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The objective of this investigation is to prove the possibility of representation of the 3D
interaction between particles in various reacting three-body systems by analytical function
with a set of adjusting parameters in natural collision coordinates. Realization of this idea
implies the procedure of fitting 3D numerical data by 3D analytical function or more precisely,
calculation of adjusting parameters in mentioned analytical function. In the work Levenberg-
Marquardt algorithm is used on the basis of which the numerical method is developed. The
possibility of implementation of 3D fitting with the big accuracy, on the example of reaction
H + Hs is shown.
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face of atom-diatom collision.

1. Formulation of the Problem

Recently as was shown by authors [1], the three-body quantum reactive scatter-
ing problem in the curvilinear Natural Collision Coordinates (NCC') system may be
reduced to the inelastic single-arrangement problem. Mathematically the problem con-
sists of solution of a first-order ordinary differential equation’s system. For numerical
investigations of this system it is necessary to define a full interaction potential between
particles in the NCC system (u,v,4). Here u is a coordinate along the curve of coor-
dinate of reaction 3¢, which connects together (in) and (out) scattering asymptotic
subspaces, v is a normal to the curve ;¢ coordinate, along which the full wavefunc-
tion is localized, ¥ is a scattering angle. Recall that usually the reaction potential is
constructed by means of ab — initio quantum calculations, after which this numerical
data are used for fitting and reconstructing the analytical form of the interaction po-
tential in terms of scaled Jacobi coordinates (qo, q1,?). Now the 3D analytical forms
are well known for many reaction potentials V' (qo, q1,v). For definition of reaction
potential in the NCC system, the coordinate transformations (qo, ¢1,9) — (u,v,?) in
the expression of potential V'(qo, q1,1) are carried out. We can organize a one-to-one
mapping between coordinate systems (qo, q1,7) < (u,v,1) in some subspace of intrin-
sic 3D configuration down form the curve ;5. Following the work [2,3], we can define
the curve J;f, which connects (in) and (out) asymptotic channels in plane (go, ¢1):

a _
@6 = ———+bsi +ai,,  qo, <qf <+oo, (1)

(C]f — Qeq )
where a and b are some constants. In eq. (1) qeq and qjq are the mass-scaled equilib-

rium bond length of molecules in (in) and (out) channels correspondingly. Note that
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the variable ¢f is defined on a part of axis ¢1 € (q;q, +00) and can have only positive
values.

Now we can write the inverse transformations from (go,q1) to (u,v):
qo(u,v) = go(u) —vsinp(u),  q1(u,v) = ¢i(u) +vcosp(u), (2)

where the angle ¢(u) is determined from the requirement that the coordinate system
(u,v) should be orthogonal:

qu . mamcgc 1/2
Gof|. = eotetn, lim coti(u) = e (3)

\Yij
where m 4, mp and m¢ are masses of scattering particles, M is its sum.

The coordinate u describes the translational motion of three-body system between
reactant and product channels and is changed along the curve ;¢ measured from an
initial point ug. It in particularly can be determined by equation:

a

m + b(q1 — q;1)~ (4)

U = ug —

Under the numerical modelling of the system of differential equations near the subspace
borders a computation error appears. This problem we can solve by fitting numerical
data in the NCC system. In the limits of the NCC system, the full interaction
potential may be represented in the following form:

V(qo,q1,9) = U(u,v,9) = ZU u, v)Pj(cos ), (5)

where P;(z) is Legendre polynomial and m < 4o0. Taking into account the orthogonal
property of Legendre polynomials

[ P@py @ = 2o

we can find that the full interaction potential between particles may be represented
in the following view:

V(go,q1,9) = U(u,v,9) = ZU u, v) Pj(cos ). (6)

Taking into account the orthogonal property of Legendre polynomials

+1 5
| P@Ps s = s
-1

we can find:
=(j+1/2) /Uu v,9) Pj(cos ) sin ¥dd, (7)
0
It is obvious that if the V' (qo, ¢1,9) are known in the kind of an analytical function or

are specified in the form of an numerical array, we can generate 2D numerical arrays
(databases) and look for its analytical approximation. Based on our experience, it is
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convenient to present these functions as follows:
2
Uj(u,v) :(ZAgk)(U)Uk>€_2aj(u)v _ Bj(u)e—ﬁj(u)v’ (8)
k=0

where the functions Agk) (u) and Bj(u) provide a smooth transition from the bound

state (AC) in the (in) channel to the bound state (AB) in the (out) channel, A,
B and C describe the reacting particles. Analyzing the geometrical and topological
features of the different energetic surfaces of reactions shows that we can use the
following analytical form for these functions:

1 (0) (2),2
P = F® 55 i
J J 1+e 2wy (e 4 e=iu)2’

(9)
0 1) @) } e
where F;, F;, F;™, and v; are some adjusting parameters and

Fj(u) = (Af(w), Bj(u), aj(u), B;(u)).

Thus now the main problem is the elaboration of numerical method for computa-
tion of adjusting parameters which would give it a possibility to carry out approxima-
tion of a numerical array with the given accuracy.

2. Chi-Square Fitting Method

There are various methods for fixing adjusting parameters in expressions (7)—(8),
the relaxation method, the Newton method, and the modified Newton method [4,5] et
etc. All the mentioned methods are based on the procedure of inverse Jacobian matrix
computation with respect to the adjusting parameters. However the direct calculation
of the Hessian by means of minimization methods is impossible. For a solution of
considered problem in this paper we use nonlinear minimization method.

The minimization methods permit the iterative evaluation of a function and of its
gradients. The second essential difference from all previous methods is that all the
above methods are based on the linear search or linear minimization. The methods
in issue are based on nonlinear procedures with the use of least-squares formalism.
The calculation procedure of the gradient and Hessian in the Levenberg-Marquardt
method is described in [6].

The j component of decomposition in the expression of full 3D reaction potential
(3) under the consideration can be represented as: U; = Uj;(u, v, C), where C is the
vector of adjusting parameters having the dimensions M. The mean-square deviation
of the function x? can be determined the following way:

N

U, Ui, Uj - U; ui,vi,C

X?(uv\,):Z J( ) J( )
i=1

o

(in literature this method is called the ”chi-square”) o;-described standard deviation.
The gradient of function x? is:

% o _2i [UJZ - Uj(uivvia C)} an(Ui,"Ui,C)
ac, — o2 aCy ’

1

where U} = Uj(ui, v;).
The second derivative is computed as follows:
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82)(5 _2%1 Uj(ui,vi,C) Uj(ui,vi,C)_
60;4?01 N 2 8C’k 8Cl

o
=1

217 (1 10,
(U — Uy (g, v, ©)] a0, 0. ©)

J 0CLOC,

Here we introduce some designations:

10x5 1 9°x]

=570 B = 5 (10)

2 0Cy 2 0CL0C,

From (10) we obtain the relation:
M
ak =Y BudC,

1=1
where () satisfy a system of linear equations:
0C; = const - oy,

The second partial derivatives are computed by formula:

N
. 1 8U(ui,vi,C) BU(ui,vi,C)
B = ; o2 dCh aC,

So, here all necessary formulas for a closed computation of adjusting parameters in
3D model potential (4)—(9) are presented.

The adjusting parameters in our previous article [7] about a reaction surface of the
collinear collision, have been computed using the Levenberg-Marquardt’s nonlinear
optimization method [6].

3. Fitting of 3D Reaction Surface H + Hy System

The approximation of numerical data with an analytical surface is done by applying
several numerical methods, mainly the Levenberg-Marquardt algorithm and Fourier
transformation. The first step in this process is the analysis of the numerical data and
finding an analytical function that visually matches the numerical data. In the case
of collinear surface fig. 1 the following scenario has been followed.

Figure 1. Reaction Surface of Collinear Collision H + Ho by using Quantum-Chemical ab
Initio Calculations
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First, a pre-calculated numerical array of reaction surface points is considered as
a set of data points over (u,v) plain. The surface is sliced over the u axis, and the
graphs of slices are analyzed. In the process of analyzing of the slices it was pointed
out, that each slice can be approximated using the simple version of generalized Mors
potential (see (8)):

U (u,v) = A(u) [e—zaw)(v—vo(u)) _ 9e—a(u)(v=vo(w)| (11)

For the fitting to be more accurate the following modifications on the numerical
surface are applied. First, the surface is analyzed to find the optimal value of Az shift
along the z axis (potential energy axis), for which z — 0 when v — —oco for any value
of u. After that, on each slice, only negative values are considered for fitting (as it
was shown by a series of numerical experiments, this gives the most accurate results).
It’s also worth mentioning, that the points of our interest lye in the “flute”, and are
localized near the “peak” in fig. 2 (that is, approximately, in the range u € [—7,+7]),
that’s why the numerical experiment aims to produce the best results in that area.
The result of fitting the slices produces a 2D numerical array, that contains values for
parameters A(u), and for each value of u.

A(u)

T
To4
- thy,
1y

Figure 2. The Behavior of Modified Echart Function for a Reaction Surface of Collinear
Collision

Further, these sets of points are fitted (again using Levenberg-Marquardt algo-
rithm) to the following modified Echart function:

2
b—a + de—oz(u—uo)2 + cy

Alw)=a+——2 ,
(U) “ 1 + ev(u—uo) (e"y('LL7’LL0) _ efw(ufuo))2

where a,b,c,d,ug and v are some adjusting parameters. Finding an approximated
analytical representation of Mors potential parameters gives us an analytical approx-
imation of reaction surface. This analytical representation of surface (fig. 3) gives a
value of relative error of not more than 5 percent, at maximum in the region which
important for a elementary atom-molecular processes (fig. 4). The analysis of input
data shows that some inaccuracy in it can lead to this error. Hence, further reducing
of relative error can be done by further refinement of input data in the first step. The
non-collinear problem requires finding an analytical representation of (7) surface (us-
ing numerical values of that we already have), which is later used in (5) formula. As the
numerical experience has proved, the values of m that are bigger than 8 give a variance
in potential values less than 1 percent, the potential surface for non-collinear reaction
can be calculated using above mentioned decomposition by Legendre polynomials with
high degree of accuracy taking into account the first 8 Legendre polynomials.

For analytical approximation of numerically calculated U; surface, again, the sur-
face is sliced along its w axis, and the slices are first analyzed visually. During that
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Figure 3. The Reaction Surface of Collinear Collision H + Hz Constructed by Analytical

Formula (11) After Fixing of Adjusting Parameters
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Figure 4. The Relative Error Between Figures 1 and 3

process, it was inspected, that some of the slices are “well behaved” while others fol-
low an irregular pattern. To be able to deal with these irregularities, it was decided
to approximate the slices using Fourier transformations. The Fourier polynomial of
degree 40 showed a good approximation in the surface area of our interest (the peak
and its surroundings).
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Iloaronka TpéxMepHOII MOBEPXHOCTU PEAKIIUU CUCTEMBI TPEX
aTOMOB B €CTE€CTBEHHBIX KOOP/IMHATAX CTOJIKHOBEHWUIA

A. TeBopksin*, T. I'puropsin*, M. Han6aungsu®*, B. Oranaucss’,

I. Heroman?
* Jlabopamopus KE6AHMOBKLT CUCTEM U NPOUECCO
Huemumym ungpopmamury u npobaem a8mMoMamu3ayuls
II. Cesax 1, 0014 Epesan, Apmerus
" BEpesancruti ynusepcumem
Daxysvmem npuraadnoti mamemamury, 0049, Arexca Manyxana 1, Epesan, Apmenus
Y dakyavmem sumuu

Tomebopacrutl yHusepcumem
SE-412 96, T'omebope, Illseyusn

[lenp manHOTO HICCIEIOBAHUSA — JIOKA3aTh BO3MOXKHOCTD IIPEJICTABIEHNS TPEXMEPHOTO B3a-

UMOJIENHCTBHUS MEK/y YaCTUIIAMU B PA3/INYHBIX PEATUPYIONINX CUCTEMAaX TPEX TEJI C IIOMOIIBIO

AHAJIUTUYECKON (PyHKIMH ¢ HAOOPOM IIapaMeTpPOB IOATOHKH B €CTECTBEHHBIX KOODIUHATAX
CTOJIKHOBeHUs. Peanmzanus 3Toi Waen MOApPa3yMeBaeT MPOIEAYPY IMOATOHKU TPEXMEPHBIX
YHCJIOBBIX JAHHBIX C MTOMOIIBIO 31D aHAIUTUIECKON DYHKIUU WIH 60JIee TOTHO, BLIUUCIEHNE
mapaMeTpOB IIOATNOHKM B JIAaHHOHN aHajmThdeckoil dpyHkumum. B pabore mcnosib3yercsi ajro-
putMm JleBenbGepra—MapkBap/iTa, Ha OCHOBE KOTOPOI'O OBLT PAa3BUT YUCJIEHHBIH MeroJ. Bos-
MOKHOCTD PEAM3AINN TPEXMEPHON MOATOHKHU C OOJIBIION TOYHOCTBIO MPOAEMOHCTPHUPOBAHA
Ha nmpumep peakunun H + Hs.

KorouyeBble ciioBa: HeJMHEWHAsl ONTUMHU3AIMS, [1apaJlJIeIbHbIE BBIYUCIEHUS, ITOBEPX-
HOCTb PeaKIIUN aTOM-MOJIEKYJASPHOTO CTOJIKHOBEHU .





