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Sakai-Bodin-Pedersen model is used to investigate numerically the dynamics of the Joseph-
son phases in three stacked long Josephson Junctions. It is shown that the critical currents of
the individual junctions depend on the damping and the coupling parameters and that there
is a domain in vicinity of zero magnetic field where the junctions switch to nonzero voltage
simultaneously, i.e. current locking takes place.
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1. Introduction

The experimental and numerical investigations of multistacked long Josephson
Junctions (JJs) lead to invention of new physical effects. One of them is the so-called
current locking (CL), experimentally observed in two stacked JJs. The essence of this
phenomenon is: there exists a range of the external magnetic field where the junctions
of the stack switch to nonzero voltage simultaneously when the external current ex-
ceeds some critical value. Later [1] the experimentally found CL for two stacked JJs
was simulated numerically in the framework of the inductive coupling model of Sakai-
Bodin-Pedersen [2]. In this work we use the same model and find that CL takes place
in the case of symmetric three stacked JJs as well. We investigate this phenomenon
for different damping and coupling parameters.

2. Mathematical Model
The dynamics of the Josephson phases o(z,t) = (p1(z,1), ..., on(2,t))" in geo-
metrically symmetric N stacked JJs is described by the following system of perturbed
sine-Gordon equations [2]:

cptt—l—agot—i—J—kF:L_lcpm, —A<x<l, t>0, (1)
where « is the dissipation coefficient, J = (sin (1, sin g, . ..,sin px)? is the vector of
the Josephson current density, I' = v (1,1,...,1)7 is the vector of the external current
density, L = tridiag(1, S, 1), (—0.5 < S < 0 for arbitrary N) and 2/ is the length of the
junctions. Here the space x is normalized with respect to the Josephson penetration
length and the time ¢ — to the inverse of the plasma frequency.

In this work we consider stacks with overlap geometry placed in external mag-
netic field h., therefore the system (1) should be solved together with the boundary

conditions:
@x(_&t) = 9033(67 t) =H, (2)

where H is the vector H = h, (1,1,...,1)T. To close the differential problem appro-
priate initial conditions must be posed:

o(x,0) — given, ¢(x,0) — given. (3)
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The existence of Josephson current generates a specific magnetic flux. When the
external current is less than some critical value, the junctions are in static state. In
this case the measured voltages in all junctions are zero. When the external current
exceeds this critical value, the system switches to dynamic state and the voltage of at
least one of the junctions is nonzero. The voltage in the i-th junction is mathematically
given by:

T ¢

1

Vi —Tlggom//%,t(w,t)dwdt (4)
0 —¢

We define the critical current of the individual junction as the value at which this
junction switches to nonzero voltage.

In order to make a correspondence between the loss of stability of a possible static
distribution of the magnetic flux and switching to dynamic state, we solve numerically
the static problem, i.e., the system of equations with time independent fluxes. To study
the global stability of a possible static solution, the following matrix Sturm-Liouville
problem (SLP) is generated:

_L_lua:x + Q(m)u = )\'U,, (5)

4
w(£6) = 0, / (u,u) dz — 1= 0, (6)
e

where Q(z) = J'(¢(x)). This is equivalent to study the positive definiteness of the
second variation of the potential energy of the stack. The minimal eigenvalue A,,in
determines the stability of the distribution under consideration. A minimal eigenvalue
equal to zero means a bifurcation caused by change of some parameter, in our case —
the external current ~.

3. Numerical Method

The simplest generalizable model of stacked JJs is the case of three stacked JJs
because it takes into account the different behavior of the interior and exterior junc-
tions. The numerical results presented here are for the particular case of three stacked
JJs.

In order to solve the mentioned above static nonlinear boundary value problem we
use an iterative algorithm [3], based on the continuous analog of Newton’s method
(CANM) [4]. CANM gives a linearized boundary value problem at each iteration step.
The linear boundary value problem is solved numerically by means of Galerkin finite
element method (FEM) and quadratic finite elements. FEM is used also to reduce
the SLP (5), (6) to a linear algebraic problem whose few smallest eigenvalues and the
corresponding eigenfunctions are found by the subspace iteration method [5]. To test
the accuracy of the above methods we have used the method of Runge by computing
the solutions on sequence of embedded meshes. The numerous experiments made show
a super-convergence of order four for both the static problem and SLP.

To solve the dynamic problem (1), (2), (3), we use the Finite Difference Method.
The main equation (1) is approximated by the “cross-shaped” scheme. To approx-
imate the boundary conditions (2), the three point one-sided finite differences are

used. Let h and 7 be the steps in space and time respectively, and § = (T/h)Q. In
these notations the difference scheme is:

3
gk = (L+0.5ar)™" |2y} + (0.5a7 — 1)g} — T (sing}, +7) + Y dammyi |, (7)

m=1

k=1,....,n=1, 1=1,23, L' = (am)]m1
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9o = (491 — 9 — 2hhe)/3, G = (4941 — 9L _y + 2hh) /3. (8)

The approximation error of this scheme is O(72 + h?).

To check the numerical stability and the real order of accuracy of the difference
scheme (7), (8), we have made computations for fixed time levels and embedded meshes
in space. The results show second order of convergence in space and time.

The numerical procedure for finding the critical currents of the individual junctions
for fixed parameters S, ¢, a works as follows. We start with h, = 0,y = 0, ¢(x,0) = 0,
¢t(z,0) = 0. For given magnetic field h., increasing the current v from zero by a
small amount A~, we approximately calculate the average voltage (4) by using the
difference scheme. In our computations, for the next value of the current -, the phase
distributions of the last two time levels achieved are used as initial time levels. We
increase the current until all the junctions switch to nonzero voltage. Then the external
field h. is increased by a small amount Ah. and again the current is increased until
all the junctions switch to nonzero voltage. As initial data, the phase distributions for
~v = 0 and the previous value of h. are used.

4. Numerical Results

The results for the critical currents of the individual junctions in a system of three
stacked JJs with parameters S = —0.1,—0.3; a = 0.1,0.05; 2¢ = 10 (in total four
cases) are graphically shown on Fig. 1, 2.
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Figure 1. Critical currents for a = 0.1 Figure 2. Critical currents for a = 0.05

The interval [0,1.2] in h, is considered. The following conclusions can be made.

In vicinity of zero external magnetic field the junctions switch to nonzero voltage
simultaneously, i.e., current locking (CL) takes place. In addition there are smaller
domains at which there is CL divided by domains at which the interior junction
switches first to resistive (R) state. For fixed damping parameter «, the smaller in
absolute value the coupling parameter S, the larger the domain of CL. For fixed
coupling parameter, the smaller damping parameter, the larger the domain of CL.

One can see on Fig. 3, 4, 5, 6 that the transient process of switching from static
to dynamic state for the two cases — CL and no CL — starts with penetration of
fluxons in the interior junction.

In the case of CL (Fig. 3, 4) the switching of the interior junction to R-state triggers
the switching of the exterior ones to R state, but in the case of no CL (Fig. 5, 6) this
does not happens. In the last case the exterior junctions switch to R-state at higher
current, and as the numerical results show, for given magnetic field this critical current
weakly depends on the coupling parameter S.

The transient process of switching the exterior junctions to R-state when the in-
terior one is already in R-state is shown on Fig. 7, 8.
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Figure 3. CL, the interior junction
switches to R-state
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Figure 5. No CL, the interior junction
switches to R-state
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Figure 7. The interior junction is in
R-state
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Figure 4. CL, the exterior junctions switch
to R-state
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Figure 6. No CL, the exterior junctions
remain at zero voltage
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Figure 8. The exterior junctions switch to
R-state

Let us mention that for every h. the lower critical current point, found by solving
the dynamic problem, lies on some bifurcation curve of a static solution, found by
solving the SLP and the static problem.

5. Conclusions

Perfect agreement between the results, found by solving the Sturm-Liouville prob-
lem and those, found by solving the dynamic problem, is established. The numerical
simulation shows that for symmetric three stacked JJ’s current locking takes place.
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This is essentially dynamical phenomenon which depends on the coupling and the
damping parameters.
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Kpurnyeckue 3aBUCUMOCTU B TPEXCJONHBIX J12K03€(PCOHOBCKUX
KOHTaKTax

N. Xpucros, C. Iumosa, ’T. BOH,E[)KI/IGB‘

Darysvmem MAMeMaAmMuKy U UHHOPMAMUKY
rxagedpa « Hucarennvie memodos U AN20PUMMDBLS
Cogutickuti ynusepcumem um. Ka. Oxpudcrozo

oya. Jowcetime Bayuep 5, 1164 Cogun, Borzapus

Mopens Cakan—bBomauna—Ilenepcena ncmosb3yercs JJjisi YUCJIEHHOTO WCCJIEIOBAHUS JTUHA-
MUKH J2KO3ePCOHOBCKUX (a3 B TPEXCJONHBIX IJIMHHBIX JXKO3ePCOHOBCKUX KOHTaKTaX. llo-
Ka3aHO, YTO KPUTUYECKHNE TOKHU OTIAEJIbHBIX KOHTAKTOB 3aBUCAT OT KOI(PPUIMEHTA IUCCUIIA-
[IWU ¥ [TapaMeTpa CBsI3W U YTO €CTh 00JIACTh B OKPECTHOCTH HYJIEBOI'O MATHUTHOTO IIOJISA, TJIe
KOHTAKThI MEPEKJIIOYAIOTCH K HAIPS’KEHUIO OTJIUYHOMY OT HYJIsI OJITHOBPEMEHHO, T.€. UMEET
MECTO CUHXPOHU3AINA KPUTUIECKUX TOKOB.

KuroueBrie cjoBa: MHOTIOCTOMHBIN [12K03e(DCOHOBCKNM KOHTAKT, CUHXPOHU3AINS KPH-
TUYECKHUX TOKOB, CHCTEMa BO3MYIIEHHBIX ypaBHeHUi sine-I'opoHa, METO/] KOHEYHBIX JJIEMEH-
TOB, METOJ, KOHEUHBIX Pa3HOCTEl.





