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The multiscale model of turbulent fluid motion was developed in earlier papers
by author [1, 2]. In this mathematical model a fluid was represented as an ensemble
of so-called fluid particles of different sizes. In order to describe this ensemble we
invoke statistical physics. It helps us to construct an analogue of the Boltzmann
equation which describes binary interaction between two fluid particles – first the
particles stick together and then break down into two identical fluid particles. Such
decay served as a mechanism of turbulent mixing. Boltzmann kinetic equation was
solved by the Grad’s method, which allowed to obtain closure conditions in the form
of the expression of unknown flows. They form part of the corresponding divergences,
through the gradients of known quantities.

In accordance with the multiscale model of turbulence, we define the average mass
of a fluid particle Ξ = Ξ(𝑡𝑟) and its volume Ω = Ω(𝑡r), where 𝑡 stands for time,
r = (𝑥1𝑥2𝑥3) is radius vector in space. In addition, we introduce the inverse values
for the scales of turbulence: 𝛼 = 1/Ξ and 𝛽 = 1/Ω. We define the density 𝜌 = 𝜌(𝑡𝑟)
and the vector of fluid velocity w = w(𝑡r). According to the multiscale model, we
can define the internal energy 𝜌𝑐𝑇𝑚 (𝑐 — heat capacity of liquid, 𝑇𝑚 — the molecular
temperature) in the ordinary sense, and turbulent energy 3

2𝑛𝑇𝑡 (𝑛 = 𝜌/Ξ — density
of fluid particles) associated with large scale turbulent fluctuations of the liquid.

The resulting system of equations of multiscale turbulence model can be written as:

𝜕𝛼/𝜕𝑡+ 𝑤∇𝛼 = −𝜌−1div 𝐼 − 𝜈−1𝛼,

𝜕𝛽/𝜕𝑡+ 𝑤∇𝛽 = −𝜌−1(𝛽/𝛼)div 𝐼 + 𝜌−1(𝛽2/𝛼)div 𝐽 − 𝜈−1𝛽,

𝜕𝜌/𝜕𝑡+ div (𝜌𝑤) = 0,

𝜕(𝜌𝑤𝑖)/𝜕𝑡+ 𝜕(𝜌𝑤𝑖𝑤𝑗 + 𝑃
(𝑚)
𝑖𝑗 + 𝑃

(𝑡)
𝑖𝑗 )/𝜕𝑥𝑗 = 0,

𝜕
(︁
3

2
𝑛𝑇𝑡

)︁
/𝜕𝑡+ div

(︁
3

2
𝑛𝑇𝑡𝑤 + 𝑞(𝑡)

)︁
+ 𝑃

(𝑡)
𝑖𝑗 𝜕𝑤𝑖/𝜕𝑥𝑗 + 𝜈−1

3

2
𝑛𝑇𝑡 = 0,

𝜕(𝜌𝑐𝑇𝑚)/𝜕𝑡+ div (𝜌𝑐𝑇𝑚𝑤 + 𝑞(𝑚) + 𝑞(𝑚𝑡)) + 𝑃
(𝑚)
𝑖𝑗 𝜕𝑤𝑖/𝜕𝑥𝑗 − 𝜈−1

3

2
𝑛𝑇𝑡 = 0.

(1)

Equations (1) include a pair of equations for the scales of turbulence (𝛼, 𝛽), and the
ordinary laws of conservation of mass, momentum and energy in two forms: molecular
and turbulent ones. The system of equations can describe both laminar and turbulent
flows. The subindices (𝑚) and (𝑡) denote the molecular and turbulent characteristics
respectively. The multiscale model of turbulence [1,2] allows to work out the following
closure conditions which permit to express the unknown flows standing under the signs
of the divergence, through the gradients of known quantities:
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𝐼 = 𝑘𝐼𝛼
−1/2𝛽2/3𝑇

1/2
𝑡 ∇𝛼, 𝐽 = 𝑘𝑗𝛼

−1/2𝛽2/3𝑇
1/2
𝑡 ∇(𝛼𝛽−1),

𝑃
(𝑡)
𝑖𝑗 = 𝑃𝑡𝛿𝑖𝑗 − 𝜇𝑡(𝜕𝑤𝑖/𝜕𝑥𝑗)*, 𝑃𝑡 = 𝑛𝑇𝑡, 𝜇𝑡 =
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−2/3𝛽1/2𝑇
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𝑡 ∇𝛼− 75

256
√
𝜋

(︁
4𝜋

3
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𝛼−1/2𝛽2/3𝑇

1/2
𝑡 ∇(𝛼𝑇𝑡),

𝑞(𝑚𝑡) = −𝑘𝑡∇𝑇𝑚, 𝑘𝑡 = 𝑐𝑘𝑞𝛼
−1/2𝛽2/3𝑇

1/2
𝑡 .

(2)

For the final closure of the system of equations (1) it is necessary to add to equa-
tions (2) the equation of medium state 𝑃𝑚 = 𝑃𝑚(𝜌𝑇𝑚). The value 𝑃𝑡 = 𝑛𝑇𝑡 in (2) has
the meaning of the turbulent “pressure” and is completely analogous to the molecular-

kinetic pressure of an ideal gas. In (1) the molecular tensor 𝑃
(𝑚)
𝑖𝑗 and energy flux q(𝑚)

were entered. It was made in order to ensure the self-consistence between the desired
equations (1) and the Navies–Stokes equations, in the absence of turbulence, i.e. when
𝑇𝑡 = 0. This self-consistence does occur, because according to (2) at 𝑇𝑡 = 0 — I, J,

𝑃
(𝑡)
𝑖𝑗 , q(𝑡) q(𝑚𝑡) = 0. The linkage between the molecular and turbulent components of

the movement is carried out by adding a phenomenological term 𝜈−1 3
2𝑛𝑇𝑡 to the last

two equations in (1). The system of equations (1) admits the general law of conser-
vation of the sum of kinetic (12𝜌𝑤

2), turbulent (32𝑛𝑇𝑡) and internal (𝜌𝑐𝑇𝑚) energies,
that is

𝜕

𝜕𝑡

(︁
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𝜌𝑤2 +
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2
𝑛𝑇𝑡 + 𝜌𝑐𝑇𝑚

)︁
+ div

[︁ (︁
1

2
𝜌𝑤2 +

3

2
𝑛𝑇𝑡 + 𝜌𝑐𝑇𝑚

)︁
𝑤+

+
(︁
𝑃 (𝑚) + 𝑃 (𝑡)

)︁
· 𝑤 + 𝑞(𝑚) + 𝑞(𝑚𝑡) + 𝑞(𝑡)

]︁
= 0.

Let us define the tensor 𝜎
(𝑡)
𝑖𝑗 = 𝑃

(𝑡)
𝑖𝑗 −𝑃𝑡𝛿𝑖𝑗 and relate it and the flow q(𝑚𝑡) with the

Reynolds’ turbulent stress tensor 𝜌⟨𝑤′𝑖𝑤′𝑗⟩ (𝜌 = 𝑐𝑜𝑛𝑠𝑡) and the magnitude 𝜌⟨𝑤′𝑇 ′𝑚⟩.
The stress tensor is well-known in the theory of turbulence, and the denotations are
used: ⟨...⟩ is the time averaging operation, w′ = w− ⟨w⟩ — fluctuating velocity com-
ponent, 𝑇 ′𝑚 = 𝑇𝑚 − ⟨𝑇𝑚⟩ is the temperature fluctuating component. So we have:

𝜎
(𝑡)
𝑖𝑗 = 𝜌⟨𝑤′𝑖𝑤′𝑗⟩, 𝑞(𝑚𝑡) = 𝜌𝑐⟨𝑤′𝑇 ′𝑚⟩. In this case, values 𝜇𝑡 and 𝑘𝑡 in (2) can be inter-

preted as the coefficients of turbulent viscosity and thermal conductivity, which are
functions of scale (𝛼𝛽) and the “temperature” of turbulence (𝑇𝑡). This model admits
a well-known in the turbulence theory, Boussinesq approximation when the Reynolds’
stress tensor is proportional to the strain tensor (𝜕𝑤𝑖/𝜕𝑥𝑗)

* and the turbulent flow of
internal energy is proportional to the gradient of the molecular temperature, that is
𝜌⟨𝑤′𝑖𝑤′𝑗⟩ = −𝜇𝑡(𝜕𝑤𝑖/𝜕𝑥𝑗)*, 𝜌𝑐⟨𝑤′𝑇 ′𝑚⟩ = −𝑘𝑡∇𝑇𝑚.

We define a “turbulent” and laminar Reynolds’ numbers Re 𝑡 = 𝜌𝑉 𝐿/𝜇𝑡, Re𝑚 =
𝜌𝑉 𝐿/𝜇𝑚, where 𝑉 , 𝐿 are the characteristic velocity and length. Then the total
Reynolds number ReΣ is the following: ReΣ = (Re−1𝑚 +Re−1𝑡 )−1. If Re* is the critical
Reynolds number, that is for higher values of Reynolds number a hydrodynamic in-
stability arises, then for ReΣ < Re* such instability does not emerge in the system of
equations (1). Equations (1) are balanced so that, for any turbulent motion in which
Re𝑚 ≫ 1, ReΣ is a finite and bounded, so that ReΣ < Re*. In this case all hydro-
dynamic functions 𝛼, 𝛽, 𝜌, w, 𝑃𝑚, 𝑇𝑚, 𝑇𝑡 considered as the solutions of the closed
system of equations (1), will be sufficiently smooth functions.

The presence of turbulent viscosity in the motion equation in the system (1) pro-
vides automatic adjustment of nonexit beyond the motion equation domain of cor-
rectness. This mechanism operates as follows. In the regions where conditions for the
development of turbulence arise (the regions of large velocity gradients), turbulence
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“temperature” 𝑇𝑡 increases, that leads to an increase of turbulent viscosity and a de-
crease in velocity gradient. Turbulent fluid in terms of equations (1) could be imagined
as laminar, but with a special kind of viscosity, which depends on traffic conditions.

We’ll assume that the fluid is incompressible, that is 𝜌 = 𝑐𝑜𝑛𝑠𝑡, then the first two
equations in (1) which describe the behavior of the turbulence scales, conserve the
forme, because 𝛽 = 𝜌𝛼 and J = 0. We can write down the equation for the inverse
value of the fluid particle volume, that is

𝜕𝛽/𝜕𝑡+ 𝑤∇𝛽 = −div (𝑘𝐼𝜌
−1/2𝛽1/6𝑇

1/2
𝑡 ∇𝛽)− 12𝜋

(︁
3

4𝜋

)︁1/3
𝜌−1𝜇𝑚𝛽

5/3. (3)

The equation (3) is interesting because the first term in the right side comes with
an unusual sign. If the coefficient 𝑘𝐼 was negative, then (3) would be the ordinary
equation of diffusion type. However, 𝑘𝐼 > 0 (as shown in papers [1, 2]), so from here
on we shall call it a term of the negative diffusion type or the antidiffusion term.

Unlike ordinary diffusion which leads to smoothing out irregularities in the initial
data, antidiffusion, on the contrary, reinforces these inhomogeneities, leading to the
development of a complex “picket fence” of the peaks in the form of function 𝛽 and the
peak height rapidly tends to infinity. In other words, antidiffusion term describes the
unstable process of progressive turbulence scale Ω refinement. Presence of antidiffusion
term in equation (3) is due to the turbulent mechanism of adhesion and further decay
of a pair of fluid particles into two identical fluid particles.

The action of turbulent mechanism of pairs agglomeration and decay into two
identical fluid particles will lead to a redistribution of the initial fluid mass and volume
by equal portions among all fluid particles. Thus, the functions Ξ and Ω decrease (𝛼
and 𝛽 increase) compared with the initial state. If at the beginning the fluid particles
are infinitely small and their number is infinitely large, Ξ and Ω will tend to zero
(𝛼 and 𝛽 tend to ∞), that is the grinding process of scale will not have the finite
lower bound. The second term in the right hand side of (3), associated with molecular
viscosity, prevents the growth of the peaks in the distribution of 𝛽 to infinity. This
can be seen from the degree of nonlinearity of the first and second terms. Thus, the
molecular viscosity determines the minimum possible size of fluid particles.

Presence of antidiffusion term in equations (1), (3) means that these equations
belong to the class of incorrectly formulated problems [3]. In this regard, equation
(3) and all the system of equations (1) describing the turbulence become incorrectly
formulated problem. To remove the incorrectness of antidiffusion type, we can use
one of the algorithms approved in the theory of incorrectly formulated problems [3].
The choice of this algorithm implies the existence of some a priory information about
the profiles of functions Ξ and Ω(𝛼𝛽). A priori information can be very weak, for
example, it reduces the total requirement of sufficient smoothness of the functions Ξ
and Ω.

Let us calculate the turbulent motion of fluid in the pipe using equation (3). We
consider the system of equations (1) for the case of turbulent flow of an incompressible
fluid in a pipe. We use the cylindrical coordinate system (𝑟, 𝜙, 𝑧), puthing the 𝑧-axis at
the center of the pipe. Let us assume that the pressure in the fluid decreases uniformly
from input to output, that is 𝑃𝑚 + 𝑃𝑡 = −(Δ𝑃𝑧)/𝐿 + 𝑃 , where Δ𝑃 = 𝑃 − 𝑃1 —
differential pressure; 𝑃0, 𝑃1 — pressure at input and output pipes, respectively, 𝐿 —
pipe length.

As the system has axial symmetry and characteristics are uniform with respect
to the coordinate 𝑧, the unknown values in the problem are the inverse volume of
the fluid particles 𝛽 = 𝛽(𝑡𝑟), axial velocity component 𝑤 = 𝑤(𝑡𝑟) and “temperature”
of turbulence 𝑇𝑡 = 𝑇𝑡(𝑡𝑟). It is convenient to use in calculations pressure of the
turbulence 𝑃𝑡 = 𝛽𝑇𝑡 instead of temperature. So, taking into account the system of
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equations (1) and the conditions for closure (2), we obtain

𝜕𝛽
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where 𝜈𝑚 = 𝜇𝑚/𝜌 — molecular kinematic viscosity.
The boundary conditions for the system of equations (4) include the condition of

symmetry in the center of the stream

𝜕𝛽(𝑡, 0)/𝜕𝑟, 𝜕𝑤(𝑡, 0)/𝜕𝑟, 𝜕𝑃𝑡(𝑡, 0)/𝜕𝑟 = 0 (5)

at 𝑟 = 0 and the presence of the laminar sublayer near the surface of the pipe

𝛽(𝑡, 𝑟0), 𝑤(𝑡, 𝑟0), 𝑃𝑡(𝑡, 𝑟0) = 0, (6)

where 𝑟0 — pipe radius.
The system of equations (4) is incorrect due to the presence of the antidiffusion

term in the first equation (4). Due to the ideas of incorrect problems solving [3], use
the following method. Let represent the function 𝛽 in separated variables, that is
𝛽(𝑡𝑟) = 𝛾(𝑡)𝜗(𝑟), where 𝜗(𝑟) is a known nonnegative function satisfying the boundary
conditions (5), (6): 𝜗′(0) = 0, 𝜗(𝑟0) = 0 and the condition of monotonic decreasing
from the center of the pipe to the boundary: 𝜗′(𝑟) < at < 𝑟 < 𝑟0.

Substituting the representation 𝛽 = 𝛾𝜗 into the first equation (4) and integrating
from 0 to 𝑟0, one finds

�̇� = 𝑎𝛾2/3 − 𝑏𝛾5/3, (7)

where

𝑎 =

⎛⎝−
𝑟0∫︁
0

𝑟−1𝑘𝐼𝜌
−1/2𝑃

1/2
𝑡 𝜗−1/3𝜗′𝑑𝑟

⎞⎠⎛⎝ 𝑟0∫︁
0

𝜗𝑑𝑟

⎞⎠−1 > 0

𝑏 = 12𝜋
(︁

3

4𝜋

)︁1/3
𝜈𝑚

⎛⎝ 𝑟0∫︁
0

𝜗5/3𝑑𝑟

⎞⎠⎛⎝ 𝑟0∫︁
0

𝜗𝑑𝑟

⎞⎠−1 > 0.

After replacing the first equation in system (4) by equation (7) we obtain the
correct integro-differential system of equations.

Suppose further that the solution of equation (7) attains a steady state, that is
�̇� = 0 and 𝛾 = 𝑎/𝑏. The remaining two equations (4) for the velocity 𝑤 and pres-
sure turbulence 𝑃𝑡 are ordinary nonlinear differential equations of diffusion type with
sources and sinks. They were solved numerically with zero initial data with the bound-
ary conditions (5), (6) and limiting steady-state solutions. For the solution of usual
for this case parabolic equations we used finite difference scheme [4].
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Figure 1. Comparison of model velocity profiles of turbulent fluid flow in tube
with the experimental data (*) from [5] depending on the radius of the pipe

Figure 1 illustrates the results of fitting the model to the experimental velocity
profiles in the tube at different Reynolds numbers Re𝑚 obtained by numerical solv-
ing the model equations (4), (7) for the velocity 𝑤 and pressure 𝑃𝑡, the appropriate
assumptions about the function of the inverse volume being made. For variants of cal-
culation 1, 2, 3 — Re𝑚 = 1.5 ·106, 2.3 ·106, 3.2 ·106 respectively. An asterisk in Figure
1 denotes the corresponding experimental values of velocity obtained in experiments
by I. Nikuradse [5]. Let us choose the following constants: 𝜌 = 1𝑔/cm3, 𝑟0 = 5cm,
𝑘𝐼 = 2.6, and for corresponding variants put:
1) 𝜈𝑚 = 1.1 · 10−2cm2/s, Δ𝑃/𝐿 = 1.5 · 103 dyn /cm3;
2) 𝜈𝑚 = 8.2 · 10−3cm2/s, Δ𝑃/𝐿 = 1.8 · 103 dyn /cm3;
3) 𝜈𝑚 = 7.5 · 10−3cm2/s, Δ𝑃/𝐿 = 2.7 · 103 dyn /cm3.

Reynolds number was estimated by the formula Re𝑚 = 2𝑟0𝑢/𝜈𝑚, 𝑢 — average
velocity and 𝜗-function was chosen as [1 − (𝑟/𝑟0)

2]1/2. Figure 1 illustrates how to
relate to each other modeling and experimental velocity profiles in the core of the
turbulent flow at one adjustable coefficient 𝑘𝐼 = 2.6.

Note a circumstance that was clearly manifested during the solution of equations
(4). To remove the incorrectness function describing the inverse scale of turbulence
the separated variables were introduced and the equation describing this function
was integrated. This procedure having general character, one ascertains the evident
non-locality of the model.

Thus incorrectness of the equation for the scale of turbulence leads to non-locality
in the description of turbulent flows. From this point of view there appears the sim-
ilarity to the structure of the non-local spatial model of turbulent exchange given
in [6].
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УДК 532.517.4
Численное описание движения жидкости в трубе в

многомасштабной модели турбулентности
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Ленинские горы, д. 1, стр. 2, Москва, ГСП-1, 119991, Россия

В работе представлено численное описание движения турбулизованной жидкости в
трубе на базе многомасштабной модели турбулентного движения жидкости, разрабо-
танной автором ранее. Приводится сравнение численных результатов с эксперименталь-
ными данными.

Ключевые слова: математическое моделирование, турбулентность, вычислитель-
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