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Localized solutions of nonlinear field models with nontrivial topological properties are dis-
cussed. Existence of various systems of definitions of the topological objects, developed in this
area of research historically, can potentially lead to the wrong conclusions about existence of
such solutions. The classification allowing to define accurately and differentiate objects with
different topological properties is proposed, which prevents from inferring wrong conclusions.
Such classification is especially important for multidimensional solutions. Such solutions are
divided into 2 classes: the topological solitons (TS) and topological defects (TD). Solutions
of both types describe the localized distributions of field energy, but they differ in topological
properties. We exemplify and compare stationary T'Ss and TDs in 2 and 3 spatial dimensions.
Examples of TSs are: solitons in Heisenberg magnets, Belavin—Polyakov solitons/instantons,
Skyrmions, “baby-skyrmions”. Examples of TDs are: sine-Gordon kinks, Nielsen—Olesen
strings-vortices in the Abelian Higgs (AHM) model, 't Hooft—Polyakov hedgehog-monopoles
in the Georgi—Glashow model. We note some technical problems with TDs, which are not
met in the case of T'Ss. Soliton analogs of Nielsen-Olesen TDs in the AHM have been found:
they are TSs in the A3M model. We have started search for TSs in the SU(2)-Higgs model
which is currently in progress.
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1. Introduction

Investigation of localized energy distributions described by solutions of nonlinear
field equations with nontrivial topological properties is the important approach to
nonperturbative field theory. Here we propose a classification of localized topological
solutions (often called topological lumps, TL) which differ from standard one but seems
to be more instructive, in particular when studying new multidimensional (D = 2, 3)
particle-like solutions with topological charges.

Historically the first localized solutions with nontrivial topology were skyrmions,
found in [1] and used for the description of baryons. In our classification they are
topological solitons (TS). More than 10 years later great interest has been drawn to
the 2D Nielsen-Olesen strings-vortices [2] and to the 3D ’t Hooft-Polyakov hedgehog-
monopoles [3-5]; these solutions — in our classification — belong to topological defects
(TD). Note that the above strings-vortices and hedgehog-monopoles have been dis-
covered during the great solitonic boom of 70’s, and that is why they were ascribed
to the wide class of solitons (lumps). However we believe that the usage of the same
term “a soliton” both for T'Ss and TDs may turn out misleading in some cases (for an
example see Sect.6, where TLs in the Standard Model are discussed).

2. Definitions

Both topological defects, TD, and topological solitons, TS, describe particle-like
(extended localized, lumps) distributions of field energy, but they (TDs and TSs) differ
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in topological properties. For TSs field distributions in R” of all fields involved are
uniform at space infinity, R — oo (see for example Fig. 1, where space distribution
of 3-component unit Heisenberg field in magnetic soliton is depicted). In this paper
consider S™V-valued field with N = D; then for TSs topological charge (index) is a
mapping degree of the SV —valued field distribution inside infinite radius (R = 00)
sphere SP~1, which is considered — because of constancy of all fields on it — as the
single point. The space RP is compactified by adding this infinite point, and thus

soliton maps RY,,, — S™.
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Figure 1. TS with Qop = 1 in Heisenberg magnet (reproduced from [6])

Contrary to TSs Topological Defects are given by S™-valued field distributions,
which are nonuniform at R = co. Their topological indices are mapping degrees of the
R = oo sphere SP~1 to a SV sphere defined by the field distribution on this sphere,
SP=1 » SN N = D — 1. From above definitions it is clear that Topological Defects
arefnot Topological Solitons, and vice versa, Topological Solitons are not Topological
Defects.

3. Examples of Topological Solitons and Defects

Now we present some examples of TSs and TDs in D=2 and D=3.

1. Topological Solitons: solitons in Heisenberg magnets (2D,3D) [6, 7], Belavin—
Polyakov solitons/instantons (2D) [8,9], Skyrmions (3D) [1], “baby-skyrmions”
(2D), see, e.g. [10].

2. Topological Defects: sine-Gordon kinks (1D), Nielsen-Olesen strings-vortices in
the Abelian Higgs model (2D) [2], 't Hooft—Polyakov hedgehog-monopoles in the
Georgi-Glashow model (3D) [3].

4. Drawbacks of Topological Defects

We believe that TDs have some drawbacks, which are connected with nonuni-
formity of S™-valued field at R = oo (see Fig. 2a). The first of them is that they
cannot be generated from unperturbed vacuum state in a finite time. The second
one is a problem of matching two (or more) defects. It can be clearly illustrated in
two-dimensional (D = 2) case for S!-valued field. In fact, consider two well-separated
defects with unit topological charge (see Fig. 2b), so that the center of the first one
is located on the z-axis at x1 = —o0, and the centre of the second one at o = +0o0.
Then from Fig. 2b one can see that in the vicinity of vertical line x = 0 it is impossible
to define distribution of S! field which is consistent with asymptotic behavior of both
defects in this vicinity. To circumvent the second problem one can either insert “junc-
tions” in between defects or consider multidefects configurations. Both ways seems to
be not quite satisfactory.

In the case of TSs one doesn’t encounter such difficulties. That is why we are
interested in search of solitonic analogs of topological defects both in D = 2 and
D = 3 cases; in another words, it is interesting and important to find soliton analogs
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of Nielsen—Olesen strings-vortices in D = 2 and of 't Hooft—Polyakov monopoles-
hedgehogs in D = 3.
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Figure 2. Left: Isolated defect solution, D = 2, S'-valued field. Right: Problems
with matching two D = 2 defects

5. Topological Solitons in the A3M model

Instead of complex scalar field in the Abelian Higgs model (AHM) in the A3M
model [11] we introduce 3-component unit isovector scalar field s,(x) taking values
on unit sphere S? : 5,5, = 1,a = 1,2, 3, having selfinteraction of so-called “ecasy-axis”
type (well-known in magnetism theory). Similar to AHM introduce gauge-invariant
interaction of this field with the Maxwell field, making global U(1) symmetry of easy-
axis magnets local one. As a results we arrive at “the A3M model”, first introduced
and studied in [11]. The Lagrangian density of the A3M-model is

_ 1
L =D,s_Dt's; + 9,530"s5 — V(sq) — ZFiw
75# =0, +ieA,, D,=0,—ieA,, (1)
S§4 =81 +182, S_ =81 — 82,

F = 0,4, — 0,4, V(se)=B(1—s2),

where p,v = 0,1,...,D. This model is the gauge-invariant extension of the classical
Heisenberg antiferromagnet model with the easy-axis anisotropy. It supports D = 2
topological solitons, which can be found using the “hedgehog” ansatz for the unit
isovector field s;(x), i = 1,2, 3,

s1 =cosmysin®(R), sy =sinmysind(R), s3=cosI(R),
2
sinxz%, cosxz%, R? = 2% + 2, @

where m is an integer number, and the “vortex” ansatz for the Maxwell field A, (x),

) x
Ap=0, A1 =A4,= —ma(R)ﬁ, A=A, = ma(R)ﬁ. (3)
The topological charge of A3M solitons is defined as the mapping degree of s,(x)

distributions inside infinite radius (R = oo) sphere, Rgomp — 52, Boundary conditions

correspond to uniform distribution of the s%(x) field at R = oo, and zero value of the
Maxwell field A,(x) at space infinity. A3M solitons exist [11] for integer Qiop —
similar to Belavin—Polyakov 2D solitons in isotropic Heisenberg magnet.

Energy of two A3M solitons with Qiop = 1 proves to be greater than energy of one
soliton with Qiop = 2 [11]. As a result two such solitons attract to each other and
coalesce into one Q¢op, = 2 soliton. Thus soliton analogs of Nielsen-Olesen TDs in the
AHM have been found.
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6. Topological Solitons in the SU2-Higgs Model

Consider the simplest electroweak (EW) model (a reduction of the bosonic sector
of the Weinberg—Salam model), the so-called SU2-Higgs model with

L= (Du@)!(DF®) — LFi, F — (1% —1)°, (4)

D,®y = 0,P + %gT“AZCI)b, w=0,1,2,3,0a=1,2,3, b = 1,2, ® is the 2-component
complex isospinor, defined by 4 real numbers ., such that ¢.p. = 1, ¢ = 1,2,3,4.
Introduce unit isospinor field ® = ®//®T® and P, = pa/\/@ee, a = 1,2,3,4 so that
normalized field ¢, takes values on unit sphere S2. The SU2-Higgs model describes
gauge-invariant interaction of SU(2) Yang-Mills field with the isospinor scalar field.
Let boundary conditions at R = oo, R? = 2% + y? + 2%: be ¢%(00) = &§, i.e. ¢F =
(0,0,0,1), or @5 = (0,0,0,—1). The topological charge Qiop can be defined as the
mapping degree of Rgomp — §3 given by distribution of the 4-component unit field
@q(x) inside infinite radius sphere R = oo.
Existence of topological solitons with integer topological charge Qyop, is not a priori
excluded. To find TSs one can use
(i) hedgehog ansatz for isospinor field with chosen Qsop, in the simplest case Qgop = 1
it takes the form

@4 = COSQ/}(T) ' f(T),
Py = sinep(r) - cosI(r) - f(r),
B2 = sin g(r) - simd(r) - sin (2, y) - £(r),
p1 = sinip(r) - sind(r) - cos p(z,y) - f(r),
sing = y/\/(2* +4?), cosp =x/\/(2*+y?),
here ¢(r), 9(r) and f(r) are to be found by minimization of topological lump
energy and
(ii) generic 3-term ansatz for D = 3 Yang—Mills solitons (4§ = 0):
b(R)
R3
ik=1,2,3, R?=a2+4%+2%

p(R)zix,

s(R) + 7 , ©)

(6iaR? — mim4) +

Tk
a
QAZ' = Eiak ﬁ

Study of Topological Solitons in the SU(2)-Higgs model is in progress.

Note that the SU(2)-Higgs model does not support TDs, because the 4-component
unit field defined on the sphere S? has no nontrivial topological properties. This
however does not mean that there is no possibility for existence of T'Ss in this model
because maps R3comp — 52 are divided into classes with different integer topological
charges. This example shows that usage of the generic term soliton for TDs and TSs
can lead to erroneous conclusion.
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O aByMepHBIX U TPEXMEPHBIX JJOKAJIN30BAHHBIX PEIIeHUSAX C
HETPUBUAJIbHOI TomoJiorueii

. JI. Boroamobckuii, A. A. Borosiroockast
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O6CyKIAI0TCSA YACTUIENOM00HDBIE PEIIEHUsT HEJIMHEHHBIX TOJIEBBIX MOJIEIEH C HETPUBUAAIb-
HBIMH TOIOJIOTHIEeCKUMHE CBocTBaMu. CyIIeCTBOBAHNE PA3IMYHBIX CUCTEM OIPEIEIeHU TO-
MMOJIOTUIECKUX OO'bEKTOB, CJIOYKHUBIIIEECS B 3TON 0OJIACTU MCCJIEJOBAHUN UCTOPUIECKU, MOYKET
NPUBOJIUTH K HEPABUJILHBIM BBIBOJAM O CYIIECTBOBAHMM TOMOOHBIX pernenuil. [Ipemiara-
eTcst KJIAacCUpUKAIKs, TO3BOJISIIONAs YETKO ONPEJEUTh U Pa3rPaHUIUTh OOBEKTHI Pa3HbI-
MH TOMOJOTMYECKUMHU CBONCTBAMH, 9TO MOMOTaeT M30EeXKAaTh OIMMOOYHBIX 3akJroueHuil. Ta-
Kasl Kjaaccuukalmsi 0COOEHHO BayKHa, JIjIsi MHOTOMEPHBIX perieHuii. EcrecTBeHHBIM 06pa3zom
MOXKHO BBIIEJIUTH 2 KJIacca TaKUX perneHunit: Tononorndeckue coautons! (TC) u Tonosornye-
ckme pedexror (T). U Te, m mpyrue onuchBaIOT 9acTUIENONO0HBIE DACTIPEIEIEHUS TTOIEBOM
SHEPIUuH, HO PA3JIUYAIOTCS 110 TOIIOJIOTHYECKUM CBoOMcTBaM. [IpuBojgsiTCsi MpuUMephl U IIPO-
Bogurcs cpasaenne TC u T/l myia ciygae 2 u 3 MpoCTpaHCTBEHHBIX M3Mepenuii. B pamkax
BBIODAHHON CUCTEMBI ontpeiesiennii K kiaccy TC MoxkHO oTHECTH couToHbI B [eiizenbeprekux
MAarHeTHUKaX, COJTMTOHBI-UHCTAHTOHBI bestapuna—IlosisikoBa, CKUPMUOHBI, «030U-CKUPMHUOHBI ».
K xnaccy T/—xkunku cunyc-ypasuenusi [opmona, suxpu-crpyubl Hunbcena-Onbcena B Abe-
sesoii Mogiesin Xurrca (AMX), exu-mononosn 1’ Xydra—IlonsikoBa B Momenn JlxopaKu—
[mammoy. Ormedaercs, uro npu pabore ¢ T/] BOZHHKAIOT HEKOTOPBIE TEXHIYIECKIE TPOOIEMBT;
B ciayuae TC makux TpymaHocTel He Bo3HuKaeT. OMUCHIBAETCS COJUTOHHBIN aHajor aedek-
ToB Hunbcena-Osbcena 8 AMX — 310 Tomosormdeckue comutonbl B A3M-monemu. Cdop-
MyJIMPOBAHA 331898 MOUCKA TOMOJIOTHIECKUX COMUTOHOB B SU(2)-Momenn Xurrca; mx monck
IIPOJTIOJIZKAETCSI.

KiroueBbie cjioBa: TONOJIOTMYECKUI 3apsijl, COJIMTOHBI, 1eEKThI, CTENEHb 0TOOpaKe-
Hus, abesieBa Mojieb Xurrca, moje fura—Mmusica, antudeppomaraetuk [eiizenbepra, mome-
s Jxopmku-Tiamoy n Baitabepra—CaJjiama, «exKoBasi» MOJACTAHOBKA.





