Математическое моделирование

УДК 51-72:531/533, 51-72:530.145

Некоторые символьно-численные методы вычисления энергетических спектров квантовых ангармонических осцилляторов

В.В. Флоринский, Н.А. Чеканов

Кафедра математического анализа Белгородский государственный университет ул. Победы, 85, Белгород, Россия, 308015

Решается одномерное уравнение Шрёдингера для ангармонических осцилляторов с четвёртой, шестой и восьмой степенью нелинейности. Для этих систем найдены энергетические спектры с помощью квантования классических траекторий, вычисленных по методу Линдштедта–Пуанкаре, методом нормальных форм Депри–Хори, а также с помощью степенных рядов. Выполнено сравнение полученных результатов между собой и с известными из литературы результатами.

Ключевые слова: ангармонические осцилляторы, уравнение Шрёдингера, функция Гамильтона, метод Линдштедта–Пуанкаре, нормальные формы, квантование, степенные ряды, энергетический спектр.

1. Введение

Основным уравнением нерелятивистской квантовой механики, как известно, является уравнение Шрёдингера. Однако в явном аналитическом виде его решения, то есть энергетический спектр и волновые функции даже в одномерном случае найдены для нескольких видов потенциальной энергии, имеющих теоретическое и практическое значение. Достаточно поразительным фактом является то, что для ангармонических осцилляторов, которые описываются оператором Шрёдингера

$$\hat{H}_{\mu} = -\frac{1}{2}\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \frac{1}{2}x^2 + \alpha x^{\mu},\tag{1}$$

 $(\mu = 4, 6, 8, \alpha$ — параметр) не найдены его собственные значения и функции. Поэтому для решения уравнения Шрёдингера с произвольным потенциалом и числом размерности разработаны и применяются различные как приближенные аналитические, так и прямые численные методы решения уравнения Шрёдингера (см., например, [1–23]).

Ангармоническим осцилляторам, особенно с потенциалом четвёртой степени нелинейности, посвящено огромное число работ (см., например, [7, 13–16], [19, 20, 24]). Это связано с тем, что, несмотря на кажущуюся простоту, эта модель, с одной стороны, имеет полезные приложения в атомной и молекулярной физике [10, 25], в квантовой теории поля [26], в теории твёрдого тела [27] и статистической физике [28], а, с другой стороны, не имеет общего решения для собственных значений и функций. С математической точки зрения причина сложности нахождения спектра и волновых функций ангармонического осциллятора в том, что он имеет неизолированную особую точку по параметру нелинейности α , если рассматривать его в комплексной плоскости [13]. С практической точки зрения проблема ангармонического осциллятора является испытательным тестом для проверки новых приближенных методов решения задачи на собственные значения.

Статья поступила в редакцию 24 июля 2008 г.

Кроме того, в связи с существованием динамического хаоса в классических системах (см., например, [29]) возникла необходимость одновременного параллельного исследования как классической функции Гамильтона, так и её квантового аналога, а потому возродился интерес к старой проблеме квантования классических решений.

В связи с появлением мощных вычислительных машин и пакетов компьютерной алгебры как REDUCE, MAPLE, MATHEMATICA и других возникли перспективы реализации методов решения, в частности уравнений Шрёдингера, ранее практически невыполнимых.

В настоящей работе с использованием систем компьютерной алгебры REDUCE и MAPLE рассмотрены три символьно–численных метода решения уравнения Шрёдингера

$$\hat{H}_{\mu}\psi(x) = E\psi(x) \tag{2}$$

с дифференциальным оператором (1), где $\psi(x)$ — волновая функция, E — спектр оператора (1).

Некоторые задачи квантовой механики допускают достаточно точное, но менее трудоёмкое решение при описании их уравнениями классической механики с заданным гамильтонианом и последующим квантованием их решений (см., например, [8–10]). В настоящей работе для нахождения классических решений был применён метод Линдштедта–Пуанкаре с последующим квантованием по известному правилу Бора–Зоммерфельда.

Однако имеются другие подходы к вычислению квантовых характеристик, которые не требуют непосредственно классических траекторий, как правило, получаемых численным путём. Одним из таких мощных методов является метод нормальных форм и его различные варианты (см., например, [17–22, 30]). Существо метода нормальных форм заключается в предварительном каноническом преобразовании исходного классического гамильтониана с целью приведения его к более простому виду, который называется нормальной формой. Классические уравнения движения в новых канонически сопряжённых переменных решаются тривиальным образом, но основная сложность состоит в трудоёмкости нахождения нужных канонических преобразований, которые выполняются на персональных компьютерах при помощи известных программных систем алгебраических вычислений. В данной работе таким методом также было решено уравнение Шрёдингера (1).

Как известно, простым и эффективным методом интегрирования дифференциальных уравнений является поиск решений в виде степенных рядов, с помощью которого в настоящей работе вычислен энергетический спектр уравнения Шрёдингера (1).

2. Квантование классических решений, найденных по методу Линдштедта–Пуанкаре

В этом разделе решение уравнения Шрёдингера (1)–(2) найдём при помощи квантования классических траекторий, вычисленных по методу Линдштедта– Пуанкаре. Для этого рассмотрим классический аналог оператора Шрёдингера (1), то есть функцию Гамильтона:

$$H(x,p) = \frac{p^2}{2} + \frac{x^2}{2} + \alpha x^{\mu}.$$
(3)

Соответствующее уравнение движения имеет вид:

$$x'' + x + \mu \alpha x^{\mu-1} = 0, \quad x'(\tau) \equiv \frac{\mathrm{d}x}{\mathrm{d}\tau}.$$
(4)

Согласно методу Линдштедта-Пуанкаре делаем замену

$$\tau = \left(1 + \sum_{k=1}^{\infty} \alpha^k \omega_k\right) t,$$

где $\omega_1, \omega_2, \ldots, \omega_k, \ldots$ — постоянные, выбирая которые соответствующим образом, можно исключить из решения секулярные члены (слагаемые, неограниченно растущие со временем). При этом само решение ищется в виде ряда $x(t) = \sum_{k=0}^{\infty} \alpha^k x_k(t)$. Подставляя этот ряд в уравнение (4), получим систему дифференциальных уравнений, из которой найдём неизвестные функции $x_k(t)$, а также частоты ω_k . С помощью разработанной программы в среде MAPLE было найдено для случая $\mu = 4$ в пятом порядке по параметру α следующее решение

$$\begin{aligned} x(t) &= A\cos(t-t_0) + \alpha \left(A\cos(t-t_0) + \frac{1}{8} A^3 \cos\left(3(t-t_0)\right) \right) + \\ &+ \alpha^2 \left(A\cos\left(t-t_0\right) + \left(-\frac{21}{64} A^5 + \frac{3}{8} A^3\right) \cos\left(3\left(t-t_0\right)\right) \right) + \\ &+ \alpha^3 \left(A\cos\left(t-t_0\right) + \left(\frac{471}{512} A^7 - \frac{105}{64} A^5 + \frac{3}{4} A^3\right) \cos\left(3\left(t-t_0\right)\right) + \\ &+ \left(-\frac{43}{512} A^7 + \frac{5}{64} A^5\right) \cos\left(5\left(t-t_0\right)\right) + \frac{1}{512} A^7 \cos\left(7\left(t-t_0\right)\right) \right) + \\ &+ \alpha^4 \left(\left(\frac{7}{512} A^7 - \frac{65}{4096} A^9 \right) \cos\left(7\left(t-t_0\right)\right) + \frac{1}{4096} A^9 \cos\left(9\left(t-t_0\right)\right) + \\ &+ A\cos\left(t-t_0\right) + \left(\frac{2919}{512} A^7 - \frac{7797}{4096} A^9 + \frac{5}{4} A^3 - \frac{315}{64} A^5\right) \cos\left(3\left(t-t_0\right)\right) + \\ &+ \left(\frac{15}{64} A^5 - \frac{301}{512} A^7 + \frac{335}{1024} A^9\right) \cos\left(5\left(t-t_0\right)\right) \right) + \\ &+ \alpha^5 \left(\frac{1}{32768} A^{11} \cos\left(11\left(t-t_0\right)\right) + \left(\frac{7}{128} A^7 - \frac{585}{4096} A^9 + \\ &+ \frac{2747}{32768} A^{11}\right) \cos\left(7\left(t-t_0\right)\right) + \frac{1}{4096} A^9 \cos\left(9\left(t-t_0\right)\right) + A\cos\left(t-t_0\right) + \\ &+ \left(\frac{2919}{128} A^7 - \frac{70173}{4096} A^9 + \frac{15}{8} A^3 - \frac{735}{64} A^5 + \frac{136113}{32768} A^{11}\right) \cos\left(3\left(t-t_0\right)\right) + \\ &+ \left(\frac{35}{64} A^5 - \frac{301}{128} A^7 + \frac{3015}{1024} A^9 - \frac{35853}{32768} A^{11}\right) \cos\left(5\left(t-t_0\right)\right) + \dots \end{aligned}$$

Постоянную интегрирования t_0 без ограничения общности можно положить равной нулю, а амплитуду A выразить через полную энергию системы E, решив в точке поворота уравнение

$$V(x) \equiv \frac{1}{2}x^2 + \alpha x^\mu = E.$$

Квантование полученных классических решений выполним по традиционному правилу Бора–Зоммерфельда

$$\frac{1}{2\pi}\oint p\mathrm{d}x = n + \frac{m}{4},$$

где p — импульс, m — индекс Маслова, который в нашей задаче равен двум. После квантования получим уравнение, из которого итерационным способом найдём E. В результате получим формулы для спектров $E_n^{(\mu)}$, $\mu = 4, 6, 8$ оператора (1):

$$E_n^{(4)} = n + \frac{1}{2} + \frac{3}{2} \alpha \left(n^2 + n + \frac{1}{4} \right) - \frac{17}{32} \alpha^2 \left(8n^3 + 12n^2 + 6n + 1 \right) + \frac{17}{32} \alpha^2 \left(8n^3 + 12n^2 + 6n + 1 \right)$$

$$+ \frac{375}{8} \alpha^3 \left(\frac{1}{2} n^4 + n^3 + \frac{3}{4} n^2 + \frac{1}{4} n + \frac{1}{32} \right) - \frac{10689}{2048} \alpha^4 \left(32n^5 + 80n^4 + 80n^3 + 40n^2 + 10n + 1 \right) + \frac{1313235}{256} \alpha^5 \left(\frac{4}{15} n^6 + \frac{4}{5} n^5 + n^4 + \frac{2}{3} n^3 + \frac{1}{4} n^2 + \frac{1}{20} n + \frac{1}{240} \right) - \frac{3132399}{32768} \alpha^6 \left(128n^7 + 448n^6 + 672n^5 + 560n^4 + 280n^3 + 84n^2 + 14n + 1 \right) + \frac{1667581839}{2048} \alpha^7 \left(\frac{4}{7} n^7 + n^6 + n^5 + \frac{5}{8} n^4 + \frac{1}{4} n^3 + \frac{1}{16} n^2 + \frac{1}{112} n + \frac{1}{1792} \right) \dots,$$

$$E_n^{(6)} = n + \frac{1}{2} + \frac{3}{2} \alpha \left(n^2 + n + \frac{1}{4} \right) - \frac{39}{32} \alpha^2 \left(8n^3 + 12n^2 + 6n + 1 \right) +$$

$$+ \frac{1005}{8} \alpha^3 \left(\frac{1}{2}n^4 + n^3 + \frac{3}{4}n^2 + \frac{1}{4}n + \frac{1}{32} \right) -$$

$$- \frac{25089}{2048} \alpha^4 \left(32n^5 + 80n^4 + 80n^3 + 40n^2 + 10n + 1 \right) +$$

$$+ \frac{2218395}{256} \alpha^5 \left(\frac{4}{15}n^6 + \frac{4}{5}n^5 + n^4 + \frac{2}{3}n^3 + \frac{1}{4}n^2 + \frac{1}{20}n + \frac{1}{240} \right) -$$

$$- \frac{3167277}{32768} \alpha^6 \left(128n^7 + 448n^6 + 672n^5 + 560n^4 + 280n^3 + 84n^2 + 14n + 1 \right) +$$

$$+ \frac{788569761}{2048} \alpha^7 \left(\frac{1}{7}n^8 + \frac{4}{7}n^7 + n^6 + n^5 + \frac{5}{8}n^4 + \frac{1}{4}n^3 + \frac{1}{16}n^2 + \frac{1}{112}n + \frac{1}{1792} \right) \dots,$$

$$\begin{split} E_n^{(8)} &= n + \frac{1}{2} + \frac{3}{2} \alpha \left(n^2 + n + \frac{1}{4} \right) - \frac{17}{32} \alpha^2 \left(8n^3 + 12n^2 + 6n + 1 \right) + \\ &+ \frac{375}{8} \alpha^3 \left(\frac{1}{2}n^4 + n^3 + \frac{3}{4}n^2 + \frac{1}{4}n + \frac{1}{32} \right) - \\ &- \frac{10689}{2048} \alpha^4 \left(32n^5 + 80n^4 + 80n^3 + 40n^2 + 10n + 1 \right) + \\ &+ \frac{1313235}{256} \alpha^5 \left(\frac{4}{15}n^6 + \frac{4}{5}n^5 + n^4 + \frac{2}{3}n^3 + \frac{1}{4}n^2 + \frac{1}{20}n + \frac{1}{240} \right) - \\ &- \frac{3132399}{32768} \alpha^6 \left(128n^7 + 448n^6 + 672n^5 + 560n^4 + 280n^3 + 84n^2 + 14n + 1 \right) + \\ &+ \frac{1667581839}{2048} \alpha^7 \left(\frac{1}{7}n^8 + \frac{4}{7}n^7 + n^6 + n^5 + \frac{5}{8}n^4 + \frac{1}{4}n^3 + \frac{1}{16}n^2 + \frac{1}{112}n + \frac{1}{1792} \right) \dots \end{split}$$

3. Метод квантовых нормальных форм

В этом разделе найдём приближённое решение исходной задачи (1)–(2) при помощи классической и квантовой нормальных форм Депри–Хори. Для этого классическую функцию Гамильтона, соответствующую оператору Шрёдингера (1), представим в виде рядов:

$$H_{\mu}(x,p) = \frac{1}{2}(p^2 + x^2) + \sum_{k=1}^{\infty} \frac{1}{k!} H_k(x,p), \quad H_k(x,p) = \sum_{l+m=k+2}^{\infty} h_{lm} x^l p^m,$$

где числовые коэффициенты h_{lm} определяются из выражения (1).

Выполняя ряд канонических преобразований $(x, p) \to (\xi, \eta)$, классическую гамильтонову функцию (3) приведём к классической нормальной форме, т.е. найдём такую функцию $\Gamma(\xi, \eta)$, что выполняется условие

$$\left\{\frac{1}{2}(\eta^2 + \xi^2), \Gamma(\xi, \eta)\right\} = 0,$$
(7)

где {*,*} – скобка Пуассона.

Производящую функцию W(x, p) канонического преобразования $(x, p) \to (\xi, \eta)$ и саму нормальную форму $\Gamma(\xi, \eta)$ будем искать в виде степенных рядов

$$W(x(\eta,\xi),p(\eta,\xi)) = \sum_{k=0}^{\infty} \frac{1}{k!} W_{k+1}(x(\eta,\xi),p(\eta,\xi)),$$

$$\Gamma(\xi,\eta) = \sum_{k=0}^{\infty} \frac{1}{k!} \Gamma_k(\xi,\eta).$$
(8)

Неизвестные величины W_k и Γ_k в выражении (8) удовлетворяют уравнению

$$\{H_0, W_k\} = -H_k + \Gamma_k + T_k, \quad k = 0, 1, 2, \dots,$$
(9)

где H_0 и H_k – компоненты классической гамильтоновой функции (3), а величины T_k определяются выражением

$$T_{k} = \sum_{j=1}^{k-1} \left(C_{k-1}^{j-1} L_{j} H_{k-j} + C_{k-1}^{j} K_{j,k-j} \right), \quad K_{j,i} = L_{j} \Gamma_{i} - \sum_{m=1}^{j-1} \left(C_{j-1}^{m-1} L_{m} K_{j-m,i} \right),$$

где C_n^k — биномиальные коэффициенты, L_j — оператор Ли, который определяется через скобки Пуассона: $L_j f = \{f, W_j\}$.

Чтобы найти неизвестные компоненты W_k и Γ_k , основное уравнение (9) дополним равенством (7), которое определяет нормальную форму. Полученный в результате полином $H_k + T_k$ представим в виде суммы двух однородных полиномов $N_k + R_k$, удовлетворяющих условиям $\{H_0, N_k\} = 0, \{H_0, W_k\} \neq 0$. Тогда из основного уравнения (9) с учётом условия (7) неизвестные компоненты производящей функции W_k и нормальной формы Γ_k можно определить следующим образом: $\Gamma_k = N_k, \{H_0, W_k\} = -R_k$.

Для решения поставленной задачи на собственные значения (1)–(2) удобно ввести новые комплексные канонически сопряжённые переменные

$$z=\frac{1}{\sqrt{2}}(\eta+i\xi),\quad z^*=\frac{1}{\sqrt{2}}(\eta-i\xi)$$

и выразить классическую нормальную форму через эти переменные.

В настоящей работе классические нормальные формы Депри-Хори для функции Гамильтона (3) вычислены с помощью программы LINA [30] в среде REDUCE, которая позволяет получить нормальную форму в любом заданном порядке по параметру α и произвольным числом степеней свободы, ограничиваясь лишь возможностями компьютера. В рассматриваемом случае для гамильтоновой функции (3) классические нормальные формы получены до 30-го порядка включительно для каждого значения $\mu = 4, 6, 8$:

$$\begin{split} \Gamma^{(\mu=4)}(z,z^*) &= zz^* + \frac{3}{2}\alpha(zz^*)^2 - \frac{17}{4}\alpha^2(zz^*)^3 + \frac{375}{16}\alpha^3(zz^*)^4 - \frac{10689}{64}\alpha^4(zz^*)^5 + \\ &+ \frac{87549}{64}\alpha^5(zz^*)^6 - \frac{3132399}{256}\alpha^6(zz^*)^7 + \frac{2382255977}{2048}\alpha^7(zz^*)^8 - \\ &- \frac{1894591925}{16384}\alpha^8(zz^*)^9 + \frac{194904116547}{16384}\alpha^9(zz^*)^{10}\dots, \end{split}$$

$$\begin{split} \Gamma^{(\mu=6)}(z,z^*) &= zz^* + \frac{5}{2}\alpha(zz^*)^3 - \frac{393}{16}\alpha^2(zz^*)^5 + \frac{14745}{32}\alpha^3(zz^*)^7 - \\ &- \frac{11451165}{1024}\alpha^4(zz^*)^9 + \frac{639784665}{2048}\alpha^5(zz^*)^{11} - \frac{156295858215}{16384}\alpha^6(zz^*)^{13} + \\ &+ \frac{10151223197865}{32768}\alpha^7(zz^*)^{15} \dots, \end{split}$$

$$\Gamma^{(\mu=8)}(z,z^*) = zz^* + \frac{35}{8}\alpha(zz^*)^4 - \frac{3985}{32}\alpha^2(zz^*)^7 + \frac{3424729}{512}\alpha^3(zz^*)^{10} - \frac{3802922305}{8192}\alpha^4(zz^*)^{13} + \frac{9717845679465}{262144}\alpha^5(zz^*)^{16} - \frac{3392430223186635}{104857}\alpha^6(zz^*)^{19} + \frac{2518225346266746515}{8388608}\alpha^7(zz^*)^{22} \dots$$

Для нахождения квантовой нормальной формы воспользуемся правилом Вейля [18,19]:

$$z^m z^{*^n} \equiv z^{*^n} z^m \to \frac{1}{2^m} \sum_{l=0}^m \frac{m!}{l!(m-l)!} \hat{a}^{+^l} \hat{a}^n \hat{a}^{+^{m-l}},$$

где $\hat{a}^+ = \frac{1}{i\sqrt{2}} \left(\frac{d}{d\xi} - \xi \right), \quad \hat{a} = \frac{1}{i\sqrt{2}} \left(\frac{d}{d\xi} + \xi \right).$ Тогда собственные значения задачи $\hat{\Gamma}\psi(\xi) = \lambda\psi(\xi)$ приближённо равны собственным значениям исходного уравнения Шрёдингера (1)–(2). Описанным методом ниже представлены формулы для энергетических спектров гамильтониана \hat{H}_{μ} (при $\mu = 4, 6, 8$ соответственно):

$$\begin{split} E_n^{(\mu=4)} &= n + \frac{1}{2} + \frac{3}{2}\alpha \left(n^2 + n + \frac{1}{2} \right) - \frac{17}{4}\alpha^2 \left(n^3 + \frac{3}{2}n^2 + 2n + \frac{3}{4} \right) + \\ &+ \frac{375}{16}\alpha^3 \left(n^4 + 2n^3 + 5n^2 + 4n + \frac{3}{2} \right) - \frac{10689}{64}\alpha^4 \left(n^5 + \frac{5}{2}n^4 + 10n^3 + \\ &+ \frac{25}{2}n^2 + \frac{23}{2}n + \frac{15}{4} \right) + \frac{4289901}{64}\alpha^5 \left(\frac{1}{49}n^6 + \frac{3}{49}n^5 + \\ &+ \frac{5}{14}n^4 + \frac{30}{49}n^3 + n^2 + \frac{69}{98}n + \frac{45}{196} \right) - \frac{3132399}{256}\alpha^6 \left(n^7 + \\ &+ \frac{7}{2}n^6 + 28n^5 + \frac{245}{4}n^4 + 154n^3 + \frac{343}{2}n^2 + 132n + \frac{315}{8} \right) + \\ &+ \frac{97434424593}{1024}\alpha^7 \left(\frac{1}{818}n^8 + \frac{2}{409}n^7 + \frac{21}{409}n^6 + \frac{56}{409}n^5 + \frac{399}{818}n^4 + \\ &+ \frac{308}{409}n^3 + n^2 + \frac{264}{409}n + \frac{315}{1636} \right) - \frac{18945961925}{16384}\alpha^8 \left(n^9 + \frac{9}{2}n^8 + 60n^7 + \\ &+ 189n^6 + 903n^5 + \frac{3591}{2}n^4 + 3590n^3 + 3681n^2 + \frac{5067}{2}n + \frac{2835}{4} \right) + \\ &+ \frac{8161999701201819}{32768}\alpha^9 \left(\frac{2}{41877}n^{10} + \frac{10}{41877}n^9 + \frac{5}{1269}n^8 + \\ &+ \frac{200}{13959}n^7 + \frac{112}{1269}n^6 + \frac{3010}{3059}n^5 + \frac{2285}{3807}n^4 + \frac{35900}{41877}n^3 + \\ &+ n^2 + \frac{2815}{4653}n + \frac{175}{1034} \right) - \frac{8240234242929}{65536}\alpha^{10} \left(n^{11} + \frac{11}{2}n^{10} + 110n^9 + \\ &+ \frac{1815}{4}n^8 + 3498n^7 + 10164n^6 + 37400n^5 + \frac{276485}{4}n^4 + \frac{239327}{2}n^3 + \\ &+ \frac{460647}{4}n^2 + 73215n + \frac{155925}{8} \right) \dots, \end{split}$$

$$\begin{split} E_n^{(\mu=6)} &= n + \frac{1}{2} + \frac{15}{8} \alpha \left(\frac{4}{3} n^3 + 2n^2 + \frac{8}{3} n + 1 \right) - \frac{393}{16} \alpha^2 \left(n^5 + \frac{5}{2} n^4 + 10n^3 + \frac{25}{2} n^2 + \frac{23}{2} n + \frac{15}{4} \right) + \frac{5057535}{64} \alpha^3 \left(\frac{2}{34} n^7 + \frac{1}{49} n^6 + \frac{8}{49} n^5 + \frac{5}{14} n^4 + \frac{44}{49} n^3 + n^2 + \frac{264}{343} n + \frac{45}{196} \right) - \frac{11451165}{1024} \alpha^4 \left(n^9 + \frac{9}{2} n^8 + 60n^7 + 189n^6 + 903n^5 + \frac{3591}{2} n^4 + 3590n^3 + 3681n^2 + \frac{5067}{2} n + \frac{2835}{4} \right) + \frac{15311774452045}{4096} \alpha^5 \left(\frac{2}{239327} n^{11} + \frac{1}{21757} n^{10} + \frac{20}{21757} n^9 + \frac{165}{43514} n^8 + \frac{636}{21757} n^7 + \frac{21757}{1848} n^6 + \frac{6800}{21757} n^5 + \frac{2535}{43514} n^4 + n^3 + \frac{41877}{43514} n^2 + \frac{146430}{239327} n + \frac{14175}{87028} \right) \dots, \end{split}$$

$$E_{n}^{(\mu=8)} = n + \frac{1}{2} + \frac{35}{8}\alpha \left(n^{4} + 2n^{3} + 5n^{2} + 4n + \frac{3}{2}\right) - \frac{3985}{32}\alpha^{2} \left(n^{7} + \frac{7}{2}n^{6} + 28n^{5} + \frac{245}{4}n^{4} + 154n^{3} + \frac{343}{2}n^{2} + 132n + \frac{315}{5}\right) + \frac{143417376333}{1024}\alpha^{3} \left(\frac{2}{41877}n^{10} + \frac{10}{41877}n^{9} + \frac{5}{1269}n^{8} + \frac{200}{13959}n^{7} + \frac{112}{1269}n^{6} + \frac{3010}{13959}n^{5} + \frac{2285}{3807}n^{4} + \frac{35900}{41877}n^{3} + n^{2} + \frac{2815}{4653}n + \frac{175}{1034}\right) - \frac{3802922305}{8192}\alpha^{4} \left(\frac{13}{2}n^{12} + 182n^{11} + \frac{1859}{2}n^{10} + \frac{21021}{2}n^{9} + \frac{161733}{4}n^{8} + 234806n^{7} + 639496n^{6} + 1992991n^{5} + \frac{6947083}{2}n^{4} + 5431062n^{3} + \frac{19868823}{4}n^{2} + \frac{11889315}{4}n + \frac{6081075}{8}\right) \dots$$

$$(12)$$

Для решения задачи (1)–(2) составлена программа QuantaWeyl в среде Maple, которая позволяет получать аналитические формулы спектров (10)–(12) в любом порядке по параметру с учётом возможностей компьютера.

4. Решение уравнения Шрёдингера с помощью степенных рядов

Исходное уравнение Шрёдингера (1)–(2)

$$\psi''(x) + 2(E - V(x))\psi(x) = 0, \quad \psi(\pm \infty) = 0$$
(13)

решим с помощью степенных рядов.

Для этого найдём фундаментальную систему решений задачи (13) в следующем виде

$$\psi_1(x,E) = 1 + \sum_{k=2}^{\infty} a_k x^k, \quad \psi_2(x,E) = x + \sum_{k=2}^{\infty} b_k x^k,$$
 (14)

где неизвестные коэффициенты a_k и b_k зависят от энергии E и находятся подстановкой рядов (14) в уравнение (13). Первые члены разложения линейно независимых решений $\psi_1(x, E)$ и $\psi_2(x, E)$, число которых в наших расчётах было равно 125, имеют следующий вид: для $\mu = 4$:

$$\begin{split} \psi_1(x,E) &= 1 - Ex^2 + \left(\frac{E^2}{6} + \frac{1}{12}\right)x^4 + \left(-\frac{E^3}{90} - \frac{7E}{180} + \frac{\alpha}{15}\right)x^6 + \left(\frac{E^4}{2520} + \frac{11E^2}{2520} - \frac{4\alpha E}{105} + \frac{1}{672}\right)x^8 + \left(-\frac{E^5}{113400} - \frac{E^3}{4536} + \frac{43\alpha E^2}{9450} + \frac{7\alpha}{2700} - \frac{211E}{453600}\right)x^{10}\dots, \\ \psi_2(x,E) &= x - \frac{E}{3}x^3 + \left(\frac{E^2}{30} + \frac{1}{20}\right)x^5 + \left(-\frac{E^3}{630} - \frac{13E}{1260} + \frac{\alpha}{21}\right)x^7 + \left(\frac{E^4}{22680} + \frac{17E^2}{22680} - \frac{2\alpha E}{189} + \frac{1}{1440}\right)x^9 + \left(-\frac{E^5}{1247400} - \frac{E^3}{35640} + \frac{83\alpha E^2}{103950} - \frac{59E}{554400} + \frac{31\alpha}{23100}\right)x^{11}\dots; \end{split}$$

для $\mu = 6$:

$$\begin{split} \psi_1(x,E) &= 1 - Ex^2 + \left(\frac{E^2}{6} + \frac{1}{12}\right)x^4 - \left(\frac{E^3}{90} + \frac{7E}{180}\right)x^6 + \left(\frac{E^4}{2520} + \frac{11E^2}{2520} + \frac{\alpha}{28} + \frac{1}{672}\right)x^8 - \left(\frac{E^5}{113400} + \frac{E^3}{4536} + \frac{211E}{453600} + \frac{29\alpha E}{1260}\right)x^{10}\dots, \\ \psi_2(x,E) &= x - \frac{E}{3}x^3 + \left(\frac{E^2}{30} + \frac{1}{20}\right)x^5 - \left(\frac{E^3}{630} + \frac{13E}{1260}\right)x^7 + \left(\frac{E^4}{22680} + \frac{17E^2}{22680} + \frac{\alpha}{36} + \frac{1}{1440}\right)x^9 - \left(\frac{E^5}{1247400} + \frac{E^3}{35640} + \frac{59E}{554400} + \frac{13\alpha E}{1980}\right)x^{11}\dots; \end{split}$$

для $\mu = 8$:

$$\begin{split} \psi_1(x,E) &= 1 - Ex^2 + \left(\frac{E^2}{6} + \frac{1}{12}\right)x^4 - \left(\frac{E^3}{90} + \frac{7E}{180}\right)x^6 + \left(\frac{E^4}{2520} + \frac{11E^2}{2520} + \frac{1}{672}\right)x^8 - \\ &- \left(\frac{E^5}{113400} + \frac{E^3}{4536} + \frac{211E}{453600} + \frac{\alpha}{45}\right)x^{10}\dots, \\ \psi_2(x,E) &= x - \frac{E}{3}x^3 + \left(\frac{E^2}{30} + \frac{1}{20}\right)x^5 - \left(\frac{E^3}{630} + \frac{13E}{1260}\right)x^7 + \left(\frac{E^4}{22680} + \frac{17E^2}{22680} + \frac{1}{1440}\right)x^9 - \left(\frac{E^5}{1247400} + \frac{E^3}{35640} + \frac{59E}{554400} - \frac{\alpha}{55}\right)x^{11}\dots. \end{split}$$

Чтобы общее решение задачи (13) в виде $\psi(x) = C_1\psi_1(x) + C_2\psi_2(x)$ удовлетворяло краевым условиям, необходимо выбрать произвольные постоянные C_1 и C_2 так, чтобы была совместна система алгебраических уравнений

$$C_1\psi_1(-R,E) + C_2\psi_2(-R,E) = 0,$$

$$C_1\psi_1(R,E) + C_2\psi_2(R,E) = 0.$$
(15)

На практике вариацией значения параметра R добиваемся совпадения собственных значений в первых семи десятичных знаках, в частности, для нижних уровней энергии в наших расчётах $R \in [4, 10; 4, 15]$.

Приравнивая к нулю определитель системы (15), получим уравнение относительно E, корни которого являются собственными значениями задачи (1)–(2).

Заметим, что рассмотренный подход также позволяет найти собственные функции этой задачи. Для каждого вычисленного корня E_n система (15) имеет единственное решение $C_1^{(n)}$ и $C_2^{(n)}$, поэтому волновая функция *n*-го энергетического уровня имеет вид $\psi(x)^{(n)} = C_1^{(n)}\psi_1(x) + C_2^{(n)}\psi_2(x)$.

5. Результаты численных расчётов

В табл. 1–3 проведены сравнения значений энергетического спектра оператора Шрёдингера, вычисленных в данной работе, с результатами работы [15], в которой приведены наиболее достоверные значения спектров ангармонических осцилляторов.

В табл. 1–3 через n обозначен номер уровня; E_{LP} — соответствующее значение энергии, полученное по формулам (6); E_{NF} — значение энергии, полученное по формулам (10)–(12); E_{PS} — значение энергии, полученное решением краевой задачи (13); E_{QM} — значение энергии, приведённое в работе [15]; $\varepsilon_{2,5}$, $\varepsilon_{3,5}$ и $\varepsilon_{4,5}$ относительные отклонения рассчитанных уровней от значений из работы [15]. Как видно из таблиц, имеется хорошее согласие результатов.

Таблица 1

Сравнение собственных значений оператора (2) при $\mu = 4, \ \alpha = 10^{-3}$

n	E_{LP}	E_{NF}	E_{PS}	E_{QM}	$\varepsilon_{2,5}$	$\varepsilon_{3,5}$	$\varepsilon_{4,5}$
0	1,000748	1,000748	1,000748	1,000748	$2 \cdot 10^{-5}$	10^{-5}	$3 \cdot 10^{-5}$
1	3,00336	3,00373	3,00374	3,00373	$12\cdot 10^{-4}$	0	$2 \cdot 10^{-4}$
2	5,0093	5,0097	5,0098	5,0097	$7 \cdot 10^{-4}$	$2 \cdot 10^{-5}$	$2 \cdot 10^{-3}$
3	7,0183	7,0186	7,019	7,0186	$5 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	0,017
4	9,0301	9,0305	9,045	9,0305	$4 \cdot 10^{-3}$	$2 \cdot 10^{-5}$	0,165

Таблица 2

Сравнение собственных значений оператора (2) при $\mu = 6$, $\alpha = 10^{-4}$

n	E_{LP}	E_{NF}	E_{PS}	E_{QM}	$\varepsilon_{2,5}$	$\varepsilon_{3,5}$	$\varepsilon_{4,5}$
0	1,000037	1,00018	1,00018	1,00018	0,014	0	0
1	3,00033	3,0013	3,0013	3,0013	0,03	0	0
2	5,00093	5,0046	5,0047	5,0046	0,07	0	$9 \cdot 10^{-5}$
3	7,00183	7,011	7,012	7,011	0, 13	0	0,014
4	9,003	9,023	9,033	9,023	0,22	0	0, 1

Таблица 3 Сравнение собственных значений оператора (2) при $\mu = 8, \ \alpha = 10^{-5}$

n	E_{LP}	E_{NF}	E_{PS}	E_{QM}	$\varepsilon_{2,5}$	$\varepsilon_{3,5}$	$\varepsilon_{4,5}$
0	1,000003	1,00006	1,00006	1,00006	0,006	0	0
1	3,00003	3,00058	3,00059	3,00058	0,02	0	$3 \cdot 10^{-3}$
2	5,00009	5,0026	5,0027	5,0026	0,05	0	$2 \cdot 10^{-3}$
3	7,00018	7,0083	7,0095	7,0083	0, 11	0	0,016
4	9,000	9,02	9,03	9,02	0,22	0	0, 12

6. Заключение

В заключение отметим, что рассмотренный метод нормальных форм представляет некоторый вариант обычной теории возмущений и даёт неплохие результаты при достаточно малых значениях параметра α в отличие от метода решения уравнения Шрёдингера с помощью степенных рядов, который пригоден при произвольных значениях этого параметра. Что касается формулы (6), полученной с использованием метода Линдштедта–Пуанкаре для спектра ангармонического осциллятора с потенциалом четвёртой степени, то она полностью совпадает с формулой, полученной методом квантовых нормальных форм в работе [19].

Литература

- 1. Фрёман Н., Фрёман П. У. ВКБ-приближение. М.: Мир, 1967. С. 168.
- 2. Ульянов В. В. Интегральные методы в квантовой механике. Харьков: Издво ХГУ, 1982. С. 160.
- 3. *Славянов С. Ю.* Асимптотика решений одномерного уравнения Шредингера. Ленинград: Изд-во ЛГУ, 1990. С. 256.
- 4. *Глазунов Ю. Т.* Вариационные методы. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика», 2006. С. 470.
- 5. *Уилкинсон Д., Райнш К.* Справочник алгоритмов на языке АЛГОЛ. Линейная алгебра. М.: Машиностроение, 1976. С. 392.
- Пузынин И. В. и др.. Обобщенный непрерывный аналог метода Ньютона для численного исследования некоторых нелинейных квантово-полевых моделей // ФЭЧАЯ. — 1999. — Т. 30, вып. 1. — С. 210–265.
- 7. *Турбинер А. В.* Задачи о спектре в квантовой механике и процедура «нелинеаризации» // УФН. — 1984. — Т. 144, вып. 1. — С. 35–78.
- 8. Eastes W., Marcus R. A. Semiclassical Calculation of Bound States of a Multidimensional System // J. Chem. Phys. - 1974. - Vol. 61, No 10. - Pp. 4301-4306.
- Соловьев Е. А. Адиабатические инварианты и проблема квазиклассического квантования многомерных систем // ЖЭТФ. — 1978. — Т. 75, вып. 4. — С. 1261—1268.
- 10. Miller W. H. Semiclassical Theory of Atom-Diatom Collision: Path Integral and the Classical S-matrix // J.Chem.Phys. 1970. Vol. 53, No 5. Pp. 1949-1959.
- Jaffe L. G. Large N Limits as Classical Mechanics // Rev. Mod. Phys. 1982. Vol. 54. Pp. 407-435.
- Adhikari R., Dutt R. Exact Solutions for Polynomial Potentials Using Supersymmetry In-Spired Factorization Method // Phys. Lett. 1989. Vol. A141, No 1,2. Pp. 1–8.
- Vol. A141, No 1,2. Pp. 1–8.
 13. Bender C. M., Wu T. T. Anharmonic Oscillator // Phys. Rev. 1969. Vol. 184, No 5. Pp. 1231–1260.
- 14. Fernandez M. F. On an Alternative Perturbation Method in Quantum Mechanics // J. Phys. A: Math. Gen. - 2006. - Vol. 39. - Pp. 1683-1689.
- 15. Banerjee K. General Anharmonic Oscillator // Proc. R. Soc. Lond. 1978. Vol. A.364. Pp. 265-275.
- Ivanov I. A. Sextic and Octic Anharmonic Oscillator: Connection Between Strong-Coupling and Weak-Coupling Expansions // J. Phys. A: Math. Gen. – 1998. – Vol. 31. – Pp. 5697–5704.
- Swimm R. T., Delos J. B. Semiclassical Calculation of Vibrational Energy Levels for Non-Separable Systems Using Birkhoff–Gustavson Normal Form // J. Chem. Phys. - 1979. - Vol. 71. - Pp. 1706–1716.
- Robnik M. The Algebraic Quantization of the Birkhoff–Gustavson Normal Form // J. Phys. A: Math. Gen. – 1984. – Vol. 17. – Pp. 109–130.
- 19. Ali M. K. The Quantum Normal Form and its Equivalents // J. Math. Phys. 1985. Vol. 26, No 10. Pp. 2565-2572.
- Nikolaev A. S. On the Diagonalization of Quantum Birkhoff–Gustavson Normal Form // J. Math. Phys. - 1996. - Vol. 37, No 6. - Pp. 2643–2661.
- Чеканов Н. А. Квантование нормальной формы Биркгофа-Густавсона // ЯФ. — 1989. — Т. 50, вып. 8. — С. 344–346.
- 22. Esposti M. D., Graffi S., Herczynski J. Quantization of the Classical Lie Algorithm in the Bargmann Representation // Ann. Phys. 1991. Vol. 209, No 2. Pp. 364–392.
- Koscik P., Okopinska A. The Optimized Rayleigh–Ritz Scheme for Determining the Quantum-Mechanical Spectrum // J. Phys. A: Math. Theor. – 2007. – Vol. 40. – Pp. 10851–10869.
- Leonard D., Mansfield P. Solving the Anharmonic Oscillator: Tuning the Boundary Condition // J. Phys. A: Math. Theor. – 2007. – Vol. 40. – Pp. 10291–10299.
- Воронин А. И., Ошеров В. И. Динамика молекулярных реакций. М.: Наука, 1990. — С. 424.

- 26. Itzykson C., Zuber J. B. Quantum Field Theory. New-York: McGraw-Hill, 1980.
- 27. Kittle C. Introduction in Solid State Physics. New York: Willey, 1986.
- 28. Pathria R. K. Statistical Mechanics. Oxford: Pergamon, 1986.
- 29. Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. С. 528.
- 30. Y. A. Ukolov, N. A. Chekanov, A. A. Gusev et al // Comp. Phys. Commun. 2005. Vol. 166, No 1. Pp. 66-80.

UDC 51-72:531/533, 51-72:530.145 Some Symbolic-Numeric Methods for Calculation of Energy Eigenvalues for the Quantum Anharmonic Oscillators

V.V. Florinsky, N.A. Chekanov

Department of Mathematical Analysis Belgorod State University 308015, Belgorod, Russia

One-dimensional Shrödinger's equation for the quartic, sextic and octic anharmonical oscillators is considered. The energy spectra of this quantum oscillators by the quantization of classical Lindstedt-Poincare trajectories, by the method of the Deprit–Hori normal forms and by using the power series are obtained. The comparison of obtained results is performed.