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The goal of the presented work consists in the construction of the new three-levels scheme of
authomatical classification. This scheme is based on the newly introduced notion of volatil-
ity of separate clusters as well as of whole classification. The property is exactly defined
and efficiently calculated. It describes the stability, exactness, validity of subsets of the given
initial set – in essence, their possibility (or impossibility) to be selected as clusters. The
suggested algorithm finds the clusters with arbitrary levels of volatility, including the con-
ventional case of zero volatility. The clusters in USA, Russia and Sweden stock market (for
crisis period of 2008-2010) and deputies clusters based on voting results in the 3rd State
Duma between September 2001 and January 2002 (the period including the creation of the
party ”United Russia” 01.12.2001) were constructed by the suggested algorithm. Analyzing
clusters constructed basing on the voting results for every of the considered months, it has
turned out that the clustering volatility was equal to zero in September and October, dras-
tically increased in November and slightly decreased in December and January. But several
indices (i.e. concordance of parties’ positions) did not show sensible jumps near this political
”bifurcation point”. The other considered various model examples demonstrated the results
well-coordinated with geometrical intuition.

Key words and phrases: cluster analysis, automatic classification, volatility, cut in
graph, stock market, State Duma.

1. Introduction

The well-known clustering problem consists in selection from a given set of objects
several non-intersecting subsets (usually called clusters, aggregates, blocks, classes,
etc.). It is required that every cluster consists of objects that are in some sense closely
connected, similar in appearance, while objects belonging to different clusters are as
unlike as possible, significantly distinct. In classification problems it is required addi-
tionally that the selected clusters form a division of the initial set, but the abandoning
of this requirement seems more realistic in the considered situations. Informal charac-
ter of the clustering problem, its various modifications, statements and applications,
numerous approaches and methods of its solution are comprehensively described in
several monographs and reviews (see, for instance [1–7]).

The goal of the presented work consists in elaboration of a clustering algorithm,
which takes into account the volatility of subsets of the given initial set. That im-
portant property describes their stability, exactness, validity — in essence, their pos-
sibility (or impossibility) to be selected as clusters. Volatility is determined formally
for separate candidates as well as for the whole clustering problem.

Let us consider some examples without giving exact definition of volatility but
rather to give some hints to its future definition. Clusters with different volatility are
shown in Fig. 1. In Fig. 1a and 1b three considered clusters have volatility 0, despite
the fact that selection of clusters in Fig. 1b is more difficult than selection of the same
clusters in Fig. 1a. The clusters shown in Fig. 1c have different volatilities. Intuitively
cluster 1 has the same volatility 0, cluster 2 has some small volatility, and volatility
of cluster 3 exceeds volatility of cluster 2. Finally the cluster 3 in Fig. 1d practically
disappears (its volatility is close to the maximal number 1), meanwhile clusters 1 in
all the pictures has the same volatility, as well as cluster 2 in Fig. 1c and 1d.
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Figure 1. Clusters with different volatility

Usually the notions of volatility, stability, and so on are connected with the process
of changes of a considered system in dependence on time or other external parameters.
In the suggested approach to clustering, however, this it is not the case. Volatility is
determined for a given clustering problem. The essence is that the suggested clustering
algorithm (like some other ones) consists of repeating randomized steps. At every
step a family of subsets (candidates for clusters) is constructed. Clear-cut clusters
with zero volatility are absolutely the same at every algorithm run. Less clear clusters
can be slightly different or/and occur not at every algorithm run. This reasoning
enables to formulate a simple formal criterion, whose maximization defines volatility
of a considered cluster. The volatility of the whole clustering problem is determined
as weighted sum of volatilities of the found clusters.

It seems that high level of volatility corresponds to difficulty of a clustering prob-
lem, and realization of this connection led to the new clustering algorithm. The sug-
gested algorithm finds all the clusters whose volatility does not exceed an arbitrary
feasible level of volatility (including the conventional case of zero volatility). Moreover,
the feasible level of volatility is one of very few external parameters of the suggested
algorithm. It is one that essentially depends upon human decision.

2. The Structure of the Clustering Algorithm

The algorithm is determined as a three-level procedure. The external level corre-
spond to the repeatedly constructions of a family of different divisions of the initial
set of objects into 2, 3, . . . , 𝑘 clusters. The selection of reasonable clusters, basing on
all the found families, is exposed — as a separate algorithm — in Section 3.

Every of the above-mentioned families of divisions is determined as a result of one
run of the suggested Divisive-Agglomerative Classification Algorithm (DACA). The
algorithm is described in Section 4. It presents the intermediate level of the suggested
clustering algorithm.
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DACA itself is based on the dichotomy algorithm that is the internal level of the
suggested general procedure. This algorithm is a new version of so called frequency
approach, suggested by Girvan and Newman in 2002. As well as some other algorithms,
including spectral and kernel ones, it also gives some approximation of the balanced
cut problem (NP -complete combinatorial problem of division of a graph into two
subgraphs). In difference to them, the suggested algorithm allows us to understand the
shortages of divisions, obtained even by exact solution of balanced cut problem. But
the using of the suggested algorithm in the framework of DACA allows overcoming the
above shortages despite the fact that some dichotomies can be wrong. The two levels
of the algorithm (internal and intermediate ones) were comprehensively considered
in [8], available at http://www.hse.ru/org/hse/wp/wp7. Therefore they are exposed
here briefly enough.

3. New Frequency Dichotomy Algorithm

In the Girvan-Newton frequency algorithm [2,8] a path, connecting a next pair of
vertices, is traced independently of all the already traced paths. Taking into account
all the already traced paths yet can obtain cuts between two sets of vertices whose
all the edges have the same maximal frequency. Then concurrent removal of all the
edges with the maximal frequency defines the desired dichotomy of the graph. The
algorithm is as follows.

Minimax frequency algorithm of graph dichotomy. The input of the algorithm is
an undirected connected graph 𝐺. There are two integer algorithm parameters:

– maximal initial value 𝑓 of edge frequency (typical value is 10− 20);
– number of repetition 𝑇 for statistics justification (typical value is 1000 − 3000

independently of the initial graph size).

1. Preliminary stage. Frequencies in all the edges are initialized by integer numbers
uniformly distributed on the segment [0, 𝑓 − 1].

2. Cumulative stage. The operations of steps 2.1 – 2.3 are repeated 𝑇 times:
2.1. Random choice of a pair of vertices of graph 𝐺.
2.2. Construction of a minimal path (connecting the two chosen vertices, whose
longest edge is the shortest one among all such paths) by Dijkstra algorithm. The
length of an edge is its current frequency.
2.3. Frequencies modification. 1s are added to frequencies of all edges belonging
to the path found at the previous step 2.2.

3. Final stage.
3.1. The maximal (after 𝑇 repetitions) value of frequency 𝑓𝑚𝑎𝑥 in edges is saved.
3.2. The operations of steps 2.1 – 2.3 are executed once.
3.3. The new maximal value of frequency 𝑓𝑚𝑜𝑑 in edges is determined.
3.4. If 𝑓mod = 𝑓max, go to step 3.2; otherwise, go to the next step 3.5.
3.5. Deduct one from frequencies in all edges forming the last found path.
3.6. Remove all the edges, in which frequency is equal to 𝑓𝑚𝑎𝑥.
3.7. Find two connectivity components of the modified graph. The two con-
structed sets of vertices form the solution of the considered dichotomy problem.

Let us to consider the expression

𝑅(𝐴,𝐵) = 𝑑(𝐴,𝐵)×
(︂

1

|𝐴|
+

1

|𝐵|

)︂
, (1)

determined for any cut (𝐴,𝐵) of the graph 𝐺(𝑉,𝐸), where 𝐵 = 𝑉 ∖𝐴, 𝑑(𝐴,𝐵) is equal
to the number of edges, connecting sets 𝐴 and 𝐵. This function is well known as
ratio cut criterion, determined for the set of all the cuts of the graph 𝐺(𝑉,𝐸). It is
known [1, 4] that spectral and kernel methods find cuts, approximately minimizing
criterion (1).
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Taking into account hundreds of computational experiments with various data
(partially presented in [8], it is possible to make the following informal conclusions.

1. Well known ratio cut criterion (and, hence, approximating it spectral and kernel
methods) can give intuitively wrong answers in relatively simple cases.

2. All the stochastically stable dichotomies found by the suggested minimax algo-
rithm are intuitively correct and minimize criterion (1).

3. All the stochastically unstable dichotomies found by the suggested minimax al-
gorithm are intuitively incorrect.

However, the notion of stability itself is not exactly defined. Between clear stable
and clear unstable cases there is a “gray zone” of weak instability. Like other situa-
tions of such a type, occuring in most fields of pure and applied mathematics, these
situations arise when a system is in transition process from one stable state to an-
other one. Therefore they are — in some sense — inevitable. Examples in Section 6
demonstrate that such phenomena can really occur in clustering problems.

4. Divisive-Agglomerative Classification Algorithm

In this Section we describe the intermediate algorithm (named DACA), whose flow-
chart is shown in Fig. 2. Its main idea consists in consecutive execution of divisive
and agglomerative operations. It is done in order to keep strong properties of the
suggested method of dichotomy and to be got rid of its shortages.

Figure 2. Flow-chart of DACA

The only algorithm parameter of DACA is the maximal number K of parts in the
divisive stage. Its input is an arbitrary undirected graph. Let us consider the blocks
of flow-chart in Fig. 2 separately.
1. DIVISIVE STAGE. The graph is consecutively divided into two subgraphs by

the minimax algorithm of dichotomy. For the division at every step the graph
with the maximal number of vertices is selected. The number of divisions is
equal to 𝐾 − 1. The output of the stage is the family of inserted classifications
𝐷 = (𝐷2, 𝐷3, . . . , 𝐷𝐾) into 2, 3,𝐾 classes.

2. AGGLOMERATIVE STAGE. Every classification 𝐷𝑗 into 𝑗 classes determines
the subfamily of classification into 𝑗 classes (𝐷𝑗 itself), into 𝑗−1 classes (obtained
by the union of subgraphs, connected be the maximal number of edges), and so
on, in correspondence with the convenient agglomeration scheme (joining subsets,
connected by the maximal number of edges). Denote the constructed classifi-

cations as 𝐶𝑗𝑗 , 𝐶
𝑗
𝑗−1, . . . , 𝐶

𝑗
2 and present them as follows (these classifications are

diagonally placed):

𝐶2
2 , 𝐶

3
2 , . . . , 𝐶

𝑘−1
2 , 𝐶𝑘2

𝐶3
3 , 𝐶

4
3 , . . . , 𝐶

𝑘
2

. . . . . . . . . . . .

𝐶𝑘−1𝑘−1 , 𝐶
𝑘
𝑘−1

𝐶𝑘𝑘
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3. DELETION STAGE. In every row after deletion of all the doubling classifications
at least one classification remains. Write all of them out:

𝐹 1
2 , . . . , 𝐹

𝑛2
2 (into 2 classes), 𝐹 1

3 , . . . , 𝐹
𝑛3
3 (into 3 classes), . . . , 𝐹 1

𝑘 = 𝐶𝑘𝑘 (into classes),

This list is the output of the suggested DACA.

The essential remaining problem is the follows one: how to select (automatically)
the correct classification or the most reasonable separate clusters from the list, found
at the above described inter-mediate stage. This problem is considered in the next
Section 5.

5. Clusters Selection Algorithm

Before starting the algorithm description, let us describe its input in more detail.
Assume 𝑟 is the number of independent runs of DACA. Because every run uses ran-
dom numbers (for instance, for consecutive choice of pair of vertices in the internal
minimax algorithm, described in Section 3), DACA produces at every run a family
of classifications. Generally speaking, these families can be different, though they
coincide in many simple cases. Moreover, the quantitative measure of their coinci-
dence (that will be defined in this section) can be considered as a formal measure of
complexity of a given clustering problem.

Let us introduce some necessary definitions and notations. Assume 𝑈𝑖 is the set of
all the clusters included in all the classifications found by DACA at its 𝑖-th run. All
the elements of 𝑈𝑖(𝑖 = 1, . . . , 𝑟) are candidates for clusters. For simplicity, they are
named “clusters”.

Assume F be an arbitrary family of clusters, belonging to different sets 𝑈𝑖. It will
be convenient to present F as follows:

F = ⟨𝐹𝑖1 , . . . , 𝐹𝑖𝑑⟩ where 𝐹𝑖𝑘 ∈ 𝑈𝑖𝑘(𝑘 = 1, . . . , 𝑑), and 𝑠 < 𝑡 implies 𝑖𝑠 < 𝑖𝑡. (2)

Denote
𝐴(𝐹 ) = ∩𝐹𝑗 , 𝐵(𝐹 ) = ∪𝐹𝑗 , 𝛼(𝐹 ) = |𝐴(𝐹 )|/|𝐵(𝐹 )|, (3)

where intersection and union are taken over all sets 𝐹 from family F. It is clear that
𝛼(F) cannot exceed 1. Family F, such that 𝛼(F) > 0.5, are named 𝛼-stable. The
proximity of 𝛼(F) to 1 means the stability of a set in all the runs there it appears. This
notion is illustrated in Fig. 3. The three families P, Q and R are separately shown in
Fig. 4 in more detail.

Figure 3. Results of 4 runs
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Fig. 3 demonstrates that clusters from family P appear 3 times of 4, clusters from
family Q appear 4 times of 4, and clusters from family R appear 2 times of 4. These
examples lead to the notion of another kind of stability. Denote 𝑐(F) = |F| = 𝑑
(see (2)). Assume 𝛽(F) = 𝑐(F)/𝑟. This parameter shows, how many times of 𝑟 runs
components of F are included in found families. Finally, assume 𝛾(F) = 𝛼(𝐹 )× 𝛽(F).

The number 𝑉 (F) = 1− 𝛾(F) is named the volatility of the family F. Assume
that all the families F (see (2)) are ordered in correspondence with their volatilities
increasingly: F1,F2, . . ., so that 𝑠 < 𝑡 implies F𝑠 < F𝑡. Assume 𝐶𝑖 = 𝐴(F𝑖), 𝑖 = 1, 2, . . .
(see (3)). These sets are shown in the middle column in Fig. 4. Finally, assume the
number 𝑉 * — the maximal feasible volatility – is given.

Figure 4. Family intersection and union

The following steps of the Algorithm of Clusters Selection define the suggested
solution of a given clustering problem.

Algorithm of Clusters Selection
1. Find all the 𝛼-stable families F1,F2, . . . ,F𝑚 (see (3)).
2. Select among them all the families F such that 𝑉 (F) 6 𝑉 * (they are named the

feasible ones).
3. Order feasible families F𝑖 in correspondence with 𝑉 (F𝑖) increasingly.
4. Define sets 𝐶𝑖 = 𝐴(F𝑖) (𝑖 = 1, 2, . . . , 𝑘).
5. Assume 𝐷1 = 𝐶1, current 𝑖𝑐 = 1.
6. If sets 𝐷1, . . . , 𝐷𝑡 are found, consider consecutively 𝑖 > 𝑖𝑐 till one of the following

two events occur:
– 𝐶𝑖 does not intersect with 𝐷1, . . . , 𝐷𝑡;
– 𝑖 = 𝑘 + 1.

In the 1-st case assume 𝐷𝑡+1 = 𝐶𝑖, 𝑖𝑐 = 𝑖, 𝑡 = 𝑡+ 1 and return to step 6.
7. Consider all the clusters 𝐷1, . . . , 𝐷𝑡 and eliminate every cluster containing other

clusters from the list.
8. Stop.



278 Bulletin of PFUR. SeriesMathematics. Information Sciences. Physics. No 2, 2014. Pp. 272–280

The constructed sets 𝐷1, . . . , 𝐷𝑠 form the output of the external stage 3. Sets
𝐷1, . . . , 𝐷𝑠 are the found clusters. The volatility 𝑉 (𝐷) of cluster 𝐷 is defined
as volatility of family F such that 𝐷 = 𝐴(F). The volatility of the whole clustering
problem is defined as the weighted sum of all the found clusters:

𝑉 =

𝑠∑︁
𝑖=1

𝑉 (𝐷𝑖)|𝐷𝑖|/
𝑠∑︁
𝑖=1

|𝐷𝑖|. (4)

In order to resume this Section, let us describe the operation of Step 1 – Con-
struction of 𝛼-stable Families. The algorithm is rather simple. We construct the
list of all families F, such that 𝛼(F) > 0.5. Assume we have already the current list
of such different families F1, . . . ,F𝑠. Assume F = ⟨F𝑖1 , . . . ,F𝑖𝑑⟩ is one of constructed
families, presented in form (2). Consider arbitrary set 𝐹𝑖 from any set 𝑈𝑖, where
𝑖 > 𝑖𝑑. Check the new family F′ = ⟨F𝑖1 , . . . ,F𝑖𝑑 , 𝐹 ⟩ for the condition 𝛼(F′) > 0.5 (it
is a simple operation). If this condition holds, F′ is added to the list.

The same operations is executed
1. for all the elements of 𝑈𝑖;
2. for all 𝑖 (𝑖𝑑 < 𝑖 6 𝑟);
3. for all the families of the current list.

The algorithm stops then no new family cannot be added to the current list. Initially
all the separate sets from every 𝑈𝑖(𝑖 = 1, . . . , 𝑟) form the current list.

It is worthwhile to remark that the algorithm is fast enough, because for almost
all pairs of two sets from different 𝑈𝑖 their intersection is empty and therefore all the
chains 𝐹𝑖1 , . . . , 𝐹𝑖𝑑 are very quickly terminated.

6. Comparisons and Examples

Many difficult model examples as well as comparisons with other known clustering
methods were considered in the cited work [8]. However, in all the given there examples
volatility is very close to 0. In this publication we focus our attention on some real
clustering problems, in which volatility essentially differs from 0. Moreover, its level is
one of the most significant and meaningful characteristics of the considered situations.
This circumstance underlines the expedience of introduction of this parameter.

1. Stock market analysis. The results are presented in terms of the found groups
of stock for USA, Russia and Sweden stock market. In the considered case the initial
data consist of pair-wise correlations for 2008–2010 years: 500 USA stocks; 266 Sweden
stocks; 151 Russian stocks. It is required to find clusters in these data (or be sure in
their absence), basing on the given correlation matrices.

USA market. Volatilities of the found clusters are presented in the following table:

NoNo 1 2 3 4 5 6 7 8
Volatility 0.000 0.125 0.167 0.167 0.286 0.356 0.549 0.583

It is possible to add that all the clusters are formed by companies engaged in
the same or close fields. The cluster with the minimal volatility 0 includes only the
companies engaged in the same field (gold mining). The increasing of volatility is
accompanied (as a trend) by the widening of field of activity of included firms. The
obtained clustering results at least do not contradict to common sense.

Russia market. Only 2 clusters are revealed in Russian stock market. Both groups
of companies are engaged in electrical power production. In both cases volatility is
equal to 0.15. One group consists of 18 companies, the other consists of 5 companies.
The correlation between stock, included in the same cluster, is significantly less than
in USA market. This circumstance demonstrates the significant difference between
these two markets.

Sweden market. Under the same algorithm no clusters in Sweden data are revealed.
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2. Deputies Clusters in Duma. In this case the activity of Russian Duma (par-
liament) was analyzed for period of 5 months, since 01.09.2001 till 01.02.2002. This
period seems important, because the significant political event – occurrence of new
party ”Unified Russia” – happened 01.12.2001. In more detail the situation is de-
scribed in book [9]. Five families of classifications (corresponding to the considered
five months period) are found. For every separate month all the votings (200 – 500) are
considered. To 𝑖-th deputy (𝑖 = 1, 2, . . . , 479) a vector 𝑣𝑖 = (𝑣𝑖1, 𝑣

𝑖
2, . . . , 𝑣

𝑖
𝑛) is related,

where 𝑛 is the number of votings in the months,

𝑣𝑖𝑗 =

⎧⎨⎩
1, if 𝑖-th deputy voted for 𝑗-th proposition;

−1, if 𝑖-th deputy voted against 𝑗-th proposition;

0, otherwise.

The dissimilarity 𝑑𝑠𝑡 between 𝑠-th and 𝑡-th deputies is defined as usual Euclidian
distance between vectors 𝑣𝑠 and 𝑣𝑡. The dissimilarity matrix 𝐷 = (𝑑𝑠𝑡) is the initial
one for clustering algorithm, described in Section 2. The volatilities of all the clusters
are presented in the following table:

Table 1
Volatility in duma clusters

September 0; 0; 0; 0; 0
October 0; 0; 0; 0; 0; 0; 0; 0
November 0; 0; 0.022; 0.200; 0.260; 0.315
December 0; 0; 0; 0.010; 0.012; 0.074; 0.125
January 0; 0; 0; 0.020; 0.035; 0.060; 0.144

The main conclusion is as follows. The volatility was equal 0 in September and
October 2001; it significantly increased just before the key event – the creation of
“United Russia”, and slightly decreased after this event. In the cited book [9] several
known indices of Duma did not show signifycant features at this period.
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Волатильность в классификации
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ул. Университетская, д. 19, Дубна, Московская область, Россия, 141980

Целью данной работы является разработка новой трёхуровневой схемы автоматиче-
ской классификации, основанной на введённом понятии — волатильности, как от-
дельных кластеров, так и классификации в целом. Волатильность представляет собой
точно определяемую и эффективно вычисляемую величину, которая определяет ста-
бильность, точность, надёжность некоторых подмножеств исходного множества вариан-
тов — короче говоря, возможность (или невозможность) их выбора в качестве кластеров.
Предложенный алгоритм находит кластеры с заданным максимальным уровнем вола-
тильности, включая и традиционные кластеры, обладающие волатильностью, близкой
к нулевой. Кластеры на фондовых рынках США, России и Швеции (за период кризи-
са 2008–2010 годов) и депутатские кластеры, определяемые голосованиями в 3-й Думе
с 01.09.2001 по 31.01.2002 – периода, включающего в себя образование партии «Единая
Россия» 01.12.2001, — были построены предложенным алгоритмом. При анализе кла-
стеров, построенных по результатам голосований для каждого месяца в отдельности,
оказалось, что волатильность кластеризации в сентябре и октябре равна 0, резко воз-
растает в ноябре и слегка убывает в декабре и ноябре. Другие методы (типа индексов
согласованности между фракциями и др.) не показывают «политической бифуркации» в
рассматриваемом периоде. Рассмотрены также разнообразные модельные примеры, для
которых результаты классификации хорошо согласуются с геометрической интуицией.

Ключевые слова: кластерный анализ, автоматическая классификация, разрез в
графе, волатильность, фондовый рынок, Государственная Дума.




