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In the paper the structure of the chiral 8-spinor field model is discussed, the interaction
with the electromagnetic, Yang–Mills and gravitational fields being included.
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1. Introduction

The Skyrme’s idea to describe baryons as topological solitons [1] proved to be
fruitful in nuclear physics for modeling the internal structure of hadrons [2, 3] and
light nuclei [4, 5]. In the Skyrme Model the topological charge 𝑄 = deg(𝑆3 → 𝑆3) is
interpreted as the baryon number 𝐵 and serves as the generator of the homotopy group
𝜋3(𝑆

3) = Z. The similar idea to describe leptons as topological solitons was announced
by L.D. Faddeev [6]. In the Faddeev Model the Hopf invariant 𝑄𝐻 is interpreted as
the lepton number 𝐿 and serves as the generator of the homotopy group 𝜋3(𝑆

2) = Z.
The unification of these two approaches was suggested in [7], hadrons and leptons
being considered as two possible phases of the effective 8-spinor field model.

The basic idea was to take into account the existence of the special 8-spinors identity
discovered by the Italian geometer Brioschi [8]:

𝑗𝜇𝑗
𝜇 − 𝑗̃𝜇𝑗̃𝜇 = 𝑠2 + 𝑝2 + v2 + a2, (1)

where the following quadratic spinor quantities are introduced:

𝑠 = Ψ̄Ψ, 𝑝 = 𝚤Ψ̄𝛾5Ψ, v = Ψ̄𝜆Ψ,

a = 𝚤Ψ̄𝛾5𝜆Ψ, 𝑗𝜇 = Ψ̄𝛾𝜇Ψ, 𝑗̃𝜇 = Ψ̄𝛾𝜇𝛾5Ψ,

with Ψ̄ = Ψ+𝛾0 and 𝜆 standing for Pauli matrices in the flavor (isotopic) space. Here
the diagonal (Weyl) representation for 𝛾5 = 𝛾+5 is used and 𝛾𝜇, 𝜇 = 0, 1, 2, 3, designate
the unitary Dirac matrices acting on Minkowsky spinor indices.

If one defines 8-spinors as columns:

Ψ = col(𝜓1, 𝜓2), 𝜓𝑖 = col(𝜙𝑖, 𝜒𝑖), 𝑖 = 1, 2,

with 𝜙𝑖 and 𝜒𝑖 being 2-spinors, then one easily finds that the following identity holds

2𝑗𝜇𝑗
𝜇 = 𝑠2 + 𝑝2 + v2 + a2 +Δ2, (2)

showing the time-like character of the 4-vector 𝑗𝜇, where the denotation is introduced:

Δ2 = 8
[︀
(𝜙+

1 𝜙1)(𝜙
+
2 𝜙2)− |𝜙+

1 𝜙2|2 + (𝜒+
1 𝜒1)(𝜒

+
2 𝜒2)− |𝜒+

1 𝜒2|2
]︀
> 0.

The structure of the identity (2) leads to the natural conclusion that Higgs potential
𝑉 in the effective spinor field model can be represented as the function of 𝑗𝜇𝑗

𝜇:

𝑉 =
𝜎2

8
(𝑗𝜇𝑗

𝜇 − κ2
0)

2, (3)
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with 𝜎 and κ0 being some constant parameters. If one searchs for localized soliton-like
configurations in the model, one finds the natural boundary condition at space infinity:

lim
|r|→∞

𝑗𝜇𝑗
𝜇 = κ2

0 . (4)

As follows from the identity (2), the condition (4) determines the fixed (vacuum) point
on the surface 𝑆8. Using (4) and the well-known property of homotopic groups of
spheres: 𝜋3(𝑆

𝑛) = 0 for 𝑛 > 4, one concludes that the two phases with nontrivial
topological charges may exist in the model (3). The first one corresponds to the choice
𝜋3(𝑆

3) = Z (Skyrme Model) and the second one coresponds to the choice 𝜋3(𝑆
2) = Z

(Faddeev Model).
For example, if the vacuum state Ψ0 defines 𝑠(Ψ0) ̸= 0, then the configurations

characterized by the chiral invariant 𝑠2+a2 determining sphere 𝑆3 as the field manifold
are possible, that corresponds to Skyrme Model phase. On the contrary, if only
𝑣3(Ψ0) ̸= 0, then the 𝑆𝑂(3) invariant v2 determines the 𝑆2 field manifold, that
corresponds to Faddeev Model phase.

2. The effective nonlinear 8-spinor field model

In view of these topological arguments, using the analogy with Skyrme (or Faddeev)
Model, we suggested in [7] the following Lagrangian density for the effective 8-spinor
field model:

ℒspin =
1

2𝜆2
𝜕𝜇Ψ𝛾

𝜈𝑗𝜈𝜕
𝜇Ψ+

𝜖2

4
𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑉, (5)

where 𝑓𝜇𝜈 stands for the antisymmetric tensor of Faddeev–Skyrme type:

𝑓𝜇𝜈 = (Ψ̄𝛾𝛼𝜕[𝜇Ψ)(𝜕𝜈]Ψ𝛾𝛼Ψ), (6)

with 𝜆 and 𝜖 being constant parameters of the model. It should be stressed that
the first term in (5) generalizes the 𝜎-model term in Skyrme Model and includes the
projector 𝑃 = 𝛾0𝛾𝜈𝑗𝜈 on the positive energy states. The second term in (5) gives the
generalization of Skyrme (or Faddeev) term.

Now we intend to generalize the model by including the interaction of the spinor
field with the electromagnetic, Yang–Mills and gravitational fields. To this end we
consider the following structure for the extended covariant derivative:

𝐷𝜇Ψ = 𝜕𝜇Ψ− 𝚤𝑒0Γ𝑒𝐴𝜇Ψ+ (𝐴𝐿𝜇 +𝐴𝑅𝜇 − Γ𝜇)Ψ, (7)

where 𝐴𝜇, 𝐴
𝐿
𝜇 , 𝐴

𝑅
𝜇 stand for the vector-potentials of the electromagnetic and left and

right Yang–Mills fields respectively. Γ𝜇 in (7) denotes the spinor connection with
the gravitational field, and Γ𝑒 in (7) stands for the electric charge operator, 𝑒0 being
the corresponding coupling constant. The standard form of Γ𝑒, 𝐴

𝐿
𝜇 and 𝐴𝑅𝜇 reads as

follows:

Γ𝑒 =
1

2
(𝜆3 − 1); 𝐴𝐿,𝑅𝜇 = 𝑃𝐿,𝑅

𝑒1𝐿,𝑅
2𝚤

𝐴𝑎𝐿,𝑅𝜇 𝜆𝑎; 𝑃𝐿,𝑅 =
1

2
(1± 𝛾5), (8)

with 𝑒1𝐿, 𝑒1𝑅 being the corresponding coupling constants.
However, the Yang–Mills interaction in (7) can be simplified if one accepts that for

the leptonic sector it should vanish. Taking into account that in the leptonic sector
the pseudo-vector part a = 𝚤Ψ̄𝛾5𝜆Ψ = 0 one gets the following constraint:

𝑒1𝐿𝐴
𝑎𝐿
𝜇 + 𝑒1𝑅𝐴

𝑎𝑅
𝜇 = 0. (9)
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In view of (9) one finds

𝐴𝐿𝜇 +𝐴𝑅𝜇 = 𝛾5𝑒1𝐿
𝜆𝑎

2𝚤
𝐴𝑎𝐿𝜇 ≡ 𝑔0𝛾5

𝜆𝑎

2𝚤
𝐴𝑎𝜇 ≡ 𝑔0𝛾5A𝜇, (10)

where the new pseudo-vector field A𝜇 and the new coupling constant 𝑔0 were introduced.

Now we take into account the invariance of the theory under the space reflection:

𝑥𝑖 → −𝑥𝑖, Ψ→ 𝛾0Ψ, A0 → −A0, A𝑖 → A𝑖, 𝑖 = 1, 2, 3. (11)

The condition (11) stems the following structure of the Yang–Mills Lagrangian density:

ℒYM =
1

32𝜋𝑔20
Sp
(︀
𝐹𝐿𝜇𝜈𝐹

𝜇𝜈𝐿 + 𝐹𝑅𝜇𝜈𝐹
𝜇𝜈𝑅

)︀
=

=
1

8𝜋
Sp
{︀
(𝜕𝜇A𝜈 − 𝜕𝜈A𝜇)(𝜕𝜇A𝜈 − 𝜕𝜈A𝜇) + 𝑔20[A𝜇,A𝜈 ][A𝜇,A𝜈 ]

}︀
, (12)

where the strengths of the Yang–Mills fields were defined as

𝐹𝐿,𝑅𝜇𝜈 = 𝜕𝜇𝐴
𝐿,𝑅
𝜈 − 𝜕𝜈𝐴𝐿,𝑅𝜇 + [𝐴𝐿,𝑅𝜇 , 𝐴𝐿,𝑅𝜈 ].

Thus the Lagrangian density of the model in question reads

ℒ = ℒspin + ℒYM + ℒem + ℒg, (13)

where 𝜕𝜇 in ℒspin is changed to 𝐷𝜇 and the gravitational part corresponds to the

Einstein theory:

ℒg =
1

2κ
𝑅, κ =

8𝜋𝐺

𝑐4
,

𝑅 being the scalar curvature and 𝐺 — the Newton gravitational constant.

The electromagnetic part of the Lagrangian density was investigated in [7] and it
corresponds to the Mie generalized electrodynamics:

ℒem = − 1

16𝜋
𝐹𝜇𝜈𝐹

𝜇𝜈 [1 +𝐺(𝐼)]− 1

8𝜋
𝐻(𝐼), (14)

where 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 and 𝐺(𝐼), 𝐻(𝐼) are some functions of the Mie invariant
𝐼 = 𝐴𝜇𝐴

𝜇. As was shown in [7], the model (14) admits the existence of static solitons
with fixed electric charge and positive energy.

The final generalization concerns the Higgs-like potential (3), where the scalar
multiplier 𝜎2 is supposed to be taken in the form [9]:

𝜎2 =
𝑀2

8𝜆2κ2
0

, 𝑀2 =
𝑐6

~6𝐺2
𝐼41𝐼

−3
2 , (15)

with 𝐼1, 𝐼2 being Riemannian invariants:

𝐼1 =
1

48
𝑅𝜇𝜈𝜎𝜆𝑅

𝜇𝜈𝜎𝜆; 𝐼2 = − 1

432
𝑅𝜇𝜈𝜎𝜆;𝜏𝑅

𝜇𝜈𝜎𝜆;𝜏 . (16)

The form (15) of the Higgs-like potential permits one to satisfy the quantum-mechanics
correspondence principle, since the asymptotic behavior of the spinor field Ψ at large
distances from the soliton center is described by the Klein–Gordon equation with the
Schwarzschild mass 𝑀 of the soliton as the mass term.
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3. Conclusion

Using Brioschi 8-spinor identity in the form (2) and introducing the Higgs-like
potential (3), we considered, following some ideas of Mie [10], the effective nonlinear
8-spinor model that includes, via the mechanism of spontaneous symmetry breaking,
Skyrme and Faddeev models as particular cases. Using the space-reflection invariance
of the model we simplify the Yang–Mills part of the Lagrangian density by considering
the single pseudo-vector field instead of the pair of vector fields: left and right ones.
Finally we generalize the Higgs-like potential 𝑉 , the latter being multiplied by the
special Riemannian invariant to satisfy the correspondence with quantum mechanics.
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УДК 539.12
Киральная 8-спинорная модель с псевдовекторным

взаимодействием
Ю. П. Рыбаков, Н. Фарраж, Ю. Умнияти
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Российский университет дружбы народов

ул. Миклухо-Маклая, 6, Москва, Россия, 117198

В работе обсуждается структура 8-спинорной полевой модели, включающей взаимо-
действие с электромагнитным полем, полем Янга–Миллса и гравитацией.
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