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A multidimensional model of gravity with a sigma-model action for scalar fields is considered.
The gravitational model is defined on the manifold, which contains 𝑛 Einstein factor spaces.
General cosmological-type solutions to the field equations are obtained when 𝑛−1 factor-spaces
are Ricci-flat. The solutions are defined up to solutions of geodesic equations corresponding
to a sigma-model target space. Several examples of sigma-models are considered. A subclass
of non-singular solutions is singled-out for the case when all factor-spaces are Ricci-flat.
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1. Introduction

Scalar-tensor theories are well-known and important as alternatives to Einstein’s
general relativity. They are widely used, in particular, for explaining present-day
accelerated expansion of the Universe [1] and in many other applications.

Here we consider a gravitational model governed (in essence) by a Lagrangian

ℒ = 𝑅[𝑔]− ℎ𝑎𝑏(𝜙)𝑔𝑀𝑁𝜕𝑀𝜙
𝑎𝜕𝑁𝜙

𝑏, (1)

where 𝑔 is a metric and non-linear “scalar fields” 𝜙𝛼 come to the Lagrangian in a
sigma-model form with a target space metric ℎ assumed. For a review of sigma-models
see [2] and refs. therein.

The Lagrangian (1) with ℎ𝑎𝑏 = 𝑐𝑜𝑛𝑠𝑡 describes the truncated 𝑁𝑆 −𝑁𝑆 sector of
various 𝐷 = 10 and 𝐷 = 11 supergravity theories in the Einstein frame [3]. Usually
these theories contain form-fields (fluxes) in addition to massless scalar fields and
Chern-Simons (CS) terms. In this sense, the Lagrangian (1) matches zero flux (and
CS) limit. For 𝐷 = 3 the Lagrangians of such types are generic ones when dimensional
reductions of (bosonic sectors of) supergravity models are considered, see [4, 5] and
refs therein.

Here we deal with cosmological-type solutions defined on the product of 𝑛 Einstein
spaces (e.g. Ricci-flat ones). The integrable cosmological configurations were studied
in numerous papers, see [6, 7] (without scalar fields), [8–11] (with one scalar field), [12]
etc. The authors of these papers restricted their attention to a linear sigma-model
for which components ℎ𝑎𝑏 are constant. Here we study the solutions for ℎ𝑎𝑏(𝜙) with
arbitrary dependence on 𝜙𝑎 (e.g. for a non-linear sigma-model).
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2. The Model

We start by considering an action of the form

𝑆 =
1

2𝜅2

∫︁
𝑀

d𝐷𝑥
√︀
|𝑔|
{︁
𝑅[𝑔]− ℎ𝑎𝑏(𝜙)𝑔𝑀𝑁𝜕𝑀𝜙

𝑎𝜕𝑁𝜙
𝑏
}︁
+ 𝑆𝑌 𝐺𝐻 , (2)

where 𝜅2 is a 𝐷-dimensional gravitational coupling, 𝑔 = 𝑔𝑀𝑁d𝑥
𝑀 ⊗ d𝑥𝑁 is a metric

defined on a manifold 𝑀 , 𝜙 : 𝑀 → 𝑀𝜙 is a smooth sigma-model map and 𝑀𝜙 is a
𝑙-dimensional manifold (target space) equipped with the metric ℎ = ℎ𝑎𝑏(𝜙)d𝜙

𝑎 ⊗ d𝜙𝑏

(𝜙𝑎 are coordinates on 𝑀𝜙). Here 𝑆𝑌 𝐺𝐻 is the standard York-Gibbons-Hawking
boundary term [13,14].

The field equations for the action (2) read as follows

𝑅𝑀𝑁 −
1

2
𝑔𝑀𝑁𝑅 = 𝑇𝑀𝑁 , (3)

1√︀
|𝑔|
𝜕𝑀 (𝑔𝑀𝑁

√︀
|𝑔|ℎ𝑎𝑏(𝜙)𝜕𝑁𝜙𝑏)−

1

2

𝜕ℎ𝑐𝑏(𝜙)

𝜕𝜙𝑎
𝜕𝐾𝜙

𝑐𝜕𝐿𝜙
𝑏𝑔𝐾𝐿 = 0, (4)

where

𝑇𝑀𝑁 = ℎ𝑎𝑏(𝜙)𝜕𝑀𝜙
𝑎𝜕𝑁𝜙

𝑏 − 1

2
ℎ𝑎𝑏(𝜙)𝑔𝑀𝑁𝜕𝐾𝜙

𝑎𝜕𝐿𝜙
𝑏𝑔𝐾𝐿. (5)

is the stress-energy tensor.
Here we consider a cosmological-type ansatz for the metric and “scalar fields”

𝑔 = 𝑤𝑒2𝛾(𝑢)d𝑢⊗ d𝑢+

𝑛∑︁
𝑖=1

𝑒2𝛽
𝑖(𝑢)𝑔𝑖, (6)

𝜙𝑎 = 𝜙𝑎(𝑢), (7)

where 𝑎 = 1, . . . , 𝑙.
The metric is defined on the manifold

𝑀 = R* ×𝑀1 × . . .×𝑀𝑛, (8)

where R* = (𝑢−, 𝑢+) and any factor-space 𝑀𝑖 is a 𝑑𝑖-dimensional Einstein manifold
with the metric 𝑔𝑖 obeying

𝑅𝑚𝑖𝑛𝑖
[𝑔𝑖] = 𝜉𝑖𝑔

𝑖
𝑚𝑖𝑛𝑖

, (9)

where 𝑖 = 1, . . . , 𝑛.

To find solutions for the equations (3)–(4) seems to be complicated due to the non-
linear structure of the Einstein equations and intricacy having scalar fields. However it
may be shown that the field equation for the model (2) with the metric and “scalar
fields” from (6), (7) are equivalent to the Lagrange equations corresponding to the
Lagrangian of the one-dimensional (𝑛+ 𝑙)-component 𝜎-model

𝐿 =
1

2
𝒩−1[𝐺𝑖𝑗 𝛽̇

𝑖𝛽̇𝑗 + ℎ𝑎𝑏(𝜙)𝜙̇
𝑎𝜙̇𝑏]−𝒩𝑉𝜉. (10)

Here 𝒩 = exp(𝛾 − 𝛾0) > 0 is a modified lapse function, 𝛾0 =

𝑛∑︁
𝑖=1

𝑑𝑖𝛽
𝑖,

𝐺𝑖𝑗 = 𝑑𝑖𝛿𝑖𝑗 − 𝑑𝑖𝑑𝑗 , (11)



Golubtsova A.A., Ivashchuk V.D. On Cosmological Solutions with Sigma- . . . 117

where 𝑖, 𝑗 = 1, . . . , 𝑛, are components of the gravitational part of the minisuperspace
metric and

𝑉𝜉 =
𝑤

2

𝑛∑︁
𝑖=1

𝜉𝑖𝑑𝑖𝑒
−2𝛽𝑖+2𝛾0 (12)

is the potential. For the constant ℎ𝑎𝑏(𝜙) = ℎ𝑎𝑏 the reduction to the sigma-model was
proved (for more general set up) in [15]. We note that ℎ𝑎𝑏(𝜙) can be interpreted as a

scalar part of the target space metric. Here and in what follows 𝐴̇ =
d𝐴

d𝑢
.

When all 𝑀𝑖 have finite volumes the substitution of (6) and (7) into the action (2)
gives us the following relation

𝑆 = 𝜇

∫︁
𝐿d𝑡 (13)

where 𝐿 is defined in (10), 𝜇 = − 𝑤
𝜅2

𝑛∏︁
𝑖=1

𝑉𝑖, and 𝑉𝑖 =
∫︀
𝑀𝑖

d𝑑𝑖𝑦
(︀√︀

det (𝑔𝑖𝑚𝑖𝑛𝑖
)
)︀
is the

volume of 𝑀𝑖, 𝑖 = 1, . . . , 𝑛.

The relation (13) can be derived using the following expression for the scalar
curvature

𝑅 = −𝑤𝑒−2𝛾
(︁
2𝛾0 − 2𝛾̇0𝛾̇ + 𝛾̇20 +

𝑛∑︁
𝑖=1

𝑑𝑖

(︁
𝛽̇𝑖
)︁2)︁

+

𝑛∑︁
𝑖=1

𝑒−2𝛽𝑖

𝑅[𝑔𝑖], (14)

where 𝑅[𝑔𝑖] = 𝜉𝑖𝑑𝑖 is the scalar curvature corresponding to the 𝑀𝑖-manifold. To obtain
(13) one should extract the total derivative term in (14) which is canceled by the
York-Gibbons-Hawking boundary term.

We write the Lagrange equations for (10) and then put 𝒩 = 1, or equivalently
𝛾 = 𝛾0, i.e. when 𝑢 is a harmonic variable. We get

𝐺𝑖𝑗𝛽
𝑗 + 𝑤

𝑛∑︁
𝑗=1

𝜉𝑗𝑑𝑗(−𝛿𝑗𝑖 + 𝑑𝑖)𝑒
−2𝛽𝑗+2𝛾0 = 0, (15)

where 𝑖 = 1, . . . , 𝑛,
d(ℎ𝑐𝑏(𝜙)𝜙̇

𝑏)

d𝑢
− 1

2

𝜕ℎ𝑎𝑏(𝜙)

𝜕𝜙𝑐
𝜙̇𝑎𝜙̇𝑏 = 0, (16)

𝑐 = 1, . . . , 𝑙, and
1

2
𝐺𝑖𝑗 𝛽̇

𝑖𝛽̇𝑗 +
1

2
ℎ𝑎𝑏(𝜙)𝜙̇

𝑎𝜙̇𝑏 + 𝑉𝜉 = 0. (17)

In fact, equations (15) are nothing else but Lagrange equations corresponding to
the Lagrangian

𝐿𝛽 =
1

2
𝐺𝑖𝑗 𝛽̇

𝑖𝛽̇𝑗 − 𝑉𝜉 (18)

with the energy integral of motion

𝐸𝛽 =
1

2
𝐺𝑖𝑗 𝛽̇

𝑖𝛽̇𝑗 + 𝑉𝜉. (19)

Likewise (15), the equations (16) are Lagrange equations corresponding to the
Lagrangian

𝐿𝜙 =
1

2
ℎ𝑎𝑏(𝜙)𝜙̇

𝑎𝜙̇𝑏 (20)
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with the energy integral of motion

𝐸𝜙 =
1

2
ℎ𝑎𝑏(𝜙)𝜙̇

𝑎𝜙̇𝑏. (21)

Equations (16) are equivalent to geodesic equations corresponding to the metric ℎ.
The relation (17) is the energy constraint

𝐸 = 𝐸𝛽 + 𝐸𝜙 = 0, (22)

coming from 𝜕𝐿/𝜕𝒩 = 0 (for 𝒩 = 1).
Equations (15) may be rewritten in an equivalent form

𝛽𝑖 − 𝑤𝜉𝑖𝑒−2𝛽𝑖+2𝛾0 = 0, (23)

where 𝑖 = 1, . . . , 𝑛. These expressions may be obtained from (15) by using the inverse
matrix (𝐺𝑖𝑗) = (𝐺𝑖𝑗)

−1:

𝐺𝑖𝑗 =
𝛿𝑖𝑗

𝑑𝑖
+

1

2−𝐷
(24)

and the following relations for 𝑢(𝑘)-vectors:

𝑢
(𝑘)
𝑖 = −𝛿𝑘𝑖 + 𝑑𝑖, 𝑢(𝑘)𝑖 = 𝐺𝑖𝑗𝑢

(𝑘)
𝑗 = −𝛿

𝑘𝑖

𝑑𝑖
. (25)

where 𝑖, 𝑗, 𝑘 = 1, . . . , 𝑛.
In what follows we will use the following relation

(𝑢(𝑘), 𝑢(𝑘)) = 𝐺𝑖𝑗𝑢
(𝑘)
𝑖 𝑢

(𝑘)
𝑗 =

1

𝑑𝑘
− 1, (26)

where 𝑘 = 1, . . . , 𝑛.
Hence, the problem of finding the cosmological-type solutions for the model (2)

(with 𝑢 being harmonic variable) is reduced to solving the equations of motion for the
Lagrangians 𝐿𝛽 and 𝐿𝜙 with the energy constraint (22) imposed.

Geodesics for a flat metric ℎ.
For the constant ℎ𝑎𝑏(𝜙) = ℎ𝑎𝑏 eqs (16) read

𝜙𝑎 = 0, (27)

or, equivalently,
𝜙𝑎 = 𝜐𝑎𝜙𝑢+ 𝜙𝑎0, (28)

where 𝜐𝑎𝜙, 𝜙
𝑎
0 are integration constants, 𝑎 = 1, . . . , 𝑙.

The energy for scalar fields (21) takes the form

𝐸𝜙 =
1

2
ℎ𝑎𝑏𝜐

𝑎
𝜙𝜐

𝑏
𝜙. (29)

More examples of geodesic solutions will be given in Section 4.

3. Cosmological-Type Solutions

In this section we deal with certain examples of cosmological-type solutions with
the metric and “scalar fields” from (6) and (7), respectively.
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3.1. Solutions with 𝑛 Ricci-flat Spaces

In this subsection, we focus on the solutions for the case when all factor-spaces 𝑀𝑖
are Ricci-flat:

Ric[𝑔𝑖] = 0, (30)

where 𝑖 = 1, . . . , 𝑛.

Due to (30) the potential 𝑉𝜉 is equal to zero and the equations of motion (23) for
𝛽𝑖 now become

𝛽𝑖 = 0, (31)

where 𝑖 = 1, . . . , 𝑛.

Integration of the equations (31) yields

𝛽𝑖 = 𝜐𝑖𝑢+ 𝛽𝑖0, 𝛾0 =

𝑛∑︁
𝑖=1

𝑑𝑖
(︀
𝜐𝑖𝑡+ 𝛽𝑖0

)︀
, (32)

where the parameters 𝜐𝑖 and 𝛽𝑖0 are integration constants and the energy (19) takes
the form

𝐸𝛽 =
1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 , (33)

where the minisuperspace metric 𝐺𝑖𝑗 is given by (11).

The metric reads

𝑔 = 𝑤 exp

[︃
2

𝑛∑︁
𝑖=1

𝑑𝑖(𝜐
𝑖𝑢+ 𝛽𝑖0)

]︃
d𝑢⊗ d𝑢+

𝑛∑︁
𝑖=1

exp
[︀
2
(︀
𝜐𝑖𝑢+ 𝛽𝑖0

)︀]︀
𝑔𝑖. (34)

The “scalar fields” obey eqs. (16) with the energy constraint

𝐸𝜙 =
1

2
ℎ𝑎𝑏(𝜙)𝜙̇

𝑎𝜙̇𝑏 = −1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 . (35)

In a special case of one (non-fantom) scalar field (ℎ11 = 1) and 𝑤 = −1 this solution
was obtained in [8].

The scalar curvature for the metric (34) reads (see (14))

𝑅[𝑔] = −𝑤
(︀
𝐺𝑖𝑗𝜐

𝑖𝜐𝑗
)︀
𝑒−2𝛾0 . (36)

In what follows we use a parameter

Σ = Σ(𝜐) ≡
𝑛∑︁
𝑖=1

𝑑𝑖𝜐
𝑖 (37)

to classify the solutions.
Non-special Kasner-like solutions.

First we shall consider the non-special case when Σ(𝜐) ̸= 0.

Let us define a “synchronous” variable

𝜏 =
1

|Σ(𝜐)|
exp

[︁ 𝑛∑︁
𝑗=1

(𝜐𝑗𝑢+ 𝛽𝑗0)𝑑𝑗

]︁
(38)

obeying 𝑒2𝛾0(𝛽)d𝑢2 = d𝜏2.
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We introduce new parameters:

𝛼𝑖 = 𝜐𝑖/Σ(𝜐), (39)

where 𝑖 = 1, . . . , 𝑛, and
ℰ𝜙 = 𝐸𝜙/(Σ(𝜐))

2. (40)

Then the metric reads

𝑔 = 𝑤d𝜏 ⊗ 𝜏 +
𝑛∑︁
𝑖=1

𝑐2𝑖 𝜏
2𝛼𝑖𝑔𝑖, (41)

where 𝜏 > 0. “Scalar fields” are solutions to equations of motion (see (16))

d

d𝜏

[︂
𝜏ℎ𝑐𝑏(𝜙)

d𝜙𝑏

d𝜏

]︂
− 1

2
𝜏
𝜕ℎ𝑎𝑏(𝜙)

𝜕𝜙𝑐
d𝜙𝑎

d𝜏

d𝜙𝑏

d𝜏
= 0, (42)

where 𝑎 = 1, ..., 𝑙. The parameters (39) obey the Kasner-like conditions

𝑛∑︁
𝑖=1

𝑑𝑖𝛼
𝑖 = 1, (43)

𝑛∑︁
𝑖=1

𝑑𝑖(𝛼
𝑖)2 = 1− 2ℰ𝜙, (44)

where

2ℰ𝜙 = 𝜏2ℎ𝑎𝑏(𝜙)
d𝜙𝑎

d𝜏

d𝜙𝑏

d𝜏
, (45)

is the integral of motion for eqs. (42).
In (41) 𝑐𝑖 are constants

𝑐𝑖 = |Σ|𝛼
𝑖

exp
[︁
𝛽𝑖0 − 𝛼𝑖

𝑛∑︁
𝑗=1

𝛽𝑗0𝑑𝑗

]︁
, (46)

where 𝑖 = 1, . . . , 𝑛, obeying

𝑛∏︁
𝑖=1

𝑐𝑑𝑖𝑖 = |Σ(𝜐)|.

Flat ℎ. For the special case of the flat target space metric ℎ𝑎𝑏(𝜙) = ℎ𝑎𝑏 we get

𝜙𝑎 = 𝛼𝑎𝜙 ln 𝜏 + 𝜙𝑎0, (47)

where 𝜙𝑎0 are constants, 𝑎 = 1, . . . , 𝑙, and

ℰ𝜙 =
1

2
ℎ𝑎𝑏𝛼

𝑎
𝜙𝛼

𝑏
𝜙. (48)

The scalar curvature (36) reads

𝑅[𝑔] = 2𝑤ℰ𝜙𝜏−2. (49)

It diverges for 𝜏 → +0 if ℰ𝜙 ̸= 0. Hence all solutions with ℰ𝜙 ̸= 0 are singular.
For ℰ𝜙 ̸= 0 the solutions with non-Milne-type sets of the Kasner parameters are

singular when all 𝑔𝑖 have Euclidean signatures since the Riemann tensor squared
is divergent at 𝜏 → +0 [16]. For Milne-type sets of parameters, i.e. when 𝑑𝑖 = 1
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and 𝛼𝑖 = 1 for some 𝑖 (𝛼𝑗 = 0 for all 𝑗 ̸= 𝑖) the metric is regular, when either i)
𝑔(𝑖) = −𝑤d𝑦𝑖 ⊗ d𝑦𝑖, 𝑀𝑖 = R (−∞ < 𝑦𝑖 < +∞), or ii) 𝑔(𝑖) = 𝑤d𝑦𝑖 ⊗ d𝑦𝑖, 𝑀𝑖 is a
circle of length 𝐿𝑖 (0 < 𝑦𝑖 < 𝐿𝑖) and 𝑐𝑖𝐿𝑖 = 2𝜋 (i.e. when the cone singularity is absent).

Special (steady state) solutions. Now we consider the special case when
Σ(𝑣) = 0. Due to (35) we obtain

𝐸𝜙 = −1

2

𝑛∑︁
𝑖=1

𝑑𝑖(𝑣
𝑖)2 6 0. (50)

We get in this case 𝛾0 =

𝑛∑︁
𝑖=1

𝑑𝑖𝛽
𝑖
0 = const and hence the scalar curvature

𝑅[𝑔] = 2𝑤𝐸𝜙𝑒
−2𝛾0 (51)

and the volume scale factor 𝑣 = 𝑒𝛾0 are constants.
The “synchronous” variable is proportional to 𝑢 (𝜏 = 𝑒𝛾0𝑢).

Hence, we obtained a restriction for the energy 𝐸𝜙 6 0. For 𝐸𝜙 = 0, all 𝑣𝑖 = 0,
and we are led to a static Ricci-flat solution.

For 𝐸𝜙 < 0 we get 𝑅[𝑔] ̸= 0. This possibility occurs if the target space metric ℎ is
not positive-definite (e.g. there are phantom scalar fields for flat ℎ). For solutions with
one (phantom) scalar field see [8].

Solutions with acceleration. Let 𝑑1 = 3 and 𝑀1 = R3. The factor-space 𝑀1
may be considered as describing our space. In both cases there exist subclasses of
solutions describing accelerated expansion of our space.

Indeed, for Kasner-like solutions with 𝑤 = −1 one could make a replacement
𝜏 ↦→ 𝜏0 − 𝜏 where 𝜏0 is a constant (corresponding to the so-called “big rip”). For such
replacement the scale factor of 𝑀1 reads

𝑎1(𝜏) = 𝑐1(𝜏0 − 𝜏)𝛼1 , (52)

where 𝑐1 > 0.
If 𝛼1 < 0 we get accelerated expansion of 3-dimensional factor space 𝑀1. For the

Hubble parameter we get

𝐻 = 𝑎1/𝑎1 = (−𝛼1)/(𝜏0 − 𝜏), (53)

while the variation of the effective gravitational constant reads

𝐺̇/𝐺 = (1− 3𝛼1)/(𝜏0 − 𝜏). (54)

Here we used the relation 𝐺 = const

𝑛∏︁
𝑖=2

(𝜏0 − 𝜏)−𝑑𝑖𝛼𝑖 = const(𝜏0 − 𝜏)3𝛼1−1 [17] (see

(43)). This implies the relation

𝛿 = 𝐺̇/(𝐺𝐻) = (3𝛼1 − 1)/𝛼1. (55)

The condition 𝛼1 < 0 yields the huge value |𝛿| > 3 which does not obey the
observational limits [17]: |𝛿| < 0.1. Thus, accelerated expansion of 𝑀1 factor-space is
incompatible with tests on 𝐺− 𝑑𝑜𝑡.

Analogous consideration may be carried out for special (steady state) solutions. For
𝑤 = −1, 𝑑1 = 3 and 𝑣1 > 0 we get accelerated expansion of 3-dimensional factor-space
𝑀1. In this case due to Σ = 0 one get 𝛿 = 3 which also does not pass the 𝐺− 𝑑𝑜𝑡 test.
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3.2. Solutions with One Curved Einstein Space and 𝑛− 1 Ricci Flat
Spaces

Here we put

Ric[𝑔1] = 𝜉1𝑔
1, 𝜉1 ̸= 0, Ric[𝑔𝑖] = 0, 𝑖 > 1, (56)

i.e. the first space (𝑀1, 𝑔
1) is an Einstein space of non-zero scalar curvature and other

spaces (𝑀𝑖, 𝑔
𝑖) are Ricci-flat.

The Lagrangian (18) reads in this case

𝐿𝛽 =
1

2
𝐺𝑖𝑗𝛽𝑖𝛽𝑗 −

𝑤

2
𝜉1𝑑1 exp (−2𝛽1 + 2𝛾0), (57)

where −𝛽1 + 𝛾0 = 𝑢
(1)
𝑖 𝛽𝑖 and 𝑢

(1)
𝑖 = −𝛿1𝑖 + 𝑑𝑖.

The Lagrange equations corresponding to the Lagrangian (57) are integrated in
Appendix. The solution reads

𝛽1 = ln |𝑓 |
1

1−𝑑1 + 𝜐1𝑢+ 𝛽1
0 , (58)

𝛽𝑖 = 𝜐𝑖𝑡+ 𝛽𝑖0, 𝑖 > 1, (59)

where 𝛽𝑖0, 𝜐
𝑖 are constants obeying

𝑣1 =

𝑛∑︁
𝑖=1

𝑣𝑖𝑑𝑖, 𝛽1
0 =

𝑛∑︁
𝑖=1

𝛽𝑖0𝑑𝑖. (60)

The function 𝑓 is following

𝑓 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑅 sinh(

√
𝐶(𝑢− 𝑢0)), 𝐶 > 0, 𝑤𝜉1 > 0;

|𝜉1(𝑑1 − 1)|1/2(𝑢− 𝑢0), 𝐶 = 0, 𝑤𝜉1 > 0;

𝑅 sin(
√
−𝐶(𝑢− 𝑢0)), 𝐶 < 0, 𝑤𝜉1 > 0;

𝑅 cosh(
√
𝐶(𝑢− 𝑢0)), 𝐶 > 0, 𝑤𝜉1 < 0,

(61)

where 𝑢0 and 𝐶 are constants and

𝑅 =

√︃
|𝜉1(𝑑1 − 1)|
|𝐶|

. (62)

For 𝛾0 we get
𝛾0 = 𝛽1 − ln |𝑓 |. (63)

The energy integral of motion 𝐸𝛽 corresponding to 𝐿𝛽 reads (see Appendix)

𝐸𝛽 =
𝐶𝑑1

2(1− 𝑑1)
+

1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 . (64)

Using (58), (59) and (63) we are led to the relation for the metric

𝑔 = |𝑓 |
2𝑑1

1−𝑑1 exp [2(𝜐1𝑢+ 𝛽1
0)]
(︀
𝑤d𝑢⊗ d𝑢+ 𝑓2𝑔1

)︀
+

𝑛∑︁
𝑖=2

exp [2(𝜐𝑖𝑢+ 𝛽𝑖0)]𝑔
𝑖. (65)
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The “scalar fields” obey eqs (16) with the energy constraint

𝐸𝜙 =
1

2
ℎ𝑎𝑏(𝜙)𝜙̇

𝑎𝜙̇𝑏 =
𝐶𝑑1

2(𝑑1 − 1)
− 1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 . (66)

Here the constraints (60) on 𝛽𝑖0, 𝜐
𝑖 should be kept in mind, and the function 𝑓 is

defined in (61).
In a special case of one (non-fantom) scalar field (ℎ11 = 1) and 𝑤 = −1 this solution

was obtained earlier in [9, 10], see also [11].

4. More Examples of Geodesic Solutions

In this section we consider three examples of solutions to geodesic equations
corresponding to the metric ℎ that may be used for the cosmological-type solutions
above.

4.1. Metric on 𝑆2

Let ℎ be a metric on a two-dimensional sphere 𝑆2

ℎ = d𝜗⊗ d𝜗+ sin2 𝜗d𝜙⊗ d𝜙. (67)

The simplest solution to geodesic equations (16) for the metric reads

𝜙 = 𝜔𝑢, 𝜗 = 𝜋/2, (68)

where 𝜔 is constant. Here 𝐸𝜙 = 1
2𝜔

2. The general solution to geodesic equations may
be obtained by a proper isometry 𝑆𝑂(3)- transformation of the solution from (68).

4.2. Metric on d𝑆2

Now we put ℎ to be a metric on a two-dimensional de Sitter space d𝑆2

ℎ = −d𝜒⊗ d𝜒+ cosh2 𝜒d𝜙⊗ d𝜙. (69)

There are three basic solutions to geodesic equations (16) in this case

𝜙 = 𝜔𝑢, 𝜒 = 0, (70)

𝜒 = 𝑣𝑢, 𝜙 = 0, (71)

tan𝜙 = sinh𝜒 = 𝑚𝑢, (72)

where 𝜔, 𝑣 and 𝑚 are constants. For the energy we have 𝐸𝜙 = 1
2𝜔

2, −1
2𝑣

2 and 0, for
space-like, time-like,and null geodesics, respectively. The general solution to geodesic
equations may be obtained by a proper isometry 𝑆𝑂(1, 2) — transformation of the
solutions from (70)–(72).

4.3. A Diagonal Metric ℎ

Here we deal with a diagonal metric

ℎ = 𝜀0𝑑𝜙⊗ d𝜙+

𝑙−1∑︁
𝑘=1

𝜀𝑘𝐴
2
𝑘(𝜙)d𝜓

𝑘 ⊗ d𝜓𝑘, (73)

where 𝜀0 = ±1, 𝜀𝑘 = ±1 (𝑘 > 0) and all 𝐴𝑘(𝜙) > 0, are smooth functions.
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The Lagrange function for the non-linear sigma-model is given by

𝐿𝜙 =
1

2

[︃
𝜀0𝜙̇

2 +

𝑙−1∑︁
𝑘=1

𝜀𝑘𝐴
2
𝑘(𝜙)(𝜓̇

𝑘)2

]︃
. (74)

Equations of motion for cyclic variables 𝜓𝑘

d

d𝑢

(︁
𝜀𝑘𝐴

2
𝑘(𝜙)𝜓̇

𝑘
)︁
= 0 (75)

yield the following of integrals of motion

𝜀𝑘𝐴
2
𝑘(𝜙)𝜓̇

𝑘 =𝑀𝑘, (76)

where 𝑘 = 1, . . . , 𝑙 − 1.
Another integration constant is energy 𝐸𝜙

𝐸𝜙 =
1

2

[︃
𝜀0𝜙̇

2 +

𝑙−1∑︁
𝑘=1

𝜀𝑘𝐴
2
𝑘(𝜙)(𝜓̇

𝑘)2

]︃
(77)

which due to (76) reads

𝐸𝜙 =
1

2

[︃
𝜀0𝜙̇

2 +

𝑙−1∑︁
𝑘=1

𝜀𝑘𝑀
2
𝑘𝐴

−2
𝑘 (𝜙)

]︃
. (78)

This relation implies the following quadrature

𝜙∫︁
𝜙0

d𝜙√︁
2𝜀0𝐸𝜙 − 𝜀0

∑︀𝑙−1
𝑘=1 𝜀𝑘𝑀

2
𝑘𝐴

−2
𝑘 (𝜙)

= 𝑢− 𝑢0, (79)

which implicitly defines the function 𝜙 = 𝜙(𝑢).
Another quadratures just following from (76)

𝜓𝑘 − 𝜓𝑘0 =

𝑢∫︁
𝑢0

d𝑢̄𝜀𝑘𝑀𝑘𝐴
−2
𝑘 (𝑢̄), (80)

complete the integration of the geodesic equations for the metric (73).
For 𝐴𝑘(𝜙) = exp (𝜆𝜙), 𝜆 ≠ 0, the metric (73) may describe either a part of de-Sitter

space (if 𝜀0 = −1, 𝜀𝑘 = 1, 𝑘 > 0) or a part of anti-de-Sitter space (if 𝜀1 = −1,
𝜀𝑟 = 1, 𝑟 ≠ 1). The case 𝑙 = 3 is of interest in connection with the so-called the AWE
hypothesis [18].

5. Conclusions

Here we have considered a multidimensional model of gravity with a sigma-model
source (for scalar fields). The model is defined on the manifold 𝑀 , which contains 𝑛
Einstein spaces.

We have obtained exact cosmological-type solutions to the field equations in two
cases: i) when either all factor-spaces are Ricci-flat or ii) when only one factor-space
space has nonzero scalar curvature.
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In the first case i) the solutions have either Kasner-like form or describe steady-state
solutions, generalizing those from [8]. The Kasner-like solutions are mostly singular
with certain exceptions (of Milne-type).

For the case when all factor-spaces are Ricci-flat we have singled-out a subclass of
solutions describing accelerated expansion of 3-dimensional manifold. We have shown
that these solutions do not obey the tests on variation of G.

The second subclass of solutions ii) (e.g. for spherically symmetric configurations)
will be considered in a separate publication (e.g. a possible fitting of acceleration with
bounds on G-dot, see [19] and ref. therein).

6. Appendix: Solutions Governed by Liouville Equation

Here we consider a Toda-like system with the following Lagrangian

𝐿 =
1

2
⟨𝛽̇, 𝛽̇⟩ −𝐴 exp (2⟨𝑏, 𝛽⟩), (81)

where 𝛽 ∈ R𝑛, 𝐴 ̸= 0, 𝑏 ∈ R𝑛. The scalar product for vectors belonging to R𝑛 is
defined by

⟨𝛽1, 𝛽2⟩ = 𝐺𝑖𝑗𝛽
𝑖
1𝛽

𝑗
2, (82)

where 𝐺𝑖𝑗 is a non-degenerate symmetric matrix (e.g. given by (11)).
The Lagrange equations corresponding to the model (81) read (in a condensed

vector form)

𝛽 + 2𝐴𝑏 exp (2⟨𝑏, 𝛽⟩) = 0. (83)

Let ⟨𝑏, 𝑏⟩ ≠ 0.
Eqs (83) is exactly integrable and the solution has the following form

𝛽 =
𝑏

⟨𝑏, 𝑏⟩
𝑞 + 𝑣𝑡+ 𝛽0, (84)

where ⟨𝑏, 𝑏⟩ ≠ 0 and 𝑣, 𝛽0 ∈ R𝑛 are constant vectors obeying

⟨𝑣, 𝑏⟩ = ⟨𝛽0, 𝑏⟩ = 0. (85)

The function 𝑞 = 𝑞(𝑡) obeys the Liouville equation

𝑞 + 2𝐴⟨𝑏, 𝑏⟩𝑒2𝑞 = 0, (86)

The solution to Liouville equation reads

𝑞 = − ln |𝑓 |, (87)

where

𝑓 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑅 sinh(

√
𝐶(𝑡− 𝑡0)), 𝐶 > 0, 𝐴 < 0;

|2𝐴|1/2(𝑡− 𝑡0), 𝐶 = 0, 𝐴 < 0;

𝑅 sin(
√
−𝐶(𝑡− 𝑡0)), 𝐶 < 0, 𝐴 < 0;

𝑅 cosh(
√
𝐶(𝑡− 𝑡0)), 𝐶 > 0, 𝐴 > 0;

(88)

here we put 𝐴 = 𝐴⟨𝑏, 𝑏⟩ and

𝑅 =

√︃
2|𝐴⟨𝑏, 𝑏⟩|
|𝐶|

. (89)
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The energy corresponding to the model (81) reads

𝐸 =
1

2
⟨𝛽̇, 𝛽̇⟩+𝐴𝑒2⟨𝑏,𝛽⟩. (90)

After substitution of (84) to (90) we obtain

𝐸 = 𝐸𝑇 +
1

2
⟨𝑣, 𝑣⟩, (91)

where

𝐸𝑇 =
1

2⟨𝑏, 𝑏⟩
𝑞2 +𝐴𝑒2𝑞. (92)

Due to (88) we get

𝐸𝑇 =
𝐶

2⟨𝑏, 𝑏⟩
. (93)

Proposition. For ⟨𝑏, 𝑏⟩ ≠ 0 all solutions to Lagrange equations (83) are covered
by the relations (84), (85), (87) and (88).

Proof. ⇒. It is obvious that the solutions (84), (85) with 𝑞 from (87), (88) obey
the equations of motion (83).

⇐. Let us show that the relations (84), (85), (87) and (88) follow from (83).

Let 𝑞 = ⟨𝑏, 𝛽⟩ and 𝑦 = 𝛽 − (𝑏𝑞)/⟨𝑏, 𝑏⟩. It is obvious that ⟨𝑏, 𝑦⟩ = 0. It follows from
(83) that that the equation (86) and

𝑦 = 0, ⇒ 𝑦 = 𝑣𝑡+ 𝛽0, (94)

where constant vectors 𝑣 and 𝛽0 obey (due to ⟨𝑏, 𝑦⟩ = 0)

⟨𝑏, 𝑦⟩ = 0 ⇒ ⟨𝑏, 𝑣⟩ = ⟨𝑏, 𝛽0⟩ = 0. (95)

Hence

𝛽 =
𝑏𝑞

⟨𝑏, 𝑏⟩
+ 𝑦 =

𝑏𝑞

⟨𝑏, 𝑏⟩
+ 𝑣𝑡+ 𝛽0 (96)

where 𝑞 = 𝑞(𝑡) obeys (86) and hence it is given by relations (87) and (88).

The Proposition is proved. �

Let us introduce a dual vector 𝑢 = (𝑢𝑖): 𝑢𝑖 = 𝐺𝑖𝑗𝑏
𝑗 . Then we get 𝑢(𝛽) = 𝑢𝑖𝛽

𝑖 =
⟨𝑏, 𝛽⟩, (𝑢, 𝑢) = 𝐺𝑖𝑗𝑢𝑖𝑢𝑗 = ⟨𝑏, 𝑏⟩ ((𝐺𝑖𝑗) = (𝐺𝑖𝑗)

−1) and the solution (84) reads

𝛽𝑖 = − 𝑢𝑖

(𝑢, 𝑢)
ln |𝑓 |+ 𝑣𝑖𝑡+ 𝛽𝑖0, (97)

where 𝑖 = 1, . . . , 𝑛, where (𝑢, 𝑢) ̸= 0,

𝑢(𝑣) = 𝑢𝑖𝑣
𝑖 = 0, 𝑢(𝛽0) = 𝑢𝑖𝛽

𝑖
0 = 0, (98)

and function 𝑓 is defined in (88) with

𝑅 =

√︃
2|𝐴(𝑢, 𝑢)|
|𝐶|

, 𝐴 = 𝐴(𝑢, 𝑢). (99)
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For the energy (92) we obtain from (91), (93)

𝐸 =
𝐶

2(𝑢, 𝑢)
+

1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 . (100)

Example. Let us consider the Lagrange system from Section 3 with parameters:

𝐴 = 𝑤
2 𝜉1𝑑1, 𝑢𝑖 = 𝑢

(1)
𝑖 = −𝛿1𝑖 + 𝑑𝑖, 𝑑1 > 1. Then due to (25) and (26) we get 𝑢𝑖 = − 𝛿

1𝑖

𝑑1

and (𝑢, 𝑢) = 1
𝑑1
− 1 < 0. The solution reads

𝛽𝑖 =
𝛿𝑖1

1− 𝑑1
ln |𝑓 |+ 𝑣𝑖𝑡+ 𝛽𝑖0, (101)

where 𝑖 = 1, . . . , 𝑛, with constraints

𝑣1 =

𝑛∑︁
𝑖=1

𝑣𝑖𝑑𝑖, 𝛽1
0 =

𝑛∑︁
𝑖=1

𝛽𝑖0𝑑𝑖, (102)

imposed. In (88) we should put 𝐴 = 𝑤
2 𝜉1(1− 𝑑1) and 𝑅 =

√︁
|𝜉1|(𝑑1−1)

|𝐶| .

For the energy we get

𝐸 =
𝐶𝑑1

2(1− 𝑑1)
+

1

2
𝐺𝑖𝑗𝑣

𝑖𝑣𝑗 . (103)
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Рассматривается многомерная модель скалярно-тензорной гравитации с сигма-мо-
дельным действием для скалярного сектора. Гравитационная модель определена на
многообразии, которое содержит 𝑛 фактор-пространств Эйнштейна. Получены общие ре-
шения космологического типа для полевых уравнений, когда все фактор-пространства, за
исключением одного, риччи-плоские. Решения определены с точностью до решения урав-
нений геодезических на пространстве мишеней. В случае, когда все фактор-пространства
риччи-плоские, выделен подкласс несингулярных решений.

Ключевые слова: космологические решения, сигма-модель, ускорение.




