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A second order finite volume scheme on structured meshes is presented for numerical solu-
tion of time dependent Maxwell’s equations with discontinuous dielectric permittivity. The
scheme is based on approaches of Godunov, Van Leer and Lax Wendroff and employs a spe-
cial technique for gradient calculation near dielectric permittivity discontinuities. The scheme
was tested for problems with linear and curvilinear discontinuities. Test results demonstrate
second order of convergence and support second order of approximation in space and time.
A parallel implementation of the scheme based on geometric decomposition was developed.
Computational region was partitioned into subregions. Computations in each subregion were
carried out independently using halo cells. Test results indicate linear scalability. Parallel
implementation was applied to modelling photonic crystal devices. Computational results for
photonic crystal waveguide with a bend correctly confirm bend configurations and frequencies
with zero reflection.
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1. Introduction

Finite difference time domain method based on structured cartesian grids is ar-
guably the most popular method for numerical solution of Maxwell’s equations [1]. Tt
is second order accurate in space and time for media with constant dielectric permit-
tivity but has reduced order of approximation for media with dielectric permittivity
discontinuities. Recently several finite volume schemes on unstructured meshes were
suggested that are second order accurate in space and time even for media with di-
electric permittivity discontinuities [2, 3].

For many problems the use of unstructured meshes is not necessary. Structured
meshes offer several advantages. They can be generated using trivial algebraic algo-
rithms and schemes on structured meshes can be easily parallelized.

In this paper we suggest a second order finite volume scheme on structured meshes
for numerical solution of Maxwell’s equations with discontinuous dielectric permittiv-
ity with parallel implementation. The scheme uses Godunov flux approximation [4]
and approaches of Van Leer [5] and Lax-Wendroff [6] to increase order of approxima-
tion. The key idea of the scheme is to use stencils for gradient approximation that
don’t cross dielectric permittivity discontinuity. Scheme was tested for linear as well
as curvilinear discontinuities. Calculation results confirm second order of approxi-
mation. Parallel implementation was developed using OpenMP. Test results indicate
linear scalability. Scheme was applied to modelling photonic crystal waveguides [7,8].

2. Maxwell’s Equations

The system of two-dimensional Maxwell’s equations for TM case can be written in
vector form as
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where U = (D3, By, Bo)! is conservative variables vector, F; = (—H3,0,—FE3)! and
Fo = (Hy, F3,0)" are flux vectors.

In the above formulas E is electric field, H — magnetic field, D = ¢E — electric
induction, B = pH — magnetic induction, ¢ — dielectric permittivity, 1 — magnetic
permeability. In this paper we assume pu = 1. The system of Maxwell’s equations can
also be written using flux variables V = (FE3, Hy, Hs)" related to conservative variables
by U =QV as

O vy, 2 v=, 2)

0
@V +dig- 92a

where

3. Numerical Scheme

By integrating the system of Maxwell’s equations over a quadrilateral cell C; with
edges I';, assuming constant dielectric permittivity in the cell an integral conservation
law can be obtained

at/VdQ—'_Z/ anl +TLQF2) dl' =0, (4)
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where (n1,n2) is a unit normal. For approximation of this integral conservation law
consider a finite volume Godunov scheme
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where (¢, is volume of the ith cell, s’éi — length of its kth edge, 7 — time step.

Flux F is calculated using exact solution to the Riemann problem F = ATV (XF) +
A"V g (XT) where Vi z(X") are interpolations of V from two neighboring cells L
and R on edge center X' and matrices AT and A~ can be written as
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The scheme will have second order of approximation in space and time if values at
the edge centers are calculated with second order of approximation. Such values can
be obtained using interpolation
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where X, r are barycenters of neighboring cells, as long as the derivatives are approx-
imated with first order [5,6].

Derivatives of V are approximated using the least squares method. Stencil for
derivative approximation consists of a cell and 8 adjacent cells. If a cell is next to
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dielectric permittivity discontinuity the stencil is shifted one cell away from discon-
tinuity. So that all the cells in the stencil have the same dielectric permittivity as
in the cell for which derivatives are calculated. Derivatives of V are limited by in-
terpolating cell values on adjacent vertices, taking arithmetic average of interpolated
values as vertex value and finally calculating limited gradients in a cell by applying
least squares method to cell vertex values.

Parallel implementation using geometric decomposition requires data from up to 4
halo cells outside of subregion to find fields at a new time step in subregion. Parallel im-
plementation was programmed using OpenMP. Computational region was partitioned
in vertical subregions. Computation of new values in a subregion was programmed
as a separate method. This method in a cycle row by row reads data from computa-
tional region and halo cells and computes the next row of electromagnetic fields at a
new time step. In this way only the data from the rows necessary to update next row
is stored in memory and not data from the whole subregion and all halo cells.
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Figure 1. Computational mesh and electric field distribution

4. Numerical Experiments

To verify order of approximation of the scheme we considered problem of interac-
tion of plane electromagnetic wave with a dielectric cylinder. The cylinder dielectric
material had dielectric permittivity 2. A sequence of five meshes was used. Structured
40 by 40 mesh consisting of 1600 quadrilaterals and contour plot showing distribution
of electric field at time 2.0 obtained using 80 by 80 mesh consisting of 6400 quadri-
laterals are shown on Fig. 1. Maximum errors for different meshes are presented in
Table 1. Error behavior indicates second order of convergence and supports second of
approximation of the suggested scheme. Parallel implementation showed linear scala-
bility. For example simulation using 640 by 640 mesh took 1009 and 507 seconds using
2 and 4 threads respectively.

To demonstrate scheme potential for solving real problems we considered problem
of pulse propagation inside photonic crystal waveguide. Waveguide had a square
lattice with cylindrical elements. All the parameters were from [8]. Reflection spectra
obtained for two waveguide configurations are shown on Fig. 2 and show presence of
one frequency with zero reflection for one configuration.
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Figure 2. Reflection coefficients for photonic crystal waveguides

Table 1
Max. error cylinder
N Max. 62 Convergence order
40 0.051409 —
80 0.013267 1.95
160 0.003348 1.99
320 0.000840 2.00
640 0.000210 2.00

5. Conclusion

We have presented and tested a second order finite volume scheme on structured
meshes for Maxwell’s equations with discontinuous dielectric permittivity. Computa-
tional results for test problems confirm second order of approximation of the proposed
scheme. Spectra obtained for photonic crystal waveguides agree well with the results
obtained by other theoretical and computational approaches [7,8]. Parallel implemen-
tation of the scheme indicates linear scalability.
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ITapannenbHass KOHEYHO-0ObEMHAsS CXeMa BTOPOTO IOPsiIKa
AJsa ypaBHeHUiT MakcBesia ¢ pa3pbIBHONI JM3JI€KTPUIECKOI

IIPOHUIAEMOCThIO HA CTPYKTYPUPOBAHHBIX CETKAX

T. 3. Ucmarnios

Daryavmem UHPGOPMAYUUOHHOIT METHOA02UT
Hosocubupckuti 20cydapcmeertvili YHUBEPCUMEM,
ya. Iupoeosa, 0. 2, Hosocubupcxk, Poccus, 630090

[Ipemyaraercst cxemMa BTOPOro MOPSIIKA HA CTPYKTYPUPOBAHHBIX CETKAX i YUCJIEHHOTO
peIleHns HECTAIMOHAPHBIX ypaBHeHuit MakcBesIa ¢ pa3pbIBHON JUSIEKTPUIECKON TTPOHUIIA-
emocThio. CxeMa ocHOBaHa Ha moaxoaax lomynosa, Ban Jleepa n Jlakca—Benapoda u ucmosb-
3yeT CIelHabHBbIA MOAXOM K BBIYHUCJ/ICHHUIO I'DAJUEHTOB OKOJIO Pa3PbIBOB JIUJIEKTPUYIECKON
nponunaemoct. CxeMa OblLjia IpOBEpeHa Ha 3aJadaX C JUHEHHBIMUA U KPUBOJUHEHHBIMEA Pa3-
pBIBAMU UIJIEKTPUIECKON HMPOHUIIAeMOCTH. Pe3yabrarsl pacyéToB IOKA3bIBAIOT BTOPOI IO-
PAI0K CXOJIMMOCTH U IIOATBEPKJAAI0T BTOPOH HNOPSIJIOK AIIIPOKCUMAIIMUA CXEMBI 110 BpPEMEHU U
pOCTPAHCTBY. VICIOIB3ysT METO, PeOMETPUIECKOM JIEKOMITO3UIINY, ObLIa pa3paboTaHa mapaJsi-
JleJIbHAsT peaJin3alisl CXeMbl. BeraucmrebHast 06J1acTh pa3buBaJiachk Ha 1ogobaacTu. Pacaé-
ThI B Ka)K,I[OfI HO,D;O6JI&CTI/I IPOBOAUJINCH HE3aABUCHUMO, HUCIIOJIB3yd JOIIOJIHUTEJ/IbHbIC STIEITKA.
Pesynbrarsl pac4éToB MOATBEPKIAIOT JUHEHHYIO MacIITabUpyeMocThb. [lapasutenbHast pea-
nmr3ars ObLTa TPUMEHEHa, JJTsT MOJEIMPOBAHUsT (DOTOHHO-KPUCTAJLUIMIECKUX yCTPO#CTB. Pe-
3yJBTATHI PACIETOB JJIsi (POTOHHO-KPUCTAJIIMIECKOTO BOJTHOBOJA C M3TUOOM ITPABUJILHO TIPE/I-
CKa3bIBAaIOT KOH(bI/IpraI_H/II/I " 9aCTOTHI C HYJIEBBIM OTpazKEeHUuEeM.

KuroueBnie cioBa: ypasmenust MakcBesta, cxema ['omyHoBa, MeTON KOHEIHBIX O0DBE-
MOB, Pa3pbIBHAA JINIJIEKTPUUIECKAs TPOHUIIAEMOCTh, BTOPO# OPsAI0K, (DOTOHHBIE KPUCTAJIIIBI,
BOJIHOBO/IBL.





