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A multidimensional model of gravity with a sigma-model action for scalar fields is considered.
The gravitational model is defined on the manifold, which contains n Einstein factor spaces.
General cosmological-type solutions to the field equations are obtained when n—1 factor-spaces
are Ricci-flat. The solutions are defined up to solutions of geodesic equations corresponding
to a sigma-model target space. Several examples of sigma-models are considered. A subclass
of non-singular solutions is singled-out for the case when all factor-spaces are Ricci-flat.
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1. Introduction

Scalar-tensor theories are well-known and important as alternatives to Einstein’s
general relativity. They are widely used, in particular, for explaining present-day
accelerated expansion of the Universe [1] and in many other applications.

Here we consider a gravitational model governed (in essence) by a Lagrangian

L = R[g] — ha(0)g" " Onr " On e, (1)

where ¢ is a metric and non-linear “scalar fields” ¢® come to the Lagrangian in a
sigma-model form with a target space metric h assumed. For a review of sigma-models
see [2] and refs. therein.

The Lagrangian (1) with hg, = const describes the truncated NS — NS sector of
various D = 10 and D = 11 supergravity theories in the Einstein frame [3]. Usually
these theories contain form-fields (fluxes) in addition to massless scalar fields and
Chern-Simons (CS) terms. In this sense, the Lagrangian (1) matches zero flux (and
CS) limit. For D = 3 the Lagrangians of such types are generic ones when dimensional
reductions of (bosonic sectors of) supergravity models are considered, see [4,5] and
refs therein.

Here we deal with cosmological-type solutions defined on the product of n Einstein
spaces (e.g. Ricci-flat ones). The integrable cosmological configurations were studied
in numerous papers, see [6, 7] (without scalar fields), [8-11] (with one scalar field), [12]
etc. The authors of these papers restricted their attention to a linear sigma-model
for which components h,;, are constant. Here we study the solutions for hg, (@) with
arbitrary dependence on ¢* (e.g. for a non-linear sigma-model).
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2. The Model

We start by considering an action of the form

1

2K2
M

S aPa/Igl{ Rlg) = hasl)g" N Orro"On "} + Sy, 2)

where x? is a D-dimensional gravitational coupling, ¢ = gayrydz™ ® dz?V is a metric

defined on a manifold M, ¢ : M — M, is a smooth sigma-model map and M, is a
I-dimensional manifold (target space) equipped with the metric b = hqp(0)dp® @ dp®
(p* are coordinates on M,). Here Sygp is the standard York-Gibbons-Hawking
boundary term [13,14].

The field equations for the action (2) read as follows

1
Ry~ — igMNR =Tun, (3)
1 10h, .
e a0 - 5 e ot =0 (@
where
a b 1 a b KL
Trin = hav(9)O0"One" = Shas(9)grnOxc " Orp"g" . (5)

is the stress-energy tensor.
Here we consider a cosmological-type ansatz for the metric and “scalar fields”

g =weWdu @ du + Z ewi(“)gi, (6)
i=1
¢ = ¢ (u), (7)

where a =1,...,1[.
The metric is defined on the manifold

M =R, x My x ... x M,, (8)

where R, = (u—,u4) and any factor-space M; is a d;-dimensional Einstein manifold
with the metric g* obeying _ _

Rmini [gz} = gig:nini? (9)
where i =1,...,n.

To find solutions for the equations (3)—(4) seems to be complicated due to the non-
linear structure of the Einstein equations and intricacy having scalar fields. However it
may be shown that the field equation for the model (2) with the metric and “scalar
fields” from (6), (7) are equivalent to the Lagrange equations corresponding to the
Lagrangian of the one-dimensional (n + [)-component o-model

1 S
L= GNGyB'F + hav(9)¢"¢"] = NVe. (10)

Here N = exp(y — 70) > 0 is a modified lapse function, v = Z d; ¢,
i=1
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where 7,7 = 1,...,n, are components of the gravitational part of the minisuperspace
metric and .
w _opt
Ve = 52&(1@6 2p0 (12)
i—

is the potential. For the constant hqp(¢) = hap the reduction to the sigma-model was
proved (for more general set up) in [15]. We note that ha,(¢) can be interpreted as a

scalar part of the target space metric. Here and in what follows A = e
u

When all M; have finite volumes the substitution of (6) and (7) into the action (2)
gives us the following relation

S = u/Ldt (13)

where L is defined in (10), p = —% HV“ and V; = [ d%y (\/det (g%,.,,,)) is the
=1
volume of M;,i=1,...,n.
The relation (13) can be derived using the following expression for the scalar
curvature

R = —we™ (2o — 207 + 43 + Z d; (ﬂ‘f)Z) + Z e ' Rlg],  (14)
=1

i=1

where R[g%] = £;d; is the scalar curvature corresponding to the M;-manifold. To obtain
(13) one should extract the total derivative term in (14) which is canceled by the
York-Gibbons-Hawking boundary term.

We write the Lagrange equations for (10) and then put N/ = 1, or equivalently
Y = 7, i.e. when u is a harmonic variable. We get

Gij,éj + w ijd](féf + di)e*QBjJrQ’Yo = 0, (15)
j=1
where i =1,...,n,
d(her(9)2")  10hab(9) .4 .
du 2 Qpc =0 (16)
c=1,...,l, and
1 .1 .
3G+ Shav()p" 3" + Ve = 0. (17)

In fact, equations (15) are nothing else but Lagrange equations corresponding to
the Lagrangian

1 e
Lg = 5Gij,816] - Ve (18)
with the energy integral of motion

1 .
Eg = §G”ﬂzﬁj + Ve. (19)

Likewise (15), the equations (16) are Lagrange equations corresponding to the
Lagrangian

L«p = *hab(SD)Sb P (20)
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with the energy integral of motion

1 ca -b

E, = §hab(s0)<,0“s0 : (21)

Equations (16) are equivalent to geodesic equations corresponding to the metric h.
The relation (17) is the energy constraint

E=Es+E, =0, (22)

coming from OL/ON =0 (for N =1).
Equations (15) may be rewritten in an equivalent form

B — wgge27 20 =, (23)
where ¢ = 1,...,n. These expressions may be obtained from (15) by using the inverse
matrix (G¥) = (G;;) ™!

GY = i TR (24)
~d;, 2-D
and the following relations for u(*)-vectors:
) o 51%’
w = —f v di, WM =G = = (25)
where i, 5,k =1,...,n.
In what follows we will use the following relation
k) By — i, _ L 2%
(@, ) = GIuPul) = 2 1, (26)

where k. =1,...,n.

Hence, the problem of finding the cosmological-type solutions for the model (2)
(with u being harmonic variable) is reduced to solving the equations of motion for the
Lagrangians Lg and L, with the energy constraint (22) imposed.

Geodesics for a flat metric h.

For the constant hgp(¢) = hap eqgs (16) read

¢* =0, (27)
or, equivalently,
0" = viu + g, (28)
where vg, p§ are integration constants, a =1,...,[.

The energy for scalar fields (21) takes the form

1 a
E, = §hab%vi~ (29)

More examples of geodesic solutions will be given in Section 4.

3. Cosmological-Type Solutions

In this section we deal with certain examples of cosmological-type solutions with
the metric and “scalar fields” from (6) and (7), respectively.
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3.1. Solutions with n Ricci-flat Spaces

In this subsection, we focus on the solutions for the case when all factor-spaces M;

are Ricci-flat: _
Ric[g'] =0, (30)
where 1 =1,...,n.
Due to (30) the potential V¢ is equal to zero and the equations of motion (23) for
B* now become
Bt =0, (31)
where 1 =1,...,n.
Integration of the equations (31) yields

Bt = viu+ 3, Z d; (vt +BY), (32)

where the parameters v* and () are integration constants and the energy (19) takes
the form

1 o
EB = iGij’UZ’U‘], (33)

where the minisuperspace metric G;; is given by (11).
The metric reads

du ® du + Z exp [2 (v'u+ B)]g" (34)

=1

g = wexp [QZdz(v’u + Bé)

i=1

The “scalar fields” obey eqs. (16) with the energy constraint

1 . 1 i
By = Shap(9)¢ ¢ = —5Giv'v’. (35)
In a special case of one (non-fantom) scalar field (h1; = 1) and w = —1 this solution

was obtained in [8].
The scalar curvature for the metric (34) reads (see (14))

R[g] = —w (Giv'v?) e 2. (36)

In what follows we use a parameter

v) = Z v’ (37)

to classify the solutions.
Non-special Kasner-like solutions.
First we shall consider the non-special case when ¥ (v) # 0.
Let us define a “synchronous” variable

eXp [i vu+ 8)d (38)
j=1

obeying e270 P dy? = dr2.



120 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 3, 2012. Pp.115-128

We introduce new parameters:

a' =v'/(v), (39)
where 1 =1,...,n, and
Ep = E,/((v))%. (40)
Then the metric reads
g=wdr @1+ Z cirioigh, (41)
i=1

where 7 > 0. “Scalar fields” are solutions to equations of motion (see (16))

d dypb 1 Ohay(p) dp® dp® B
dr [Thd)((p) d } a7 dpc  dr dr =9

(42)

where a = 1, ...,1. The parameters (39) obey the Kasner-like conditions

D dia’ =1, (43)

i=1
D di(e)? =1- 2, (44)
i=1
where .
de® de
28, = 72h, - 4
£, = Thas(ip) S (45)
is the integral of motion for eqs. (42).
In (41) ¢; are constants
e =3I exp [ B — o' S By (46)

j=1

n
where i = 1,...,n, obeying Hcffi = [3(v)|.
i=1
Flat h. For the special case of the flat target space metric hap,(¢) = hap we get

¢ = agInT + ¢, (47)
where @§ are constants, a =1,...,1, and
1 a_ b
E, = §haba¢a¢. (48)

The scalar curvature (36) reads
Rlg] = 2w€,m 2. (49)

It diverges for 7 — 40 if £, # 0. Hence all solutions with &£, # 0 are singular.
For &£, # 0 the solutions with non-Milne-type sets of the Kasner parameters are

singular when all ¢° have Euclidean signatures since the Riemann tensor squared
is divergent at 7 — +0 [16]. For Milne-type sets of parameters, i.e. when d; = 1
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and o' = 1 for some i (a/ = 0 for all j # i) the metric is regular, when either i)
¢ = —wdy' @ dy*, M; = R (=00 < y* < +00), or ii) ¢ = wdy® @ dy’, M; is a
circle of length L; (0 < y* < L;) and ¢;L; = 2 (i.e. when the cone singularity is absent).

Special (steady state) solutions. Now we consider the special case when
Y(v) = 0. Due to (35) we obtain

1 — ,
By =~ > di(v)? <. (50)
=1

n

We get in this case vy = Z d;3, = const and hence the scalar curvature

=1
Rlg] = 2wE e~ (51)

and the volume scale factor v = €79 are constants.

The “synchronous” variable is proportional to u (7 = e"u).

Hence, we obtained a restriction for the energy E, < 0. For E, = 0, all v* = 0,
and we are led to a static Ricci-flat solution.

For E, < 0 we get R[g] # 0. This possibility occurs if the target space metric h is
not positive-definite (e.g. there are phantom scalar fields for flat k). For solutions with
one (phantom) scalar field see [8].

Solutions with acceleration. Let d; = 3 and M; = R3. The factor-space M;

may be considered as describing our space. In both cases there exist subclasses of
solutions describing accelerated expansion of our space.

Indeed, for Kasner-like solutions with w = —1 one could make a replacement
T +— 79 — T where 79 is a constant (corresponding to the so-called “big rip”). For such
replacement the scale factor of M; reads

a1 () = 1o — 7)™, (52)

where ¢; > 0.

If a; < 0 we get accelerated expansion of 3-dimensional factor space M. For the
Hubble parameter we get

H =d/ar = (=an)/(10 = 7), (53)

while the variation of the effective gravitational constant reads

G/G = (1-3a1)/(10— 7). (54)
Here we used the relation G = constH(To —7)~4% = const(ry — )31 [17] (see

=2
(43)). This implies the relation

§=G/(GH) = (3a; — 1)/ay. (55)

The condition a7 < 0 yields the huge value |§| > 3 which does not obey the
observational limits [17]: |§| < 0.1. Thus, accelerated expansion of M; factor-space is
incompatible with tests on G — dot.

Analogous consideration may be carried out for special (steady state) solutions. For

w = —1, d; = 3 and v! > 0 we get accelerated expansion of 3-dimensional factor-space
M. In this case due to 3 = 0 one get 6 = 3 which also does not pass the G — dot test.
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3.2. Solutions with One Curved Einstein Space and n — 1 Ricci Flat
Spaces

Here we put
Ric[g'] = &19', & #0, Ric[g'] =0, i>1, (56)

i.e. the first space (M, g') is an Einstein space of non-zero scalar curvature and other
spaces (M;, g") are Ricci-flat.

The Lagrangian (18) reads in this case
1 s W 1
Lg = iGijﬁlﬁj - 551611 exp (=26" + 2v0), (57)
where —3! + g = ugl)ﬁi and ugl) = -4l +d;.

The Lagrange equations corresponding to the Lagrangian (57) are integrated in
Appendix. The solution reads

B =In|f|7T +vu+ g, (58)
B =t 4B, 0> 1, (59)
where 3§, v' are constants obeying
ol =Y ", By = Bid; (60)
i=1 i=1

The function f is following

Rsinh(VC(u —up)), C >0, wé > 0;
i (di = DI (u —ug), C=0, wé >0;
Rsin(v—C(u —ug)), C <0, wé >0;
Rcosh(VC(u—ug)), C >0, wé <0,

f= (61)

where ug and C' are constants and

_[f&(dy = 1)
Rﬂ/im : (62)

For ¢ we get

’Yozﬁl—ln\f‘- (63)
The energy integral of motion Ejs corresponding to Lg reads (see Appendix)
Cdy 1 -
Ey=—— 4 ZGyvil, 4
5 2(1—d1)+2GJUU (64)

Using (58), (59) and (63) we are led to the relation for the metric

g = |fI7H exp 2vtu + 8] (wdu @ du+ ") + 3 exp [2(w'u+ Bi)lg'. (65
1=2
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The “scalar fields” obey eqs (16) with the energy constraint

1
L)

Cd; 1

By = gha(0)¢"e" = 5 — 5 G’ (66)

d—1)

Here the constraints (60) on 3§, v* should be kept in mind, and the function f is
defined in (61).

In a special case of one (non-fantom) scalar field (h1; = 1) and w = —1 this solution
was obtained earlier in [9,10], see also [11].

4. More Examples of Geodesic Solutions
In this section we consider three examples of solutions to geodesic equations

corresponding to the metric h that may be used for the cosmological-type solutions
above.

4.1. Metric on S?
Let h be a metric on a two-dimensional sphere S?
h=dd ® dd + sin® Idy ® dp. (67)
The simplest solution to geodesic equations (16) for the metric reads
o =wu, Y=m1/2, (68)
1

where w is constant. Here E, = §w2. The general solution to geodesic equations may

be obtained by a proper isometry SO(3)- transformation of the solution from (68).

4.2. Metric on d.52

Now we put h to be a metric on a two-dimensional de Sitter space d.S?
h = —dy ® dy + cosh?® xdp @ de. (69)

There are three basic solutions to geodesic equations (16) in this case

p=wu,  x=0, (70)

X = vu, =0, (71)

tan ¢ = sinh xy = mu, (72)

where w,v and m are constants. For the energy we have E, = %wz, f%vz and 0, for

space-like, time-like,and null geodesics, respectively. The general solution to geodesic
equations may be obtained by a proper isometry SO(1,2) — transformation of the
solutions from (70)—(72).

4.3. A Diagonal Metric h

Here we deal with a diagonal metric

-1

h=eodp @dp+ Y erAi(p)dy* @ dyF, (73)
k=1

where g = £1, e, = £1 (k > 0) and all Ax(¢) > 0, are smooth functions.
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The Lagrange function for the non-linear sigma-model is given by

-1
Lo=3 [eod? + Zsmiww’fﬁ} . (74

k=1

Equations of motion for cyclic variables 1)*
d 2 ik
— (aeab(9)*) =0 (75)
yield the following of integrals of motion

e A ()" = My, (76)

where k=1,...,01— 1.
Another integration constant is energy F,

r -1
1 . .
E, =3 |c0#” + ;Ekfli(@)(d)k)ﬂ (77)
which due to (76) reads
T -1
E, = 3 g0p? + ;skM,fA,f@p)} . (78)

This relation implies the following quadrature

©
4
/ ;’0 = u — ug, (79)
-1 o,
e \/250141(, — 0> 4y ERMEAZ(P)
which implicitly defines the function ¢ = p(u).
Another quadratures just following from (76)
v ub = [ dudia ), (50)

uo

complete the integration of the geodesic equations for the metric (73).

For Ai(¢) = exp (Ap), A # 0, the metric (73) may describe either a part of de-Sitter
space (if g = —1, ¢, = 1, k > 0) or a part of anti-de-Sitter space (if &1 = —1,
er =1, r # 1). The case | = 3 is of interest in connection with the so-called the AWE
hypothesis [18].

5. Conclusions

Here we have considered a multidimensional model of gravity with a sigma-model
source (for scalar fields). The model is defined on the manifold M, which contains n
Einstein spaces.

We have obtained exact cosmological-type solutions to the field equations in two
cases: 1) when either all factor-spaces are Ricci-flat or ii) when only one factor-space
space has nonzero scalar curvature.
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In the first case 1) the solutions have either Kasner-like form or describe steady-state
solutions, generalizing those from [8]. The Kasner-like solutions are mostly singular
with certain exceptions (of Milne-type).

For the case when all factor-spaces are Ricci-flat we have singled-out a subclass of
solutions describing accelerated expansion of 3-dimensional manifold. We have shown
that these solutions do not obey the tests on variation of G.

The second subclass of solutions ii) (e.g. for spherically symmetric configurations)
will be considered in a separate publication (e.g. a possible fitting of acceleration with
bounds on G-dot, see [19] and ref. therein).

6. Appendix: Solutions Governed by Liouville Equation

Here we consider a Toda-like system with the following Lagrangian

1. .
L=3(5.5) — Aexp (2(0,5)), (51)
where 8§ € R", A £ 0, b € R™. The scalar product for vectors belonging to R™ is

defined by o
(B1,B2) = Gij P13, (82)

where G;; is a non-degenerate symmetric matrix (e.g. given by (11)).
The Lagrange equations corresponding to the model (81) read (in a condensed
vector form)

B+ 2Abexp (2(b, 8)) = 0. (83)

Let (b,b) # 0.
Eqs (83) is exactly integrable and the solution has the following form

f= q+ vt + Po, (84)

b
(b,0)
where (b, b) # 0 and v, By € R™ are constant vectors obeying

(v,b) = (Bo,b) = 0. (85)
The function ¢ = ¢(t) obeys the Liouville equation
G+ 2A(b,b)e*? =0, (86)
The solution to Liouville equation reads
q=—In|f], (87)
where
Rsinh(VC(t —tg)), C >0, A<O0;
124|Y2(t —t5), C=0, A<O0;
f= : . (88)
Rsin(v—C(t —ty)), C<0, A<O0;
Rcosh(VC(t —tg)), C>0, A>0;

_[2]Ab, b)]
R= e (89)

here we put A = A(b,b) and
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The energy corresponding to the model (81) reads
1 . .
B = 2(8,8) + A2, (90)

After substitution of (84) to (90) we obtain

E=Brt o), (91)
where ' ,
Er 0 b>q + Ae*. (92)
Due to (88) we get
Br= é’: 5 (93)

Proposition. For (b,b) # 0 all solutions to Lagrange equations (83) are covered
by the relations (84), (85), (87) and (88).

Proof. =. It is obvious that the solutions (84), (85) with ¢ from (87), (88) obey
the equations of motion (83).

<. Let us show that the relations (84), (85), (87) and (88) follow from (83).

Let ¢ = (b, B) and y = 8 — (bq)/(b,b). It is obvious that (b,y) = 0. It follows from
(83) that that the equation (86) and

:lj = Oa = Yy = vt + /307 (94)

where constant vectors v and /3y obey (due to (b,y) = 0)

Hence b h
q q
= = t 96
b=tV gy T (96)
where ¢ = ¢(t) obeys (86) and hence it is given by relations (87) and (88).
The Proposition is proved. 0

Let us introduce a dual vector u = (u;): u; = G;;b’. Then we get u(3) = u;8" =
(b,B), (u,u) = G9uu; = (b,b) ((G) = (Gi;)~") and the solution (84) reads
U

(u, u)

where i = 1,...,n, where (u,u) # 0,

Bl = In|f| +v't + B, (97)

u(v) = uiv' =0,  w(Bo) = uif =0, (98)

and function f is defined in (88) with

B 2| A(u,u)| - Aluu
R_1/7|C| . A= Alu,u). (99)
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For the energy (92) we obtain from (91), (93)
C

1 o
E= Z Gyt 1
2(u,u)+2G]UU (100)

Example. Let us consider the Lagrange system from Section 3 with parameters:
A=Y&dy, v = ugl) = —0! +d;, dy > 1. Then due to (25) and (26) we get u’ = —‘%
and (u,u) = d% — 1 < 0. The solution reads

. R ) .
B = ——In|f| +v't + 5, (101)
1—d;
where 1 = 1,...,n, with constraints
vh=Y ", By =) Bods, (102)
i=1 i=1

imposed. In (88) we should put A = %&,(1 —d;) and R = \/%.
For the energy we get

5 Cd

1 o
=4 G 10
2(1—d1)+2 UV (103)
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O kKocMoOJIOTMYeCKNX PENIeHNsAX C CUI'Ma-MOAeIbHbIM
VMCTOYHUKOM

A. A. Toay6mnosa*, B. JI. Usamyk'

* Inemumym 2pasumauts U KOCMOAOLUL
Poccuutickutl yHusepcumem dpyoscoo, Hapodos
yd. Muxayzxo-Maxasan, 0. 6., Mockea, Poccus, 117198
Jla6opamopus meopuu Beeaennot (LUTh), Obcepsamopus Iapuorca
na. 2Kyao HKawncen, 0.5, Medon, Oparuus, 92190
t Hnemumym epasumanyuu u kocmoroeuu
Poccuutickutl ynusepcumem dpyotcoov, Hapodos
y0. Muxayzxo-Maxsas, 0. 6., Mockea, Poccus, 117198
Llenmp epasumanuu u Gyrdamenmarorott MEMPOLOZUL
BHUUMC, ya. Osepnasn, 0. 46, Mocxea, Poccus, 119361

PaccmarpuBaercss MHOroMepHasi MOJIeIb CKaJIIPHO-TEH30PHON I'DABUTALIMU C CUT'Ma-MO-
IeJIbHBIM JIeICTBUEM J[JIsi CKAJISIPHOIO CeKTopa. ['paBUTAIMOHHAS MOJEJb OIpeJesieHa Ha
MHOT000pa3um, KOTOPOE COMEPKUT 1. (DAKTOP-TIPOCTPAHCTB JitHmTeitHa. [loryuensr obmume pe-
IIIeHNsT KOCMOJIOTMYIECKOTO THIIA JJIsI TIOJIEBLIX YPABHEHHH, KOT/Ia Bce (haKTOP-IIPOCTPAHCTBA, 32
HCKJIIOYEHUEM OJIHOIO, PUYYH-IIJIOCKHE. Perenust onpeiesieHbl ¢ TOYHOCTBIO JI0 PEIIEHUsT YPaB-
HEHUI Te0JIe3MIeCKNX Ha IMPOCTPAHCTBE MullieHel. B cirydae, korma Bce (haKTOP-TIPOCTPAHCTBA
PUIYIU-IIJIOCKHUE, BbIJCJ/ICH ITOAKJ/IaCC HECUHTYJIAPHBIX peHleHHfI.

KiroueBbie cjioBa: KOCMOJIOTMYECKHUE peneHnsa, CurMma-Mo/ieJjib, YCKOPpEeHHue.





