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In this paper constructing equation of mechanical systems based on their kinetic energy,
potential energy and dissipative force is discussed. Both the holonomic and non-holonomic
constraints are considered. Equations of constraint forces resulting from ideal and non-ideal
nature of the constraints are developed.It is shown that, the constraint force is a sum of two
forces resulting from the ideal and non-ideal nature of the constraints. An explicit equation
of the acceleration of the system is developed basing on the constraint forces from the nature
of the constraints. For investigating the deviation of the system from the trajectory of the
constraint equations, excess variables are included in the equations of the constraints. The
stability of the system is based on determining the sign of constants emerging from developing
the Lagrange’s equation of motion for the constraints. The determination of the sign of the
constants is made based on Routh-Hurwitz Criterion for Stability.

An example is used to demonstrate each of the equations developed in the paper and
constructing state-space equation of the system.
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1. Introduction

In an article by R.G. Mukharlyamov [1], constructing equation of mechanical sys-
tem when the kinetic energy, potential energy and dissipative forces are known is
detailed. Both holonomic and non-holonomic constraints are considered. In order to
investigate the stability of constraints, excess variables are used.All the discussions
made by R.G. Mukharlyamov in [1] were for Ideal constraints. In an article by Udwa-
dia F. [2, 3] constructing equation of mechanical system involving both the ideal and
non-ideal constraints is discussed. The method detailed is so general that it makes
the ideal constraints only a particular case.The issue of constraint stabilization is not
included in Udwadia F. The idea for developing this paper is mainly an insight from
investigating the above two articles. In this paper, firstly, a new idea of developing
equation of mechanical system simultaneously from Lagrange’s equation of motion
for a constrained mechanical system and Lagrange’s equation of motion for the con-
straints is discussed. In other words dynamic equation for the constraints is developed
and is used for investigation of asymptotic stability of the system.Secondly, the equa-
tion of a constraint force generated as a result of constraining a system is developed.
In constructing an equation for the constraint forces, a general case that involves both
the ideal and non-ideal situation of the constraints is considered. It is discussed that,
the constraint force is a sum of two forces resulting from the ideal and non-ideal na-
ture of the constraints which agrees with what is discussed in [2,4]. It is also shown
that, from the general equation of the constraint forces,it is possible to develop an
equation for only ideal constraints by taking into account the D’Alembert-Lagrange
principle of the work done by virtual displacement.It should be noted that this paper
brings about new idea in that, the excess variables are included in all the equations
developed, as a result of which we have new constants that need to be determined in
order to make the system asymptotically stable. Thirdly, an explicit equation of the
acceleration of the system is developed basing on the constraint forces from the ideal
and non-ideal nature of the constraints.

The fourth point involved in this paper is determining the constants, obtained as a
result of equations of motion of the constraint equations, so that the system becomes
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asymptotically stable. With this regard, we use Routh—Hurwitz criterion for stability
in determining the region of stability [4, 5].

A further discussion in this paper is made using an example provided. In the
example each of the methods developed are demonstrated.Moreover it is discussed
that the method developed in this paper can easily be extended to develop state-
space equation of the system which is a power full approach in dynamic system
for multiple input and multiple out put situation of linear and non-linear system
analysis [4, 5].

In summery, some of the advantages of the approach developed in this paper are:

1. An explicit equation of the acceleration of a system can be constructed with
relatively minimum steps. This is because, we don’t need to calculate Lagrange’s
multipliers in the method developed in this paper.

2. Problems that result from the redundant constraints,such as rank deficiency of
the Jacobian matrix, can be managed.

3. The stability of the system can easily be made using Routh- Hurwitz criterion for
stability even at singular points.

4. Since the equation resulting from the method can be developed into state-space
equation, it can be used for further investigations, such as controllability and
control design of complex systems.

2. Equations of Mechanical System.

In this section discussion is made on the construction of equation of motion for
mechanical systems.

Let TO = T%q,q) , VO = V%4q), D° = D%(q,§) be respectively, the kinetic en-
ergy,potential energy and dissipative function of an unconstrained mechanical system,

where ¢ = (¢*, ¢%., .,.,q") is n generalized coordinate. Moreover, we shall assume that

this system is subjected to a set of m = h + s consistent equality constraints of the
form:

P(q,t) =0, (1)

¥(q,4,t) =0, (2)

where @ is an h vector and ¥ is an s vector.

Construction of dynamic equations of mechanical systems, are usually based on
the assumption that, if constraint equations at the position and velocity level are
satisfied at ¢t = £y then are satisfied for all ¢ > ¢3. But in reality this is not the case.
If a constraint equation at an acceleration level is used, for instance, the position and
velocity level acceleration equations suffers drift phenomena. Ones these equations
deviate from the exact value at some time ¢ > ¢y the error will keep on accumulating.
This creates problem in stabilization and control design of mechanical systems [1,6].

For instance let us consider a holonomic case given in equation (1) such that
& = &,® = § which deviates from the exact value ®(q,t) = 0, then from the differential
equation @ = 0 we obtain @ = §t + €.This indicates that deviation of the constraint
equation from the exact value at time ¢ > ¢y accumulates in linear manner for all time.
We note that, this is when the constraints at the acceleration level is used to construct
model of mechanical system to get Ordinary Differential Equations.

In order to stabilize the constraints in (1) and (2) it is necessary to take account of
the deviation from equations (1) , (2) and introduce a corresponding correction to the
dynamic equation of the system [1,6]. Let the deviation of the constraints be denoted
by v,y and p called excess variables [1] such that:

é((bt) =Y, quq + ¢t = ZL w((bqat) = pv (3)
where: @ = (®1,802,...,0"), y = (yL,9?%...,y"), ¥ = (Whtl ght2 = ghts)
p= ("t gt g,
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The mechanical system is determined by the generalized coordinates, ¢,y and the
generalized velocities ¢, 1 where

r= (y17y27 AR yh7yh+17 e '7ym)T

= (92, Ly M T = (g, )T

Let L! represent Lagrangian for the constraints such that:
L'=L'(y,¥), T'=T'(y,¥), V'=V'(y), D'=D'(y¥),

where L, T, D and V respectively represents the Lagrangian, the Kinetic Energy, the
Dissipative Function and the Potential Energy of the constrained mechanical system
such that:L = L(q,y, ¢, 1), T T(q,y,q, ) D D(q,y,4,%), V =V(q,y),L(q,4,0,0) =
L°q,q),L=L+L', L°=T°-VO L' =T'-V! D(q,q,0,0) = D°(q,q). Here LO is
the Lagrangian of the an unconstrained system. We now expand the constraint equa-
tions by Taylor expansion method, around y = 0, = 0. That is for sufficiently small
values of the variables y and 1 we obtain:

m h
27" = > (amn)d"y", 2V' =) (op)y"y",
n,k=1 n,k=1
m
and the dissipative force 2R = — > (c,x)y"9"
n,k=1

Now let us obtain the Lagrange’s equation, for the constraints, based on T, V',
Rtand L' =T' — V!

oL' 1 & 8y"
ayiziz(a"kazy+ Za”k)azni

n,k=1

= 5 Z (ank)dniyk + 5 Z (@nk)0kiy", i=1,2,...,m,

n,k=1 n,k=1

where 0;; = 1, when ¢ = j, and is 0, when 7 # j:

OL! —
7 ;Z(azky +5 Z(am)y”.

k=1

Since a;;x = ax; and the summation in dices are dummy, the above expression can
be simplified as

m m

oL 1 P 1«
O YTIVR ) SUNTLEES SURVES ) SNV S Oty
o o

k=1 n=1 ’r7 1

l\D

Hence:
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A similar analysis for the potential energy and dissipative force gives:

h m
OR' 1 .
Z(Um)y", B L) Z(Cin)yn- (5)
n=1

n=1

oLt 1
oyt 2

oL' oL! OR!
Now from the equation: ——— — - = ——— we obtain:
dt oyt Oyt oyt

m h m
§ (ain)y" — (vin)y" = — § (cin)y". (6)
n=1 n=1 n=1
Let
a1 ai2 ot Gim €11 €2 “°° Clm
21 Q22 -+ A2m C21 €22 - C2m
A= , C = ,
am,1 Gm,2 o Amom Cm,1 Cm,2 - Cmm
v vz - vy 00 oo Oy
Va1 V2,2 e Va.p, 0 e OZ,m
W=—1v1 vn2 - vpn 0 - Opm
0 0 0 0 0 0
Omi Om2 o+ Omn 0 - Opm
Now equation (6) can be given as:
At = —Cr — Wr, (7)
where r and r are defined above.
Equation (7) can be reduced to:
r = —Br— Kr, (8)

where B= A"1C and K = A~'W.

Remark 1. The matrices A, C and W contain the elements a;;, ¢;; and h;; for the
different constraint equations, do not account for the coupling between the different
constraints and hence the entries off the diagonals can be taken to be zero and therefore
the matrices in this case are each diagonal matrices. For example A can be expressed
as [7,8]:

a1 0 .. 0 di 1 0 o 0
0 azs --- 0 0 doo --- 0
=a - CLP
0 0 - Gmm 0 0 - dom

So that the different coefficients can be seen as a single factor a multiplied by a
proportionality factor d;; for each constraint equation. The matrices C and Wcan be
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treated in the same way.Moreover, from the above discussion it can be seen that each
of the values ay;, ¢;; and hy; may be different for each constraint equations. However,
for a wide range of purposes, the use of single scalar values for a;;, ¢;; and hg;in every
constraint equation is an acceptable solution, and it is frequently found in the liter-
ature. It can then be concluded that the matrices A,C' and W can be taken to be a
single factor each, say a, ¢ and h respectively [7,8].
Equation (8) can also be written as a system of first order differential equations
shown below.
dr .
p— r7
i ©
— = —Br — Kr.
dt
From Lagrange’s equation for the constrained mechanical system and equation (8) we
obtain the following system of Differential Equations given in (10) below.

d 0L L d OL" Lt 1
That is from dtgq - gq = Qez +QF and dt??yl — gyl = —%}; it results:

{Mij— Lg+ Qe + Q° + Mg, 10)

f = —BF — KT,

oL
. 0q
force, Q@ = Ly + Qecr — M¢, Q€ is a constraint force applied on the system as a result

of the constraints. B and K are constant matrices of size m by m. From Remark 1
we can assume B and K to be constants.

where M is the mass matrix of the unconstrained system, L, = , Qez 1s an external

3. Construction of the Constraint Force (¢

In this section we shall discuss the construction of equation for the constraint force
Q°. It is shown that Q¢ is a sum of two terms resulting from the ideal and non-ideal
nature of the constraints. By considering the D’Alembert-Lagrange principle of virtual
displacement, it is shown that the force due to the non-ideal nature of the constraints
will add up to zero.

Differentiating (1) twice, (2) once , replace 7 by:
= (Dgd + Pyij + Do) + (Vyd + Vyii + ).
Then equation (10) with Q = Ly + Qer — M ¢ becomes

{q' = M7'Q°+ M7'Q,

. . 11
(By 1 03)if = —Bi — Kr — (g + B, + Uy + 1), )

Multiplying the first part of (11) by @,+ ¥, and solving for Q¢ from the two equations
leads to:
(P4 + WQ)M_lQC = —Br — Kr — (¥ + ¥yq + Qﬁqq + Qt) — (P + WC})M_IQ- (12)
Let A= (P, +W, )M ™', b= —Bi—Kr— (U; + U, +Pyq+D;), (Pg+¥,)M1Q = AQ.
Note also that:
By + Wy = (D), P,...,80,0,0,...,0)" +(0,0,...,0,p wht2 whts)T
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Then we can write equation (12) as:
AQ°=Db — AQ. (13)
The general solution of equation (13) is given by:
Q =AT(b—-AQ) + (I — AT A)w, (14)

where w is a non-zero n-vector, AT is a generalized inverse of matrix A and I is an
identity matrix of appropriate size.

From(14) we can infer that: The constraint force is given as a sum of two com-
ponents. The first component is the extent to which the acceleration of the uncon-
strained system deviates from the acceleration of the constrained system with constant
of proportionality A*. In other words,If AQ = b then,there is no deviation and the
constraint equation is satisfied. Otherwise, there is a deviation from the trajectory of
the constraint equation.The second component of (14) is proportional to a non-zero
n-vector w with constant of proportionality (I — AT A).

The constraint force given in (14) is general in that D’Alembert-Lagrange principle
is not taken into account. That means (14) is applicable irrespective of the whether
the constraint is ideal or non-ideal. To further strengthen this observation let us see
what form (14) would have if D’Alembert-Lagrange principle is taken into account.

D’Alembert-Lagrange principle states that, at each instant of time ¢, and for all
virtual displacement dr, at that time ¢, the work done by the force of constraint, Q¢,
under this virtual displacements,dr, must be zero; that is, (57)7Q° = 0 at each instant
of time ¢ [2,3].

The constraint equation, the second part of (11), is considered to define a virtual
displacement. We can write the constraint equation in (11) in the form:

Bi=b, (15)

where B = (&, + ¥;) is m by n matrix and b is defined in (12) is an m vector. A
non-zero vector 6r such that Bir = 0 at time ¢ is said to be a virtual displacement (dr
is a non-zero vector in the null space of B) [2,3]. Suppose that at a particular time
t, (6r)TQ°¢ = 0 (that is D’Alembert-Lagrange principle is satisfied). We want to show
that the term,in equation (14), (I — AT A)w = 0.

To define ér,the virtual displacement, in terms of A, put dr = M~ 1§y then Bér =
(D +Wy)M 16y and then Adp = 0. (A is defined above in (12)). From Adu = 0 we
obtain 6u = (I — AT A)u for a non- zero n-vector u. Thus in (12) D’Alembert-Lagrange
principle requires that {op : Adu = 0}

Now:

(6r)TQ° = M~ (I — AT A)uAT (b — AQ) + M~ (I — AT A)u(I — AT A)w =
=M T (I - ATA)AT (b — AQ) + M~ (I — ATA)(I — AT A)w =
=0+ M 'W(I- AT A)w
and then we obtain:
(I—-ATA)w=0. (16)

Hence, we can make the following conclusions:
a) The constraint force, taking into account the D’ Alembert-Lagrange principle is
given by:
Q" £ AT (b - AQ). (17)

This force,Q?, is the control force that provides feedback control based on the error
signal b — AQ which measures the extent to which the unconstrained acceleration does
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not satisfy the trajectory requirement of the constraint equation (15) with the gain
matrix A1 [4,5].
b) Thus, (17) is a force resulting from idea nature of the constraints and

QM A (I-ATA)w (18)

is a force from the non-ideal nature of the constraints.

c) It is also possible to say that, the work done by the constraint force by a non-
zero virtual displacement vector dr, since the ideal constraint do no work at any time
t, is given by:

Wt & (5r) (I — AT A)w. (19)

d) An explicit equation of acceleration of the constrained mechanical system from
the first equation of (11) and equation (14) is given by:

G=M1AT(b—-AQ)+ (I — AT A)w] + M 'Q (20)
which reduces,based on (16), to:
=M"'[AT(b—AQ)+ M Q. (21)

Regarding the characterization of vector w which is used starting from equation
(14) one can set w = M ~1C(t) in order that equations (20) and (22) are identical [3].

G=M AT (b—-AQ)|+ (I - ATAM'C(t)+ M Q. (22)
In other words the non-ideal constraint force is given by:
(I — ATAYM~tC(t), (23)

where [3] the n-vector C(t) needs to be specified at each instant of time ¢, and it
depends on the nature of the non-ideal constraints in the specified mechanical system
under consideration. More information can be obtained in [3]. If the constraint forces
are ideal then C(t) = 0.

4. Stability

We Use Routh-Hurwitz criterion for stability in determining the constants K and
B [4,5]. The Routh-Hurwitz stability method provides an answer to the question of
stability by considering the characteristic equation of the system. The characteristic
equation in the Laplace variable is written as

q(s) = ans" + an_15" '+ ... +ais+ag=0. (24)

The Routh—Hurwitz criterion states that the number of roots of ¢(s) with positive
real parts is equal to the number of changes in sign of the first column of the Routh
array. This criterion requires that there be no changes in sign in the first column for a
stable system. This requirement is both necessary and sufficient [4,5]. This criterion
will be applied in the next example.

Example. A uniform hoop of mass m and radius r rolls without slipping on a
fixed cylinder of radius R as shown in figure 1. The only external force is that of
gravity. If the smaller cylinder starts rolling from rest on top of the bigger cylinder,
find the acceleration and each of the constraint forces before the hoop falls off the
cylinder.

Solution. The two constraint equations, the distance of the center of mass of the
hoop from the center of the cylinder and the no slipping of the hoop as long as it is
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Figure 1. A hoop rolls on a cylinder.

touching the cylinder are respectively given by:
p=r+R, r(p—0)=R0,

where ¢, the angle r makes with the vertical and 6, the angle p makes with the vertical
are the generalized coordinates. The kinetic energy is the sum of the kinetic energy of
the center of mass of the hoop and the kinetic energy of the hoop about the cylinder
given by:

1 . .
T = Sml(ph)* + (r)?).
The potential energy is the height above the center of the cylinder and is given by:
V = mgpcos(f).

The Lagrangian L =T — V.
The first part of equation (10) becomes:

SR

Based on equation (3) we have the excess variables r = (y*,y?) for the two con-

straints and Since, # = (3j,%%) and ' = 0,4?> = r¢ — pf then the second part of
equation (10) becomes:
¥ = —Br — Kr, (26)

where K and B are appropriate constants to be chosen for asymptotic stability of the
equilibrium point of system. First let us find Q¢ = Q" + Q™, where, based on the
substitutions used in (12) we obtain:

mp?> 0 0 0
MZ( p 2>7A:[¢Q+WQ]M_1:<—1 1>7

0 mr mp  mr

where @1(q,t) = p— (r + R) and P5(q,t) =r(¢ —0) — RO and @ = (P, D3).
It need to be noted that both the constraints in this example are holonomic con-

_ i — Kt
straints. Q = ( mg%sm(ﬁ)) ,b=—Br— Kr = < Ko yB .2>,
—ny" — by

s (5 ) () ()

w1 [0 Y
(L)2+(L)2 0 mrp

T2+p2
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Hence,

2

. —mer (—Ky? — By? — gsin(6

QZ:A+(b—AQ) — ;‘:P ( ) Y g ( ))
2+ppz( Ky - By - gSlIl(@))

If we assume the constraint between the hoop and the cylinder at some time to

be non-ideal then the constraint force resulting from such a constraint is given by

equation (23) as:

1 P
QY = (I - AYAM'C(t) = ( e W‘Tf*“)) C(1),

mp(r2+p?)  m(r?+p?)

where [3] the 2-vector C'(t) needs to be specified at each instant of time ¢,and it depends
on the nature of the non-ideal constraints in the specified mechanical system under
consideration.

The equation of motion of the hoop becomes:

(é) - (’1 (~Ky* - By? - gsmw))) .
¢ 1oz (- Ky? — By® — gsin(9))
. 1 P
+ Mt <_mg/051n(9)> + M1 (m(r2r+p2) m’r(rierz)) C(t).

0 PG MO )

Next point of discussion is experimental determination of the constants K and B
so that the system becomes Asymptotically stable. Since the determination of C'(t) is
beyond the scope of this paper let us assume the case of ideal constraints C'(t) = 0.

Hence the equation of the system reduces to:

<9> — Ml (;ﬁp% (_Ky; - By22 - gs.in(G))> M (—mgp()sin(&)) .
¢ mo (—Ky? — By? — gsin(0))

Again for Numerical investigation of K and B, let m = 2kg, r = 0.2 meter, R = 1m,
p=R+r, g—98k9m.
Then we obtain:

03472 0 —mpr? o
M= < 0 12.5) Cop2 g2 0.06487, 22 0.3891, mgp = 23.52

and with this numerical values the equation of the system becomes:

6\  [—0.0225(—Ky? — By? — 23.2995 sin(e))>
)\ 4.86389(—Ky* — By? — 47.665sin()) )

Next we write the system equation as a system First order Differential Equations.

In so doing let 1 = 0,22 = 0 Ty = 9 T3 = ¢, x4 = ¢,x4 = (b Now the system
becomes:

T = T2,
To = —0.0225[K(—0.2x3 + 1.2:81) + B(—0.2$4 + 1.2%2)] — 23.2995 Sin(ml),
i’g = T4,

&4 = 4.8638[K(—0.223 + 1.221) + B(—0.2z4 + 1.229)] — 47.665 sin(z1).
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The state variables are then x1,xo, x3 and x4. Define the output variables z1 = 6
and x3 = ¢ define u, input variable as step in put.

Define the state derivatives as:

£y = fi(z,u) = s,

&9 = fo(x,u) = —0.0225[K (—0.2x3 + 1.221) + B(—0.2z4 + 1.225)] — 23.2995 sin(x1),
L3 = f3(x,u) = 4,

&g = fa(x,u) = 4.8638[ K (—0.223 + 1.2x1) + B(—0.2x4 + 1.222)] — 47.665 sin(z1).

Choosing the output variables 1 = 6 and x3 = ¢ define:

{yl = 91(377”) =1,

Y2 = g?(xau) = x3.

Suppose the initial condition is such that 20 = (29,29, 29,2%) = (0,0,0,0) and the
initial input u° = 0.

We want to write the system in a linearized form:

= Ax + EU,
y=Cz+ DU.

Which are the state and out put equations respectively and:

0 1 0 0
A af 0 o0y _ —0.027K —23.2995 —0.027B 0.0045K 0.0045B
=gz @) 0 0 0 1 ’
5.8366 K — 47.665 5.8366B —0.9728 K —0.9728B
0
73]00070 78g0071000 735]0070
E—a—(:v,u) ol —(a—x,u) 0010,D a—x,u)—o
0

With the above Linearization the state equation becomes:

Ny NG
Niy | | A6
Aiz | | ad|
0 1 0 0 ¢ 0
—0.027K —23.2995 —0.027B  0.0045K  0.0045B 0 0
= 0 0 0 1 o102V
5.8366K —47.665  5.8366B —0.9728K —0.9728B) \, 0
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The out put equation is given by:

(-6 el-0

Next we shall determine the constants K and B in order to make the system
asymptotically stable. We use Routh-Hurwitz Criterion for stability in determining
the constants K and B [4]. This method requires the characteristic equation of the
system in the Laplace variable s.

RS

s -1 0 0
0.027K + 23.2995 0.027B —0.0045K  —0.0045B
det(sI — A) = —g s+ 0 . T =

—5.8366K +47.665 —5.8366B  0.9728K s+ 0.9728B
= 51 +0.9998B5% + (0.0000009B? + 0.9998K + 23.2995)s% 4
+ (0.0000018 BK + 22.88024611B)s 4 0.0000009K % 4 22.8802461K.

For construct Routh table let a = 0.9998B,b = 0.000000952%+0.9998 K 4-23.2995, ¢ =
0.0000018 BK + 22.88024618, d = 0.0000009K 2 + 22.8802461 K

Table 1
Routh-table
column of S column#1 column#2 | column#3
st 1 b d
s3 a c 0
s2 ab—c d 0
abc — c% —a%d
s _— 0 0
ab—c
sY d 0 0

According to Routh-Hurwitz criterion the system is stable if the first column of
Routh table does not change sign. Accordingly, we need to have

a>0, ab—c>0, abc—c®—a*d>0, d>0. (27)

since 1 > 0.

Upon investigating the graph (figure 2) of abc — ¢ — a?d > 0 using MATLAB, it
has a maximum point (z,y) = (0,0). The MATLAB command used and the graph
are shown below.( B=x and K=y is used for this case.)

fs0lve(0.9998 * z * (0.0000009 * 2(22.8802461 * z + 0.0000018 * x * y)*+
+ 0.9998 * y(22.8802461 * x 4+ 0.0000018 * x * y) + 23.2995)—
— (22.8802461 * = + 0.0000018 * 2 * )2 — 0.99960004 * 22 = 0, ),

plot(0.9998  z * (0.0000009 * x(22.8802461 *  + 0.0000018 * z * y)*+
+ 0.9998 * y(22.8802461 * x 4+ 0.0000018 * x * y) + 23.2995)—
— (22.8802461 *  + 0.0000018 * = * y)* — 0.99960004 * 2%, y).
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Figure 2. Graph with maximum point (0,0)

This implies that the first column of Routh table (Table 1) changes sign since at
least 1 and abc — ¢® — a®d > 0 have opposite sign. Hence it can be concluded from
the Routh table indicated above that the system is unstable.But for B = K = 0 we
obtain the fourth (row of s) to be a zero row which indicates that the eigenvalues (or
poles) of the system are on the imaginary axis , axis y.It can be seen for the case
of B = K = 0 the system is marginally stable.The graph of the system for the case
B = K = 100 and non-zero initial condition X0 = [0.0001;0;0.0001;0] is indicated
below in figure 3.

T
W LPAEERE R
- A
PN

t *sec)

Figure 3. Initial Condition Response

5. Conclusion

In this paper a method of constructing equations of mechanical system that in-
cludes both the ideal and non-ideal nature of constraints is developed. With the
method developed, problems that may arise from redundant constraints, like rank
deficient Jacobian matrix of the constraints and other related problems can be man-
aged.The method can also be used to develop state-space equation of a system and
then after, can be used for further study on controllability, observability and other
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related issues in complex mechanical systems. The state space of a system being con-
structed, a wide range use of different software like MATLAB can be employed for
investigation of dynamic system.This paper can also be used as a bench mark for
further research in the area.
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VIIK 531.3
HOCTpOGHI/Ie ypaBHeHI/Iﬁ JANHAMMNWKHN CBA3AaHHBIX MEXaHNYeCKUuX
cucremMm

Yepuet Tyre lepecca

Kagedpa mamemamuru
Vnueepcumem e. Jotcumma
2. otcumma, dpuonus

B crarbe npeutaraeTcss HOBBINT METOJ, PEIIEHHS 33140 IOCTPOSHUS YPABHEHNN JUHAMUKI
MEXaHUIECKOM CHCTEMBI, 0OECTIEINBAIONINI CTAOUTU3AINIO CBA3€H TIPU YUCJICHHOM DEIeHUMN.
WcxomubIMu JaHHBIME JJTsT COCTABJICHUS YPABHEHUN TMHAMUKY SBJIAIOTCS PyHKIu:A Jlarpan-
7Ka, JUCCUNIATUBHBbIE U HENIOTEHIHAJIbHbIE CUJIbl I OIPAHUYEHNsI, BbIDaKEeHHbIE yPaBHEHUAMU
TOJIOHOMHBIX U HETOJIOHOMHBIX CBs3eli. PaccMarpuBaioTcs ciaydyan uaeaIbHbIX U HEUIeAJbHbBIX
cBazeit. OnpeseseHne IpaBbIX YacTel cucreM AuddOEPEeHITNAIBHBIX YPABHEHIH UCIIOIb3YeTCsT
obo0meHHast obpaTHash MaTPUILA.

it uccienoBaHus IOBEAEHNs OTKJIOHEHUIT PEIleHus] CUCTEMBI OT yPaBHEHUI CBS3€il BBO-
AATCA TOOABOYHBIE IT€PEMEHHDBIE. YCTONYINBOCTD 110 OTHOIIEHUIO K YPABHEHUSAM CBSI3€i OIpe-
JIeJISIeTCs TI0 YPABHEHUSAM BO3MYIIIEHUI CBA3€, COCTABJIEHHBIX 10 PACHIUPEHHBIM (DYHKITHSIM
Jlarpamxka n guccunatuBHOM dyHKIME. OrpaHUINBAsICh J0OABICHUEM B JATDAHKUAAH U JIAC-
CHUIIATUBHYIO DYHKIINIO KBaIPATUIHBIX (POPM C IIOCTOSTHHBIMHU KO3(MDMUIMEHTAMY, OJIYI€HbI
muddepenHnuaabHble YpaBHEHUS BO3MYIIEHUN CBA3€l JIMHEHHBIMU C TIOCTOSTHHBIMU KO3 hu-
[IIEHTaMU. DTO MMO3BOJIET 00ECIEUNTD YCIOBUS ACUMIITOTUIECKON YCTONYIMBOCTHA Ha OCHOBE
kputepus Payca—I'ypsuna. MeTox uimiocTpupyercs Ha IpUMepe PelleHus 3aJa1 CKaThIBa-
HUS MAJIMHAPA C MIOBEPXHOCTHU 3aKPEIIEHHOTO IMUINHIPA 6e3 MPOCKAIb3bIBAHUSI.

KuroueBrbie ciioBa: u3OBITOUHBIE IEPEMEHHDIE, UACAJIbHbIC CBSI3M, HENIeaIbHbIE CBA3M,
ycroitanBocTh, Kpurepuit Payca—I'ypBuria, mpocTpancTBo cocrosinmii, pyHkIims Jlarpamxka,
JUCCHUIIATHBHAS OYHKIUS.





