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The 3D spin glass is represented as an ensemble of disordered 1D spatial spin-chains (SSC)
where interactions are random between spin-chains. It is proved that at the limit of Birkhoff’s
ergodic hypothesis performance 3D spin glasses can be generated by Hamiltonian of disor-
dered 1D SSC with random environment. Disordered 1D SSC is defined on a regular lattice
where one randomly oriented spin is put on each node of lattice. Also it is supposed that
each spin randomly interacts with six nearest-neighboring spins (two spins on lattice and four
in the environment). The recurrent transcendental equations are obtained on the nodes of
spin-chain lattice. These equations combined with the Silvester conditions allow step by step
construct spin-chain in the ground state of energy where all spins are in minimal energy of
classical Hamiltonian. On the basis of these equations an original high-performance parallel
algorithm is developed for 3D spin glasses simulation.
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1. Introduction

The wide class of phenomena and structures in physics, chemistry, material sci-
ence, biology, nanoscience, evolution, organization dynamics, hard-optimization, en-
vironmental and social structures, human logic systems, financial mathematics, etc.
are mathematically well described in the framework of spin glass models [1-9].

The considered mean-field models of spin glasses as a rule are divided into two
types. The first consists of the true random-bond models where the coupling between
interacting spins are taken to be independent random variables [10-12]. The solution
of these models is obtained by n-replica trick [10,12] and requires invention of sophisti-
cated schemes of replica-symmetry breaking [12,13]. In the models of second type the
bond-randomness is expressed in terms of some underlining hidden site-randomness
and is thus of a superficial nature. It has been pointed out in the works [14-16], how-
ever, this feature retains an important physical aspect of true spin glasses, viz. they
are random with respect to the positions of magnetic impurities.

Note that all mentioned investigations as a rule conduct at equilibrium’s conditions
of medium. This fact plays a key role both in analytical and numerical simulation by
Monte Carlo method.

Recently, as authors have shown [17] some type of dielectrics can be studied by
model of quantum 3D spin glass. In particular, it was proved that the initial 3D
quantum problem on scales of space-time periods of an external fields can be reduced
to two conditionally separable 1D problems where one of them describes an ensemble
of disordered 1D spatial spin-chains between which are random interactions (further
will be called nonideal ensemble).

In this paper we discuss in detail statistical properties of classical 3D spin glass with
suggestion that interactions between spins have short-range character. We prove that
nonideal ensemble of 1D SSCs exactly describes the statistical properties of classical
3D spin glass system in the limit of Birkhoff’s ergodic hypothesis performance. In the
work a new high performance algorithm for simulation of this traditionally difficult
calculated problem is developed.
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2. Formulation of Problem

The objects of our investigation are solid-state dielectrics, type of SiO2 glass (amor-
phous silicon dioxide). According to the numerical ab initio simulations the structure
of this type compound can be well described by 3D random network [7]. As shown [17]
compounds of this type can be represented as a disordered 3D system of similar rigid
dipoles (hereinafter will be termed a 3D disordered spin system).

The Hamiltonian of 3D classical spin glass system reads:

H({I‘}):—ZJZ‘]'SZ‘S]', {I‘}Erl,rz,....
(i 7)

where indices ¢ and j run over all nodes of 3D lattice, r; correspondingly denotes the
coordinates of i-th spin. For further investigation we will consider a spin glass layer
of certain width L, and infinite length (see Fig. 1). We will consider 3D compound
in the framework of nearest-neighboring Hamiltonian model. Let us note that even
for this relatively simplest model numerical simulations of spin glasses are extremely
hard to solve NP problems.
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Figure 1. 1D SSC with the random environment. Recall that each spin-chain is
surrounded by four spin-chains which are randomly interacted with it. By
symbols ® are designated spins from the random environment (four spin-chains
of surrounding)

At first we will consider an auxiliary Heisenberg Hamiltonian of the form:

Ho({r}; N,) = HV({r}; N,) + HP ({r}; N,), (1)

N,—1
where the first term Hél)({r}; N,)=-— Z Jii118:8:11, describes the disordered 1D
i=0
N,—1 4
spatial spins chain (SSC) while the second term Hé2)({r}; Ny)=— > > Ji,8:8:,,
i=0 o=1
correspondingly describes the random surroundings of 1D SSC (see Fig. 2). In (1)
Jiit1 and J;,;_ are correspondingly random interaction constants between arbitrary 4
and ¢ + 1 spins and between i and i, spins, S;, S;+1 and S,  are spins (vectors) of
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unit length, which are randomly orientated in O(3) space. From the general reasons
it follows that with the help of (1) Hamiltonian and by way of successive constructing
we can restore the Hamiltonian of 3D problem. Recall that the meaning of the con-
struction is as follows. On the first step the central spin-chain on the z-axis with its
surroundings from four random spin-chains is considered (see Fig. 1). On the second
step as central spin-chains are considered corresponding spin-chains from the ran-
dom surroundings each of which are surrounded by new four neighboring spin-chains.
Thus, repeating this cycle periodically we can construct the Hamiltonian of 3D prob-
lem. This idea will be rigorously proved below.

Figure 2. The projection of spin-chains ensemble on the (Y, Z) plane. Spin-chains
are designated by symbols () and ® which correspondingly form the old and
new environments

For further investigation of spin glass problem it is useful to write Hamiltonian (1)
in spherical coordinates system:

Nz—1

H()({I‘}; Nm) = — Z {Jii-i-l |:COS %‘ CcOS wi-l—l COS((pi - %‘—H) + sinwi sin 77&14_1} +
=0

4
+ Z Jii, [cos ; cos 1, cos(p; — i, ) + sin; sin @ZJZ'U} } (2)
o=1

Now the main problem is to find the angular configurations and spin-spin interaction
constants which can make the Hamiltonian minimal on each node of lattice.

Let us consider the equations of stationary point:

aHo aHO

3’(/11 - O’ 330@ -

where ©; = (15, ;) defines the orientation of i-th spin (v, ; are correspondingly
the polar and the azimuthal angles). In addition, ® = (01, 0;....0x,) describes the
angular configuration of spin-chain consisting of NV, spins.

Substituting (2) into (3) we can find the following recurrent equations:

0, (3)

1

Z Jitai [— tan 1; cos ;44 €oS(p; — Yita) + sin 1/Ji+o¢] +
a=—1, a#0
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4
+ Z Jii, [~ tanv; cos by, cos(p; — ¢i,) +sin;, | =0,
o=1

1

4
> Jitai c08Yisasin(e; — @ira) + Y Jii, costy, sin(p; — i, ) =0. (4)
a=—1, a#0 o=1

In order to satisfy the conditions of local minimum (Silvester conditions) for Hy,
it is necessary that the following inequalities are carried out:

A%wi(@?) >0, Awﬂbz(@?)A%%(@?) - Aichl(@?) >0, (5)
where Ay,q, = 0°Ho/0a? and Aq,p, = Aa,p, = 0*Ho/0c;08;, in addition:

1

Ay, (O)) = > Ji+ai{COS YY) o8 Piya cos(9) — Pita) + singy Sin¢i+a}+
a=—1, a#0

4
+ Z Jii, {cos VY cos ;. cos(p? — @i ) + sinyy sin e },
o=1

1

Ap e (©)) = > {Ji+aiCOS Vita €089 — Pita)t
a=—1,a#0

4
+ Z Jii, cosap; cos(p) — goia)} cos Y,
o=1
sz%(@?) =0.
Recall that ©Y = (¢, ¢?) designates the angular configuration for which conditions
of local minimum are satisfied.

Thus, it is obvious that the classical 3D spin glass system can be considered as an
nonideal ensemble of 1D SSCs (see Fig. 1) where interactions between spin-chains are
random.

Now we can construct distribution functions of different parameters of 1D SSCs
nonideal ensemble. To this effect it is useful to divide the nondimensional energy axis
e = €/de into regions 0 > g9 > ... > &,, where n > 1 and € is the real energy axis.
The number of stable 1D SSC configurations with length L, in the range of energy
[e — de,e + de] will be denoted by My, (e) while the number of all stable 1D SSC

configurations — correspondingly by symbol M g:” = i My, (g;). Accordingly, the
energy distribution function can be defined by the explfe:slsion:

Fy, (g;do(T)) = My, (e)/M{"", (6)
where distribution function is normalized to unit:

n—o00 4
J= —o0

n 0
lim > Fr, (g;do(T))de; = /FLI(s;dO(T))de = 1.

By similar way we can construct also distribution functions for polarizations, spin-spin
interaction constant, etc.
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3. Reduction of 3D Spin Glass Problem to 1D SSCs
Ensemble Problem

Modeling of 3D spin glasses is a typical NP hard problem. This type of problems are
hard-to-solve even on modern supercomputers if the number of spins in the system are
more or less significant. In connection with told, the significance of new mathematical
approaches development is obvious and on the basis of which an effective parallel
algorithms for numerical simulation of spin glasses can be elaborated.

Theorem. The classical 3D spin glass in the limit of isotropy and homogeneity
(ergodicity) of superspins (sum of spins of chain) in statistical sense is equivalent to
the problem of nonideal 1D SSCs ensemble.

It is obvious that the theorem will be proved if we can prove that in case when the
distribution of superspins in 3D configuration space is homogeneous and isotropic, the
following two propositions take place:

a) in any random environment which consists of four arbitrary spin-chains it is always
possible to find at least one physically admissible solution for spin-chain (the direct
problem), and

b) it is possible to surround an arbitrary spin-chain from the given environment with
such new environment which can make it physically admissible spin-chain solution
(the reverse problem).

The direct Problem. Using the following notation:

Eit1 =cosVip1, Niy1 =sin(@; — Yit1), (7)

equations system (6) can be transformed to the following form:

Cr+Jiip1[\1— €4y —tanepi Gy /1 —n2 ] =0, Co+ Jiig1&iy1nisr =0, (8)

where parameters C; and C5 are defined by expressions:
C1 = Ji—1i[sing;_1 — tan1); cos i1 cos(p; — @i—1)]+
4
+ Z Jii, [sin W;,, — tan; cos 1, cos(p; — wi, )|,
o=1

4
Co = Ji_1icosi_1sin(p; — @i—1) + D Jis, costy, sin(p; — @5, ).

o=1

From the system (8) we can find the equation for the unknown variable 7;11:

Cinig1 + Cay/1 — ’I7i2+1 tan; + \/Ji2i+177i2+1 — 022 =0. (9)

We have transformed the equation (9) to the equation of fourth order which is exactly
solved further:
A

C2
S T = (10)

2 __
fi+1* 2 2
Jii+1ni+1

where

A= cg{JEM cos? 1); + C + 202 sin2 ¢, [1 + C’fl\/inH — 02— C2 cot wl} }
C3 = —CF + C3 sin® ¢y, B = J;; cos* i + 20507 cos® iy + (CF + C3 sin® 1),
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Note that from the condition of nonnegativity of the value under the root we can find
the following nonequality:

Ji2i+1 > CT +C3. (11)

In consideration of (7), we can write following conditions: 0 < £2,; < 1,0 < n?,; < 1.
As it follows from equations (10), if the solutions in previous two nodes (i — 1) and 4
are known, then the solutions (1;11,@;+1) in the node (i + 1) can be defined only by
constant J;;41. In this connection a natural question arises — are there solutions for
spin-chain in arbitrarily given environment?

Let us consider Silvester conditions (5) which can be written in the form of the
following inequalities:

Jiiv1cos ) cos iy cos(@) — ig1) > —ag —sinay sinipiiq,

Jii11€08 41 cos(0) — piyq) cosp) > —ay,

(12)

where constants a; and as are defined by expressions:

a1 = Ji_1; [cos VY cos ;1 cos(¢? — ;1) +sine) sin 1/11-_1} +
4
+ Z Jii, [cos w? cos 1, cos(np? — ;) + sin ¢? sin;, } ,

o=1

4
az = {Jz‘flz‘COS Pi1 COS(‘P? —pi-1) + Z Jii, cos;, COS(‘P? - @ia)} cos ¢?~
o=1

So, the problem leads to the answer of the following question - are inequality (11) and
(12) compatible or not. Taking into account solutions (10) it is easy to prove that
conditions (12) are automatically compatible at large absolute values of J;;11. On the
other hand, there is no any contradiction with condition (11).

Thus the direct problem or the proposition a) is proved.

Now our aim is to prove the reverse problem or the proposition b) which consists
of the following. We choose a spin-chain from the environment (see Fig. 1), for ex-
ample {ig} = (04,14,..., Nyy). In this spin-chain all angular configurations of spins

(@(()4), @5\2) are known but the constants that define spin-spin interactions in spin-
chain and interactions between spin-chain and its environment still are not defined. We
will prove that it is always possible to surround each spin-chain by such environment
that the selected spin-chain will be the correct solution from the main physical laws
point of view (see conditions (4)-(5)). In the considered case {is} = {i,} spin-chain
is surrounded by four neighbors, one of which {ig} = {i,} is fully determined while
three spin-chains {i,}, {iz} and {i,} should be still specified (see Fig. 1). Recall that

the mark "7 designates a new environment with three spin-chains. However, for sim-
plicity we will omit or more clearly make change them in the subsequent calculations

({z’o},{il},{i2}7{i3},{i4}) — ({io},{il}{ig},{ig},{i4}). The proof of the proposi-
tion should be conducted as follows. We will suppose that the constants of spin-spin
interactions in considered chain and corresponding parameters of two spin-chains of
environment are known. We will show that by special choosing of parameters of the
third spin-chain {is} it is possible to ensure the condition of local minimum energy is
satisfied in the considered spin-chain.

Let us define the following denotations for constants:

c1 = Ji—1i[—sin; cosh;—1 cos(@; — wi—1) + cos; sin; 1]+
+ Jii, [—sin; cos i, cos(p; — i, ) + cos; siny; |,
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cy = —sin; cos i1 cos(p; — Yiy1) + cos Yy sin Py,
c3 = Ji—1icos_1sin(e; — @i—1) + Jis, cos; sin(yp; — ¢;,), (13)
Ccq4 = COS wi-l-l Sin(goi — Spi—l—l)’ o=4.

Using (13) we can transform equations (4) to the following form:

3
c1+codiii1 + Z Jii, |[—sin; cos i, cos(p; — i, ) + cos;siny; | =0,
o=1

3
C3 + C4Ji i+1 + Z Jl i, COS @big Sin(cpi — QOZU) = 0,

o=1
which are equivalent to the following relations:

3
C1 1

Jiit1 = - o Z Jii, = sin; cos i, cos(p; — @i, ) + cosp; sin;_],
2 C2 o—1
) L (14)
3 .
Jiig1 = Ta o Z Jii, COSYy, Sln(%’ - SOia)-
o=1

After excluding J; ;11 from (14) we find the following equation:

3
Jii, . .
Z { o [— sin); cos ¥, cos(p; — @i, ) + cos; sine; |—
o=1

C1

Jii .
- < cos b, sin(p; — gpio)} —c5 =0, 5= — — &, (15)
4

C2 Cq4

Having made the following designation:

2
Ji io . .
D= Z{ [— sin t; cos 1, cos(p; — wi, ) + cos; sina;_|—
o=1

C2

_ % cos1;,, sin(p; — ‘Pia)} — ¢s,

we can transform equation (15) to the following form:

Jii . )
D+ C—; [— sin ¢); cos ¥, cos(p; — piy) + cos Y, sin;,|—

Jii .
- 743 COs ¢13 Sln(()pi - ()013) =0. (16)

Now substituting: z = cos;,, in (16) we find the equation:

Jis . Jiig .
—2 [~z sin; cos(¢; — wis) + V1 —x2 cos;] — xj‘"’ sin(p; — ¢i,) =0, (17)

C2

D+

From (17) the following square equation can be found :

Koz? + 2Kz + Ky = 0, (18)
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where the following designations are made:

2
Ko = cos® ; + (Sin i cos(pi — piy) + E—z sin(p; — g0i3)) ,

De . c . Dec 2
Ky = =5 <Sm Wi cos(pi — i)+ sin(pi — S%)), Ky = (.I .2) — cos? ;.
s = Qi3

Discriminant of the square equation (18) has the form:
. C2 . 2 2
D, = (sm i cos(pi — piy) + ) sin(p; — ‘Pis)) cos” ;+
Dc 2
+ {c052 W — <J. ‘2) }0052 ¥ =20, (19)
i3

which on some set of J;;, can be positive, i.e. i-th spin in spin-chain {is} will satisfy
the local minimum conditions.

Let us define:
y = cos(pi — ¥iy), (20)

Substituting (20) in (16) we will find that:

Jii . . Jii
D + —2[—y sin); cos ¢, + cos; sin;, | — c3coswi3\/1—y2:o,

o 4
After squaring we will have the following equation:
Moy? +2Myy + My = 0, (21)

where the following designations are made:

o .. 2 C2 2 2 o . . Dcs
My = (sin”¢; + - cos” Y;,, My = —sin; cos Yy, | cos; sin i, + 7 ,
4 113

Cc2

D 2 2
My = (cos Y siny; + 02) — (*) cos? Y, .
Ji i3 Cq

The discriminant of the square equation (21) has the form:

2 2
D, = (Z—i) cos? b; + sin? ; cos? Py, — (?:j + cos ¢; sin wig) > 0. (22)

Obviously there are some set of constants J;;, on which D, > 0. However, it is more
important to find the region of the interaction constant .J;,;, values for which both
determinants D, and D, are positive.

In particular as the analysis of the following condition shows:

DCQ DCQ

- > Ji >
cosp; | = iis 2 cos; |’ (23)
discriminant D, is always nonnegative. From the other side:
. ~ Dca
S1n 'l]ZJis = _JZ 22008 'l]Z)i’ (24)

which will assure that D, discriminant is always nonnegative. A simple analysis of
conditions (23) and (24) shows that they are compatible. In other words the set of
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constants J;,;, which satisfies the energy local minimum condition is not empty and
therefore the proposition b) is proved.

So, we have proved the validity of a) and b) propositions. It is obvious that at
the simulation of 1D SSC problem we can by this way fill up 3D space by 1D SSC
which is equivalent to obtaining 3D spin glass. In case when the number of 1D SSCs
is so much that the directions of spins in 3D space are distributed isotropically and
homogeneous, the statistical properties of both problems (3D spin glass and 1D SSCs
nonideal ensemble) will be obviously identic.

The theorem is proved.

4. Parallel Simulations

One important consequence of the theorem is that for the numerical simulation
of the problem we can use the algorithm for solving the direct problem. Obviously,
a large number of independent computations of 1D SSC which can be carried out in
parallel and in statistical sense make it equivalent to the problem of 3D spin-glass.
This approach considerably reduces the amount of needed computations and helps us
effortlessly simulate statistical parameters of 3D spin glasses of large size.

The strategy of simulation consists of the following steps (see Fig. 3).

Input
e e o=1...4 e
.Q] ..... .Onf [<(pia,|//i0,J[[G >,i:1me oo ,QM
01 ,,,,, Qn:((a(),y/o,(a], vy JO])n’ P ,QM
calculate calculate calculate calculate
(x.y) | | (xy) || (emy) || (),
1- st layer
k - th layer .
<=
Nx - th layer @
Output

F(e), F(p), F(J), & p J J

Figure 3. The algorithm of parallel simulation of statistical parameters of
disordered 1D SSCs nonideal ensemble. The symbol 2;, describes the input of
environment, M is a number of simulation or overall number of spin-chains in

the nonideal ensemble, N, is a number of spins in chain

At first, the angular configurations of four spin-chains are randomly generated
which form random environment of the spin-chain which we plan to construct later.
On a following step a set of random constants J;;_ are generated, which characterizes
the interactions between the random environment and the spin-chain. The interaction
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constants are generated by Log-normal distribution. The angular configurations of
the random environment are generated the same way as it is described in [18]. Now
when the environment and its influence on disordered 1D SSC are defined, we can
go over to the computation of spin-chain which must satisfy the condition of local
energy minimum. Note that all calculations of 1D SSCs nonideal ensemble are done
for spin-chains with 10 length which require huge computational resources.

As the simulations show, for the ensemble which consists of 10° spin-chains, the
dimensional effects practically disappear and the energy distribution F'(¢) has one
global maximum which is precisely approximated by Gaussian distribution (see Fig. 4).

Fre)

0.005

energy

0.0045 distribution

0.00% fitted curve
0.0035
0003
0.0025
0002
n.onts

0o

0.0005

-1300 -1200 -1100 -1000 -900 -800 =701 600

Figure 4. The energy distribution of 1D nonideal ensemble of SSCs with 103
length is shown. The numerical data visualization and its fitted curve (by
Gaussian function) are illustrated on the figure

Mean values of polarizations on coordinates are not very small, especially when it
comes to coordinate x (thickness of spin glass layer): p, = —0.13508, p, = 0.036586,
p, = —0.059995 and correspondingly the average energy of 3D SSC is equal to € =
—990.88, where

+00 0
D /F(p)pdp, P = (D2, Dy, P2), 6‘=/F(€)~€dE

and F' is the distribution function. As our numerical investigations have shown on the
example of systems where thickness of spin glass layer is not so large o 25 + 100, for
a full self-averaging of superspin it is necessary to make oc N2 simulations. In other
words, the system can be fully ergodic in considered case if we continue the numerical
simulations of the spin-chains up to oc 10® times.

It is analytically proved and also the parallel simulation results show that the
spin-spin interaction constant cannot be described by Gauss-Edwards-Anderson dis-
tribution (see Fig. 5). It essentially differs from the normal Gaussian distribution

model and can be approximated precisely by Lévy skew alpha-stable distribution func-
tion [19,20]).
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FiJ)
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Figure 5. The visualization of numerical data of spin-spin interaction constants
and Gaussian distribution are shown. The analysis of the numerical data
proves, that interaction distribution is not analytic function and by the
character is the Lév’s skew a-stabile distribution function

5. Conclusion

A new parallel algorithm is developed for the simulation of the classical 3D spin
glasses. It is shown that 3D spin glasses can be investigated by the help of an aux-
iliary Heisenberg Hamiltonian (1). The system of recurrent transcendental equations
(3) and Silvester conditions (4) are obtained by using this Hamiltonian. Let us note
that exactly similar equations of stationary points (3) also can be obtained if the
full 3D Hamiltonian (see the first unnumbered formula) is used in the framework of
short-range interaction model. That allows us step by step construct spin-chain of
the specified length with taking into account the random surroundings. It is proved
that at the limit of Birkhoff’s ergodic hypothesis performance, 3D spin glass can be
generated by Hamiltonian of disordered 1D SSC with random environment. We have
proved that it is always possible to construct spin-chain in any given random envi-
ronment which will be in ground state energy (direct problem). We have also proved
the inverse problem, namely, every spin-chain of the random environment can be sur-
rounded by an environment so that it will be the solution in the ground state. In
the work all the necessary numerical data were obtained by way of large number of
parallel simulations of the auxiliary problem in order to construct all statistical pa-
rameters of 3D spin glass at the limit of ergodicity of 1D SSCs nonideal ensemble. As
numerical simulations show, the distributions of all statistical parameters become sta-
ble after o< N2 independent calculations which are realized in parallel. The idea of 1D
spin-chains parallel simulations, based on this simple and clear logic, greatly simpli-
fies the calculations of 3D spin glasses which are still considered as a subset of difficult
simulation problems. Let us note that computation of spin-spin interactions distri-
bution function from the first principals of the classical mechanics is very important
result of this work. As analysis show, the distribution is not an analytic function. It
is from the class of Lévy functions which does not have variance J2? and mean value J.

Despite the absence of calculations by other methods, it is obvious that the devel-
oped scheme of calculations should differ from other algorithms, including the algo-
rithms which are based on Monte Carlo simulation method [21], by the accuracy and
efficiency. We were once again convinced in the accuracy and efficiency of the algo-
rithm after analyzing the results of different numerical experiments by modeling the
statistical parameters of 3D spin-glass system which are presented in figures 4 and 5.
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Finally, the developed method can be generalized for the cases of external fields
which will allow us investigate a large number of dynamical problems including critical
properties of 3D classical spin glasses.
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YIIK 537.621
O MoAeIMPOBAHUY CTATHCTUYECKUX CBOMCTB KJaccudeckKnx 3D
CIIMH-CTEKOJI
A. C. T'eBopkan*, A. I. A6amxsan*, E. A. Aiipan'

* Unemumym ungopmamuru u npobaem asmomamuru, HAH Apmenuu
ya. II. Cesax, 0. 1, 0014 Epesan, Apmenus
' JTa6opamopus ungopmavuormvis mexnorozut
063Bedunénnviti uncmumym A0epHuT uccaedosarull
ya. 2Koauvo-Kropu, 0.6, Jybra, Mockosckas obracmy, 141980, Poccus

Nccnenyrorea craTucTuyecKne CBOMCTBA KJIACCUYECKOTO 3D CIMH-CTEKOJIBHOTO CJIOS OIIpe-
JeJIEHHON IIUPUHBI U OECKOHEYIHOH JyIMHBL. 3D CIMHOBOE CTEKJIO IIPEICTaB/ISETCA B BUIE aH-
cambi1st Heynopsizodenabix 1D npocrpancreennbix cnus-nieneii (IICLL), rue B3aumosneiicTsust
MeXKJIy CIHH-TIENSIMY SIBJISIOTCS Ctydaiinbivu (Hemmeanbubiii ancambab 1D TICID). Tokasa-
HO, YTO B IIpeJieJie BBIIOJIHEHUsI 3Projndeckoit runoresbl buproda 3D crnuH-cTEKI0 MOXKET
OBITH TEHEPUPOBAHO BCIIOMOTATEIbHBIM raMuabronnanoM Heynopsaodennoit 1D I1CII co cay-
vaitHpIM Okpy2keHueM. Heymopsimouennsiit 1D IICIL onpenesnsiercs: Ha perysisipHOi pemiérke,
IJie B KaXKJIOM y3JIe PEMIETKHU ITOMEIAeTCs OJIUH CJIydailHO OPUEeHTUPOBAaHHBIN crinH. Takke
MIPE/ITOIATAETCS, ITO KaXKIBII CIIUH CJIyIailHO B3ANMOEHCTBYET C IMIECTHIO OIMKANIIINMEI CO-
CeJTHMMU CIIMHAMY (JIBa CIIMHA Ha PENISTKE W YeThIPe B OKPY?KEHWH). B y3/1ax penéTku Crima
[EMTOYKH TIOJIyI€Hbl PEKYPEHTHbIE TPAHCICHICHTHLIE YPABHEHUS. DTH YPaBHEHUS COBMECT-
HO ¢ ycsioBusiMu CHJIBBECTpA MO3BOJISIIOT IIAr 3& IIArOM IIOCTPOUTH CHHH-IIENIOYKY B OCHOB-
HOM COCTOSIHM SHEPI'UH, TJ€ BCEe CIMHBI HAXOAATCS B MUHUMAJIBHON SHEPIUU KJIACCHYECKOTO
raMuIbToHuaHa. Ha ocHOBe 9TuX ypaBHEHUI pa3paboTaH OPUTHHAJIBHBIN BHICOKOIIPOU3BO/IN-
TeJILHBIN TapaJslIesIbHBIA aJTOPUTM I MOJiesinpoBanusi 3D CIMHOBOrO cTeKJIa.

KuarougeBsie cioBa: 3D cayuaiinasa cerb, 3D peryssipHas penreTka, raMUJIBTOHUAH CIIU-
HOBOT'O CT€KJIa, 9PIOINYeCKasl THIIOTe3a, CTATUCTUYECKHE PACIpele/IeHus], TapaJlJIeIbHOEe MO-
JIeJINPOBaHUE.





