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We study the structure of the charged topological solitons in the lepton sector of the
nonlinear 8-spinor model, at small distances the closed-string approximation being used. The
mass, the spin and the magnetic moment of the soliton configuration with the unit leptonic
number are estimated. The model is based on the well-known 8-spinor identity suggested by
the Italian geometer Brioschi. Due to the identity the Dirac current appears to be time-like
4-vector that permits one to introduce the special form of the Higgs potential depending on
the current squared. Within the framework of this model the natural classification of leptons
and baryons can be realized via the Higgs mechanism. Concentrating on the lepton sector we
study the simplest soliton configuration endowed with the unit Hopf index playing the role
of the lepton number. Investigating the behavior of solutions at large and small distances
we obtain the numerical estimate of physical characteristics of the topological soliton. The
special symmetry group is used in our calculation, the combined rotations in ordinary and
isotopic spaces being considered. The corresponding equivariant spinor fields involve phase
functions linear with respect to azimuthal and toroidal angles. This property permits one to
find explicit value of the topological invariant for the axially-symmetric configuration and to
investigate the dependence of the physical characteristics on topology.
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1. Introduction

In our previous paper [1] the nonlinear 8-spinor model was suggested for the unified
description of leptons and baryons as topological solitons in Faddeev [2] and Skyrme [3]
models respectively. This unification is based on the special 8-spinor identity discov-
ered by the Italian geometer Brioschi [4]:

Judt = jui" = 82+ p? + v+ a’ (1)
where the following quadratic spinor quantities are introduced:

s =", p=10p¥, v=UA\D,
a— 2\1175/\\11, Ju = \Tl’yM\I/, L = \T”Yu%\l’,

with ¥ = Utn, and A standing for Pauli matrices in the flavor (isotopic) space. Here
the diagonal (Weyl) representation for v5 = 5 is used and Yu, = 0,1,2,3, designate
the unitary Dirac matrices acting on Minkowski spinor indices.

Taking into account the time-like character of the 4-vector j,, the topological
distinction between leptons and baryons can be realized via the Higgs mechanism, the
special form of the Higgs potential being used:

o? .o 2\2
V= T = ) )
with ¢ and ¢y being some constant parameters. If one searches for localiRyb8zed
soliton-like configurations in the model, one finds the natural boundary condition at
space infinity:
lim j,j" = s4. (3)
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As follows from the identity (1), the condition (3) determines the fixed (vacuum)
point on the surface S8. Using (3) and the well-known property of homotopic groups
of spheres: m3(S™) = 0 for n > 4, one concludes that the two phases with nontrivial
topological charges may exist in the model in question. The first one corresponds to
the choice m3(S®) = Z (Skyrme Model) and the second one to the choice 73(S?) = Z
(Faddeev Model).

For example, if the vacuum state ¥, defines s(¥y) # 0, then the configurations
characterized by the chiral invariant s? + a? determining sphere S as the field man-
ifold are possible, that corresponds to Skyrme Model phase. On the contrary, if only
v3(¥g) # 0, then the SO(3) invariant v? determines the S? field manifold, that corre-
sponds to Faddeev Model phase.

In view of these topological arguments, using the analogy with Skyrme (or Faddeev)
Model, we suggested in [1] the following Lagrangian density for the effective 8-spinor
field model:

1 —— € y
,C = ﬁDN\DP}/ ]VDM\II + Zfl“,fﬂ — V + ,Cem, (4)
where f,,, stands for the antisymmetric tensor of Faddeev—Skyrme type:
f,uu = (\II'YQD[M\II)(DV]\I"Va\IJ)a (5)

with A and € being constant parameters of the model. It should be stressed that
the first term in (4) generalizes the o-model term in Skyrme Model and includes the
projector P = 4%y"3, on the positive energy states. The second term in (4) gives the
generalization of Skyrme (or Faddeev) term. Ryb8 Here the interaction of the spinor
field with the electromagnetic one is introduced via the extension of the derivative:

D,V =8,V — 10T A, W, (6)

where A, stands for the vector-potential of the electromagnetic field and I'. = %()\3—1)

in (6) stands for the electric charge operator, ey being the corresponding coupling
constant.

The electromagnetic part of the Lagrangian density was investigated in [5] and
corresponds to the Mie generalized electrodynamics:

1
&

where F),, = 0,A, — 0, A, and G(I), H(I) are some functions of the Mie invariant
I =A,A". As was shown in [5], the model (7), for the power series representation of
these functions:

Lem = = 3= Fin {1+ G(1)| - - H(D), g

Gy =, HI)=Y I,
n=2

admits the existence of static soliton-like configurations with fixed electric charge and
positive energy.

2. Structure of Lagrangian in Leptonic Sector

In the lepton sector the 8-spinor V¥ is invariant under the space reflection [1] ¥ —
Yo¥ and therefore it reduces to 4-spinor ¢ = col(p1, p2), with ¢1, @2 being 2-spinors.
As was shown by Faddeev [2], the configurations endowed with the nontrivial Hopf
index Qm are similar to closed twisted strings. The appropriate description of these
configurations, which are also typical for the Kerr solution in General Relativity [6],
can be obtained by using the toroidal coordinates x € [0,0), y € [—7, 7|, ¢ € [0, 27]
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with the metric
ds® = dt? — a?e?*(dz? + dy? + sinh® zd¢?), (8)

where e ¢

string).
The model admits the following infinitesimal spinor transformations defining the
correspondent groups:

= coshz — cosy and a is the length parameter (the closure radius of the

G1: 0V =110aV¥;
Go:p—=>p+0¢, 0V =100J3V;
Gs:y—y+doy, oV =1yp,V;

where the following operators are introduced:

1
J3 = —Z8¢ + 50’3, Dy = —Zay,

the latter group being effective in the asymptotic region (z > 1). Let us construct
the following group of combined transformations:

G = diag(G71 ® G2) @ diag(G1 ® G3), (9)

with the corresponding equivariant field having the form:

1 = col (ug, vy exp (e —n1y)]), @2 = col(vyexp [—1(p — nay)|, uz), (10)

where u;, v; do not depend on the azimuthal angle ¢, and ni, ny are some integers.

Now we investigate the structure of topological solitons in the model in question
using the perturbation method with respect to electromagnetic coupling constant eg.
In the first approximation we neglect the electromagnetic field and find the following
action functional using the substitution (10):

A= -2 [do [y {;|w|2[<al¢>2 + (@29)” + o] + 3o+
0

+ 2n21m(v’2k(3'2v2) + 2n11m(vf821)1) + 62(067"{) (|’U1 |2 + |’U2|2)] +

8e?

+ 2| (2l 0000 )] = 1o mlon P~ nafel?) 4

+ e2(a=7) [(81|¢|2)2 4 (82|1/)|2)2} (|v1\2 _ |v2|2)2]_|_

2
2 2 2o+ 2 _ %73 11

where €7 = sinhx e®* and ¥ = col(uq, vy, v2, ug).

Now it is worth-while to study the structure of the Hopf invariant Qg playing the
role of the lepton charge in our model.

3. Structure of Hopf Invariant

Hopf invariant Qg as the generator of the homotopic group m3(S?) classifies the
mappings n : R3 — S2, where the sphere S? is given by the unit vector n = v/|v|.
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Qm can be represented by the Whitehead integral [7], [8]:

1 3
Qu = TSE /d x (crotc), (12)

where the vector c is defined by the relation
d;cr — Ope; = €om*Opnn®. (13)

Hopf suggested an elegant method of calculating the integral (12) via the inverse Hopf
. 3 2 . . .1 .
mapping S° — S*. To this end let us introduce the auxiliary 2-spinor

x = col(cos A + vsin A cos B, sin Asin B exp(:C)), (14)
with A, B, C being angular coordinates on S®. Then the following relations hold:
rotc = —2[VxTVy], c=Im(xTVyx), n=(xTAx). (15)

Inserting (15) into (12), one finds that

Qu = (271r)2/d3m sin? Asin B([VAVB]VC) = deg(5® — S3), (16)

the latter formula expressing the identity of the homotopic groups m3(S5?) = m3(S5%) =
Z. 1f one introduces the new variables 8 and p by putting

sin Asin B = sin(f/2), tan Acos B = tan p,

one can get the more compact expression for the Hopf invariant:

Qu = 1 d*z sin B([VBVp]VC). (17)

82
Taking into account that ny + wng = sin S exp(+7y), one finds the relation
y=C-p (18)

and the final expression for the Hopf invariant:

Qu d3z sin B([VBVA]VC). (19)

" 82

In our case the angular coordinates 3, v can be found from (10) and the definition of
the vector v = WAV stemming the relation

v = plw,y) - o. (20)

In view of (18) and (20) one can choose in (19) for the axially-symmetric configu-
rations C' = —¢, that is

1 1 o0 s
Q= ~32 /dgas sin B([VBVY]Vo) = i /da: /dy sin B(Bzpty — Byttz). (21)
0 —T

Taking into account (10) and (20), one finds the following value of the leptonic
charge L for our configuration (10):
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Qu =L =n1 + no, (22)

with the boundary condition for § being imposed:

cosfB(x=0)=1, cosf(z=00)=—1.

4. Configuration with Unit Leptonic Charge
Let us consider the simplest state with the unit leptonic charge L = ny = 1 when
v1 # 0, vo = 0. In this case the following approximation is appropriate: A; = Ay =0,
Ag # 0, Az # 0, that permits using the substitution:
u; = VRsin®sin®,, v; = VRsin®cos®;, uy = VRcosO. (23)

Inserting (23) into the Lagrangian (4), one gets the following action functional:
A=2 do [ dyerd 2| R a3 cos? © — L(9R)?
=27a | dx ve'y e e““a“esl cos —4( )< —
0 -

— R*(00)* — R*sin® © ((091)” + cos® @, coth? :c)} +

+ 8¢ R? [(8R)2 (e%Ag cos* @ — &#(SHIQ O cos? @1 — epAs cos? @)2) -
a

—2a

2\ 2
5 sin? © cos? <I>1(81R)2} — 202022 <RQ — %40> _
a
e2q

&

2

HU) + g (14 GUD) [ (040)° - - (00 }

a2
where the denotations are used:
e 2y
e’ =sinhze®, [=Aj——A3 (0K)’=(01K)*+ (0:K)*.
a

Let us first study the behavior of functions R, ©, ®;, Ay, A3 as solutions to the
equations of motion at x — oo:

R =Ry + Rlé(l —tanhz), © =0+ @1%(1 — tanh x),
P, = g — 2arctane™ (24)
Ay = Ago — Am%(l —tanhx), As= A3y — A31%(1 — tanh x),
with the following constraints being imposed:

R1 = 8R0 SiIl2 @0, @1 = sin 2@0, A01 = SQAOO, A31 = SQAgO, (25)

where we use the denotations:

So

T 1+ G(I)
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and introduce the small parameter
(=aoh < 1, (26)

neglecting the corresponding terms in the first approximation.
The behavior of fields at large distances (x — 0, y — 0) can be derived from
linear equations of motion valid in the vicinity of the vacuum state W¥q, for which

up = +/20/2:

R= ?(1 —ze %), ©= g —uptanhze /2, &, = g — ktanh ze~*/2,
(27)
Ag el e=? A = Atanh?ze®/?,

)

with ¢ being electric charge of the particle-soliton and the parameter A proportional
to its magnetic moment.

Now we intend to estimate the mass of the soliton through smooth matching the
functions (24) and (27) at some point with the coordinates x = z¢ and y = 7/2. From
this condition one derives the numerical values zo = log(v/2 4+ v/3), So = 2 and all
other parameters: ©g &~ 0.347826; k ~ 0.57277; z ~ 0.05694; Ry =~ 0.25991s¢y; Ry ~
0.2415755¢5. To estimate the energy £, we divide the interval [0, 00) into two parts:
[0, z0] and [z, 00) and calculate the corresponding integrals in (11) using the trial
functions (27) and (24) respectively. The resulting energy & = —A, electromagnetic
contribution being omitted, reads:

2
(7)) €
£ = 271‘2&3%3 ((12)\2 +ﬁ0¥%§ +’700'2%g> ) (28)

where ag = 0.209223; By = 8.06583 - 1073; vy = 1.205782.
Minimization of the energy (28) with respect to the radius a gives

1 « a? 1/2
2 _ 0 0 222

“= 6025273 [_ A2 * <)\4 1207 ¢ BO%) ] .
Thus, the mass of the particle-soliton is given by

2
_ 2masg

m = 2 (2040 + MgaQ’yO) , My =20Ax.

5. Spin and Magnetic Moment of Soliton

Now we calculate the spin of the particle-soliton using the well-known expression
for the z-projection of the angular momentum:

oL e
— 3 _ _ 950 3 20, |2
S = /d ;U2Re<8(at\y)zJ3\II) 2)\2 A’z |[¢|*|usal”. (29)

Introducing the density of the electric charge

oL

Pe = _87140’ (30)

1

one finds from (29) and (30) that S = 5o [ &3z p. = QL Therefore for the standard
€0 €0

choice ¢ = ep one gets S = 1/2.
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To calculate the magnetic moment m of the particle-soliton, we use the classical
electrodynamics formula for the vector-potential of the point-like magnetic moment:

1
A= T—B[mr].

Comparing this expression with the azimuthal component of the vector-potential

e m| . aAV2
A¢:7A3:|TT|SIH'[9: r2

sin 1,

one gets the relation

Im| = aV/2A. (31)

On the other hand, in the first approximation with respect to €3 one finds
2 —1 2 Lo

where for ¢ = ey one obtains that Agy = 3%/%eq/(2a), hence

62 1/2
A30 = 33/2Z0 - (52 - Oél/(J,Z)il

However, the smooth matching of A3 gives the relation

A = y/cosh xg coth xgAszg = 31/4\/3/21430.

Inserting this value of the constant A into (31), one can calculate the magnetic moment
of the particle-soliton:

a ]2
ml = 3%/ [8%2e8 —4(By — an fa®) !

6. Conclusion

Using some ideas of Mie [9], the effective 8-spinor model unifying the models by
Skyrme and Faddeev was suggested [5] permitting, via the mechanism of spontaneous
symmetry breaking, to describe the particles as topological solitons. We consider the
leptonic sector of the model in question and study the structure of axially-symmetric
configuration with the unit lepton charge. Using the behavior of fields at large and
small distances, one can estimate the mass, the spin and the magnetic moment of the
particle-soliton. For the natural choice of the electric charge of the particle ¢ = eg the
spin proves to be 1/2.
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VIIK 539.12
TonoJsiornyeckue coIMTOHHBbIE KOH(MPUTYypaIIuu B 8-CITMHOPHOM
HeJIMHEMTHO Mo/1eJin

FO.II. Pribakos, H. ®appax, FO. YMHuUsATH

Kagedpa meopemuneckoti pusuru
Poccutickuti ynusepcumem dpyoicbo. Hapodos
Poccun, 117198, Mocxksa, ya. Murasyxo-Makxaas, 6

NsyuaeTcs cTpyKTypa 3apsi?KEHHBIX TOIOJOTHMYECKUX COJIMTOHOB B JIEITOHHOM CEKTODE
HEJIMHERHON 8-CIIMHOPHON MOJes N, KOrjia Ha MAaJIbIX PACCTOSTHUSX UCIOJIL3YeTCsl ITpUdJin-
KeHrMe 3aMKHYTHIX CTpyH. OIEHHUBAIOTCS MAacCa, CIMH W MATHUTHBIA MOMEHT COJIMTOHHOMN
KOH(UTYDPAIUY C €IUHUIHBIM JICIITOHHBIM 4rcIoM. Mo/iesb 0CHOBaHA Ha XOPOIIIO U3BECTHOM
8-CIIMHOPHOM TOXKJIECTBE, MPEJIOXKEHHOM UTaJbIHCKAM reoMeTpoMm bpuocku. B cuimy storo
TOYXKIECTBA JUPAKOBCKUN TOK OKA3bIBAETCS BPEMEHHO-TOIOOHBIM 4-BEKTOPOM, UTO MO3BOJISIET
BBECTH CIIEIUAJIbHYIO (DOpMY IOTEHIMaIa XUITCa, 3aBUACSIIEro OT KBaJapaTa Toka. B pamkax
9TO# MOJEIN MOXKeT OBITH Pean30BaHa eCTECTBEHHAs KJIaCCU(MUKAIUS JIETITOHOB U OaPUOHOB
6raromapst Mmexanu3My Xwurrca. OrpaHHYHUBIINCEH JEOTOHHBIM CEKTOPOM, MBI H3ydaeM IIPO-
CTEUNIYIO COJINTOHHYIO KOHMUI'YPAIINIO, HAAEIEHHYIO €IMHUYHBIM HHIEKCOM Xomda, KOTOPHIi
WrpaeT poJb JIEMTOHHOTO umcaa. Vcciemys moBeeHne permennii Ha OOJIBITINX W MAJIBIX Pac-
CTOSTHHSIX, MBI TIOJIy9Ia€M YUCIEHHYIO OICHKY (DU3UMICCKUX XAPAKTEPUCTHUK TOIOJOTHTIECKOTO
conmuToHA. B HaIlUX pacuérax UCIOJIb3yeTCs CIIelnaIbHasl IPYIIa CAMMETPUMA, BKIIIOYAIOINIast
KOMOMHUPOBAHHBIE BPAIEHUsT B OOBITHOM M U30TONMMIECKOM mTpocTpaHcTBax. COOTBETCTBYIO-
(e SKBUBAPUAHTHDIE CIIMHOPHLIE IIOJIsI BKJIIOYAOT (Ha30Bble DYHKIUHN, JTHHEHHO 3aBUCAIITE
OT a3UMyTAJIBLHOTO U TOPOUIAJIBHOTO YIJIOB. DTO CBOMCTBO MO3BOJISIET HANTH SIBHOE 3HAYUEHUE
TOTMOJIOTUIECKOTO MWHBAPUAHTA TSI AKCUAJIHLHO-CUMMETPUIECKON KOHMUTYPAIIUA U HUCCIIETO-
BaThb 3aBUCHUMOCTDH (PU3NIECKUX XAPAKTEPUCTUK OT TOIOJIOIHU.

KiroueBbie ciioBa: 8-CMHOpP, TOMOJIOTHYIECKUN 3apsijl, COJTUTOHBI.





