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The oscillating model of conformal gravity is considered. The static solution is studied
in vacuum-dominated conformal gravitation, which is modeled by scalar field x(z). The
vacuum solution (x = 0, T, = 0) in Einstein’s gauge () = ¢o = const being considered,
the Newtonian potential is obtained. The significance of the additional term in the potential
is also discussed.
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1. Oscillating Model

The oscillating model of the Universe possesses some attractive properties in com-
parison with the standard cosmological model based on Einstein’s equation [1-3]

1
R, — iRQW =8nGT),, (1)
and Friedman’s metric
d4s? = at? — a2(t) (Y 2462 4 12 sin? fd? P
% =dt* — a”(t) 1—kr2+r + r“sin” 0dy” ) . (2)

The properties which give the model its importance among the other models of the
Universe are as follows:

1. The periodic dependence of the cosmological scale factor (radius of the Universe)
a(t) on cosmic time ¢ allows us to realize the idea of stable (eternal) Universe. In
this case it does not contradict the experimental facts witnessing the expansion
of the Universe.

2. Oscillating model trivially allows us to surmount the difficulty arising in the
interpretation of singularity, in which the scale factor a(t) becomes zero, and
density of energy approaches infinity.

It appeares that the first property shows that the closed standard model is correct
(k =1, p> per = 3HZ/87G, where Hj is the present value of the Hubble constant),
but the modern experimental data obtained from measuring the Hubble constant
(Hy ~ 75 Km/s-mps) and from mean density of energy, concentrated in galaxies

(po ~ 3 x 1073 gm/cm® < pey ~ 1072% gm/cm®) does not permit us to affirm that
closed standard model is really true. Unfortunately, the presence of the singularity
in the history of the early Universe, which is an inevitable property of the standard
cosmological model also makes the scenario of the evolution of the Universe within the
framework of closed model not so optimistic (all the matter and radiation approache a
singularity at the origin of a universal black hole — the “big crunch”). Besides it, R.
Tolman remarked in 1931 that the oscillation of closed Universe is not really periodic,
since the amplitude of the scale factor a,,.x and the period T are the functions of the
entropy S, and increase monotonically from cycle to cycle with the grow of entropy.
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Nevertheless, the closed standard model is one of the most attractive models in
today’s cosmology, and some theoreticians try to fit it to experimental data. They
hope that it will show proper agreement with astrophysical observations. Small ob-

served mean density of matter pg ~ 3 x 1073! gm/ cm® contradicts estimations of the
mean density of substances in metagalactic clusters, obtained from the data of mea-
surements of meansquare peculiar velocities of the motion of peripheral substance in
gravitationally related metagalaxies and their analysis within the framework of virial
theorem.The most popular method to remove this contradiction is the assumption of
the existence of hidden mass in the Universe. Massive neutrinos and other exotic
objects were considered as the source of this hidden mass.

The objective of this article is to find the vacuum static solution with spherical
symmetry within the framework of vacuum-dominated conformal gravitation to first
order in material excitation, which is modeled by scalar field x(z), within the scope
of oscillating model of conformal cosmology proposed by V.M. Pyzh [4]. Vacuum
equation for stationary metric with spherical symmetry is used.

2. Weyl’s Conformal Cosmology

The concept of conformal symmetry was introduced by Herman Weyl in 1918 [5],
when he made an attempt to base a new theory of gravitation and electromagnetism
on a modified geometry in which there would be room and need for another geometric
object besides the metric tensor. This was the first example of theory with local gauge
symmetry. Today the principle of gauge invariance lies in the basis of all realistic
theories of fundamental interactions and seems to be as natural as the principle of the
least action itself. Weyl’s term “gauge invariance” and the concept of gauge symmetry
opened up before us a new physical content and became a powerful heuristic principle
in the time of constructing Lagrangians of unified field theory. In 1973 P. A. M. Dirac
in his work returned to the idea of using conformal symmetry in order to construct
unified theory of gravitation and electromagnetism on the basis of Weyl’s geometry
generalizing the Riemannian one.

In Weyl’s geometry the concept of Riemannian tensor is generalized till that of
co-tensor with the properties of tensor with respect to general local point coordinate
transformation process and furthermore showing definite scale degree with respect to
Weyl’s transformation. Conformal transformation of metric tensor g, (z) reads:

G (%) = G (2) = XD g (), 3)

where \(z) is any function of coordinate z. The local quantity T'(x) transforming
simultaneously with (3) according to the law

T(z) = @7 (z) (4)

is called the quantity of degree n. If under this condition quantity 7'(x) is the tensor
with respect to general point coordinate transformation, then it is named as co-tensor
of degree n.

Co-tensors of degree n = 0 (invariant with respect to conformal gauge transforma-
tion (4)) are considered as different class called in-tensors.

Affine connection F;\La(x) of Riemannian geometry, in Weyl’s space can be trans-
formed in the form

Guv,a — Fﬁagku - fi\agAu - 2kBag;u/ =0, (5)

where k is a constant and B, (x) is the Weyl’s vector field, which controls the change
of the length of the vector under its motion along the curve in the Weyl’s space. The
concept of derivative T., may be generalized till co-covariant derivative T, which
will be co-tensor.

For co-scalar S with power n we have

S, = (e"8), = e" (S, +nkA,S) = e[S, + kn(B, — B,)]
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or
S, —nkB,S =™ (S, — nkB,S). (6)

Therefore the quantity
S.u =S, —nkB,S (7)

is the co-vector of power n. Analogous by one can determine co-tensor of power n:
Vi = Vi =T, Vo —nkB,V, (8)

like co-variant derivative with respect to co-vector V,,(z) of power n, and the rule of
co-variant differentiation may be extended to co-tensor T'(x) of power n of any rank
and variance.

The above discussion is a brief report on Weyl’s geometry.

3. Dirac’s Theory and Unified
Einstein—Weyl-Dirac Theory

At the time of constructing action in his own theory Dirac used the same method
like Weyl [5]. The action in physical theory based on Weyl’s geometry

= /d‘*x\ML(x), ()

(where g = det gy, L(xz) — density of Lagrangian) should be in-invariant. Conse-
quently L must be co-scalar of power (—4).

As was Indicated by Dirac, the method of including linear R in Einsteinian term,
in the theory based on Weyl’s geometry, permits to assume, that Einstein’s GTR
and Weyl’s theory with quadratic terms with respect to the curvature tensor do not
exclude, on the contrary, complement each other. As was shown in the work [6],
FEinsteinian and Weylian Lagrangians are two different forms of more general unified
theory based on Weyl’s geometry.

4. Model of Conformal Gravitation with Two
Scalar Fields

To study the structure of conformal vacuum and specific properties of the solution
in the conformal gravitation, it is better to start with the simpler conformal models
of gravitation, which contain the potential with the minimal quantity of field degree
in the Lagrangian.

We choose conformal model of gravitation described by the action with two scalar
fields ¢(x) and x(z) [7]:

1 1 A 6] «
4 2.2 - «@ « 4 2,2 .4
I= /d x\/@{12R(4p X ) 2R(S0 Pa — X Xa) 4§0 290 X 4X }7 (10)

where ¢(z) is the dilaton field and x(x) is the scalar field, representing matter; «, 3,
A are the coupling constants. By varying the action (10) with respect to the metric
tensor g, (x) as well as fields ¢(z) and x(z) we obtain the following equations:

1 6 6t,,
o = g == () o =) == 57255 (1)
] ER — By? Ao =0 12
¢+6<pﬂxs0+<p—, (12)
1
Ox + = Rx — Be?x +ax® =0, (13)
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where T}, is the energy-momentum tensor of matter, described by scalar field x(z),
6, is the energy-momentum tensor of dilaton field ¢(x), which is known as observed
vacuum degree of freedom, depending on the choice of conformal gauge. Here [ is the
D’Alembertian operator.

Conservation law of complete energy-momentum tensor of matter and vacuum

1 1
X (Ox + g Rx + Be?x +ax®) — ¢ (Dw + 5By - Bxp + /\<ﬂ3> =0 (14)

and the trace equation
1
X <DX+ 6Rx+ﬁw2x+ax3) —¢ (O = BxPe + %) =0 (15)

are evident consequences of (12) and (13).
In Einstein’s gauge ¢o = const model, determined by the action (10), is equivalent
to GTR with A-term. Here the quantity

3
B 4o

Go (16)

should be taken as the gravitational constant and we should assume A = (—3\p3/2).
Such definition of A-term leads to the following equation of Einstein:

1
R, — 3 (R+2A) gy = —87GT . (17)

Vacuum solution of the model (10) for static metric with spherical symmetry has
been studied in the work [8], and for Friedman’s cosmology in the works [4,7].

Let us investigate the solution of conformal gravitation, determined by the ac-
tion (10), for static metric with spherical symmetry, given by the interval

ds? = B(r)dt? — A(r)dr? — r2(d6? + sin® 6dp?). (18)

The solution for B(r) can be represented in the form

B(r)=1- (2:"> + <27%2> : (19)

where r, = 2M G is the radius of Schwarzschild, and ry = 4/Ap2. The quantity rq is
to be compared with the value of the scale factor of the Universe rq > a(ty) ~ 10?® cm,
so the last term in the formula (19) can play significant role only in the metagalactic
scale.

5. Static Solution with Spherical Symmetry of
Conformal Gravitation

Let us investigate the properties of the solution of conformal gravitation, deter-
mined by the action (10), for static metric with spherical symmetry, given by the

interval
ds? = b?(r)dt? — a®(r)dr? — r*(d#? + sin® Ad?). (20)

The components of affine connection of Ricci tensor R, (), which are not equal
to zero, for metric (20) take the form [1,7]

b by’ ! 1
I‘irziv F;,ﬁ‘t: o F:T:g’ Fgr:l—‘gr:*?
b a a r 21)
o (
T a2 roo__ _ : -
I, =sin” 4, =" 53 Iy, = —sinfcosd, I'Zy = cot 0,
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bt a’bb’  2bY b’ a't 2d

Ry=—-—F+—7F——%, Ryp=—F - —,

a a ra b ab ra
;o (22)

R __1+T<b_a>+1
oo = a?\b a a?’
where b'(x) = db/dr. Scalar curvature R(x) is defined by the expression
2 v’ a2 /d W 1
R(z)= = |—-— === )+ 5 (e -1)]. 23
(z) az{ b+ab+r(a b>+r2(a )} (23)
It is convenient to rewrite equation (11) in the equivalent form:
6 1 1
Ruzx = _ﬁ |:T,u1/ - §Tg;w - 0;“/ + QHQMV:| ) (24)
where
T =13 = xOx + 26x%¢” + A%, (25)
0 =03 = Op + Ap?, (26)
1 a v 2

Ox=xa=—(—= " "N=====]]. 27
X = X <a2> [x + X (a 3 rﬂ (27)
At first let us consider vacuum solution (xy = 0, 7)) in Einstein’s gauge

o(z) = po = const. This type of solution corresponds to Einstein GTR with A-term
and it is the evident generalization of the Schwarzschild solution [1,8].

6. Vacuum Solution

At x =0, ¢ = ¢ = const, equation (24) takes the form

b’ d'bb’ 20 3
Ru=—"g+ 5 =@ = " (2)
o' db 24 3
Ry, = — — — — — = —Z)\p2d?, 29
b ab ra 2 Yo (29)
1 r (b a 3
R(pcp =1 + ? + ;2 (b - a> = 5)\@(2)7"2 (30)

By multiplying the first of those equations by a?, and the second by b? and by

b a
convenient to put ab = 1, in accordance with the standard solution of Schwarzschild [1].
Then from (30) we obtain

adding them we obtain —% (b—, + “—/) = 0 and, consequently, ab = const. Here it is

d 3
2rbb’ +b* — 1 = T [r(0*-1)] = 5)\3087"2. (31)
From (31) we deduce
r 22
b2 =1--94+ = 32
=170+, (32)

with the denotations being introduced: r, = 2M G (for the Schwarzschild radius) and
13 = 4/Ap3 = 167G/3\. Value of the parameter rq is determined by the constants
G and A. It turnes out that r is very big and corresponds to cosmological scale.
“Modified” Newtonian potential in conformal gravitation (and GTR with A-term)
according to (32) has the form:

@(r):—@—i—é. (33)

T o
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The additional term r?/r3 is proportional to r?. It turnes out that this term is

negligable for the scale of stellar structures and even for galaxies. However in the
analysis of virial theorem results in metagalactic scales, where the contribution of the
term 7“2/7“8 ~ r2 can be significant, it is necessary to use potential ®(r) in its proper
form (33), in order to escape from the possible contradiction.

7. Conclusion

The article exploits the oscillating model within the scope of Weyl’s conformal cos-
mology and unified theory of Einstein—Weyl-Dirac. It also contains the formulation
of conformal model of gravitation, which is modeled by the scalar field x(x). Here we
consider the vacuum solution (x = 0,7),, = 0) in Einstein’s gauge p(x) = ¢y = const.
This type of solution corresponds to Einstein’s GTR with A-term and it is the evident
generalization of the Schwarzschild solution. Newtonian potential in conformal gravi-
tation is also obtained. The additional term in it is not significant for the scale of stellar
structures and even for galaxies, but in case of metagalactic scales the contribution of
this term appears to be significant.
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Crartuveckasi cpepuiecKn-cuMMeTpUIHAsA KOHPUryparus B
KoHdopMHOIi rpaBuTanuu. BakyyMHoe periieHne

Pamur Aszan*, B. M. Ik f
* Bocmouno-3anadnuldl yrusepcumem
Laxa, Baneaadew
T Kagpedpa meopemuneckot dusuru
Xapvrosckuli 20cydapcmeennviti YHUBEPCUMEM,
Xapvros, Yxpauna

PaccmarpuBaeTcst ocrimyuiAnnoHHAs MO KOHMOPMHON rpaBuTanuu. V3ywqaercs craTtu-
YEeCKOe pEIeHne B KOH(OPMHOM TPABUTAIIMN C BAKYyMHON JIOMUHAHTOM, KOTOpPast MOJIEUPY-
ercsi cKaJspHbIM moseM X(z). dus Baxyymsoro perrerusi (x = 0, T, = 0) B KanubpoBKe
Oitamreitna (¢(x) = po = const) mosyven HpIOTOHOBCKUi noreHnumasn. Obcyxaaercs 3Hade-
HHUE AJOIIOJIHUTEJIBHOI'O CJlIara€MOI'O B IIOTEHIIUAJIC.





