле-
кул оказывается досветовой. Свойства тахионного газа отличаются от свойств обычного
газа. Давление тахионного газа зависит от гравитационного потенциала и не зависит от
температуры. В результате тахионный газ может образовывать огромные гало вокруг
галактик. Эти гало имеют почти постоянную плотность, и это обстоятельство может
объяснить кривые вращения звёзд на периферии Галактики. Свойства тахионного газа
позволяют рассматривать его как тёмную материю.

Ключевые слова: дискретная геометрия, тахион, тёмная материя, тёмная энергия,
кривые вращения.




