
UDC 519.688
The Algorithms of the Mulri-Threaded Relevant LP-inference

S. Yu. Bolotova, S. D. Makhortov

Voronezh State University
1, Universitetskaya pl., Voronezh, Russia, 394006

The relevant LP-inference, which is based on the solution of logical equations, is an effec-
tive tool that can be used for research and optimization of production-logical systems. It
significantly reduces the number of executed queries to an external source of information (ei-
ther to a database or an interactive user). The preference is given to testing the facts that
are really needed in the inference. However, experiments have shown that the process of us-
ing the relevant LP-inference may require an excessive amount of computational resources of
the computer. So, the relevant LP-inference method was modified to use parallel computing
algorithms. This paper describes the implementation of a multi-threaded algorithms for rel-
evant LP-inference and provides the pseudocodes of these algorithms. Multi-threading is a
fundamentally new element in the implementation, which allows speeding up the process of
constructing sets of facts that are required in the inference, and their further processing.

Key words and phrases: backward inference, relevant inference, logic equations, par-
allelism, multi-threading.

1. Introduction

Production systems is an important area of the theoretical and applied research
in the field of artificial intelligence. They are used in the theory of learning and
problem solving systems, the development expert systems, covering a large variety of
applications in several areas, such as medicine, engineering, exploration, and others [1].
Production systems have very rich history and the fact that they are still of interest is
confirmed by numerous modern applied and theoretical researches in this area [2–5].

However, production system programs are very computationally intensive and run
quite slowly. In particular, they often require an exponential number of computation
and intensive exchange with external memory. This fact reduces their effectiveness,
and therefore, many experts try to avoid working with programs that require extreme
amounts of resources [1]. Consequently, a significant increase of production systems
performance is the important part in theoretical and applied research.

There are several possible ways for speeding up the execution of production sys-
tems. This paper focuses on one of the methods based on using parallel comput-
ing in the production systems models [6] and presents the architecture of an object-
oriented class LPStructure, encapsulating the most important properties and methods
described in [6], including searching logical reductions and solutions of the production
logical equations. Multi-threading is a fundamentally new element in the implementa-
tion. This class was developed in MS Visual Studio, using the C++ language and STL
library. For the purpose of reusing the class in other software systems, its interface is
designed as a dynamic C-library, called LPStructure.dll.

2. A General Description of the Algorithm

The considered software system implements the relevant parallel backward chaining
based on the solution of the production logical equations and for this purpose it
uses mathematically-based algorithms for finding the truth preimage and accelerating
backward inference [6]. Hereafter we use the notations and definitions used in the
mentioned article.

LP-structure (lattice-production structure) — is the lattice with an additional
binary relation set on it, which has a number of production-logical properties [6].

Received 30th December, 2013.



Bolotova S.Yu., Makhortov S.D. The Algorithms of the Mulri-Threaded . . . 217

The relevant backward inference strategy is aimed at minimization of a query
number to the external information source (either to a database or an interactive
user). The inference based on equation solving starts with the creation of all minimal
initial preimages in the LP-structure for the atoms that correspond to the values of
an examined object. Using this constructed set it is enough to find the preimage that
contains only true facts. If founded it makes possible to have a conclusion about the
corresponding value of the object. The effective way to achieve that, is to prioritize
the viewing of the preimages containing the values of the most relevant objects [6].
These are first of all the objects, whose values are present in a maximal number of the
constructed preimages. A negative answer to a unique query eliminates all subsequent
queries about the elements of a facts subset. Along with a significantly reduced number
of queries, when using LP-inference, the preference is given to testing the sets of facts
of a minimal cardinality.

However, experiments have shown that the process of simultaneous construction of
the minimal initial preimages for large knowledge bases and their “deep” structure may
require an excessive amount of computational resources of the computer. Considering
this relevant LP-inference method was modified to use parallel computing algorithms.
Parallel relevant LP-inference allows speeding up the process of constructing sets of
facts that are required in the inference, and their further processing [7].

As an illustration we shall give simplified descriptions of algorithms of a relevant
LP-inference and a parallel LP-inference.
Input:

initial facts – true (set 𝑇 ), false (set 𝐹 );
set of rules 𝑅;
hypothesis 𝑏.

Output:
true initial preimage 𝑋0 = {𝑥01, ..., 𝑥0𝑛} for 𝑏
(or 𝑋0 = null).

// Relevant LP-inference
𝑋0 = null
{X} = getPreImages(b)
while 𝑋0 = 𝑛𝑢𝑙𝑙 and {𝑋} ≠ ∅ do

𝑘 = getRelevantIndex ({X} ,T)
Ask (𝑥𝑘)
foreach 𝑋𝑗 ∈ {𝑋} do
if 𝑋𝑗 ⊆ 𝑇 then 𝑋0 = 𝑋𝑗

break
end

if 𝑋𝑗 ∩ 𝐹 ̸= ∅ then {𝑋} = {𝑋}∖𝑋𝑗

end
end

The function 𝐴𝑠𝑘(𝑥) asks a user (or an external database) about the truth of
an atomic fact 𝑥 and according to the answer modifies sets 𝑇 and 𝐹 . Function
𝑔𝑒𝑡𝑃𝑟𝑒𝐼𝑚𝑎𝑔𝑒𝑠(𝑏) solves the equation with a right-hand side 𝑏, i.e. it constructs set
{𝑋} of all minimal initial preimages for atom 𝑏.

The equation solving is carried out by splitting relation 𝑅 into “layers” 𝑅𝑡, 𝑡 ∈ 𝑇 ,
each containing no more than one solution [6]. The layer has the maximum possible
set of relationship pairs with the unique right-hand sides, and two layers differ in one
pair at least. In each separate layer the process of the equation solving is reduced to
the problem of finding the set of initial nodes of the graph 𝐺𝑅𝑡,𝑏, corresponding to a
layer.

A working with different layers is organized independently and in parallel.
The primary application thread creates secondary threads (which are limited by

the 𝑀𝑎𝑥𝑇ℎ𝑟𝑒𝑎𝑑 — the maximum number of threads), passing them a block of data.
Hereinafter the “threads” are threads of execution [7]. Created thread searches the so-
lution of production logic equation in a separate layer. Then the LP-inference program



218 Bulletin of PFUR. SeriesMathematics. Information Sciences. Physics. No 2, 2014. Pp. 216–219

module immediately checks its “truth”, sending queries to the external information
source, if necessary. If one of the preimages is not true, program stores the information
about false facts (it reduces possible number of rules, required for next equation solu-
tion) and calculates the next preimage which also significantly speeds up the process
and after that threads exit.

In implementing a thread pool mechanism is used [7]. The main thread takes
thread from the pool and passes the necessary data for processing. If the number of
active threads is less than the maximum, a new thread is created. When the number
of active threads is maximized, request queued and waiting for the release of one of
the threads. For threads synchronizing the critical sections, which are initiated in the
activation process, are used.

Hereafter is an algorithm of 𝑔𝑒𝑡𝑃𝑟𝑒𝐼𝑚𝑎𝑔𝑒𝑠(𝑏) function, where 𝑅′ is a set of layers
{𝑅𝑖}. As already mentioned, the solution in each layer is calculated in a separate
thread. The maximum number of threads in the pool is limited by 𝑀𝑎𝑥𝑇ℎ𝑟𝑒𝑎𝑑𝑠
parameter. The number of active threads is stored in the 𝑐𝑜𝑢𝑛𝑡𝑈𝑠𝑒𝑑𝑇ℎ𝑟𝑒𝑎𝑑𝑠 variable.
If the pool has a free thread, then it schedules this thread for execution by passing
it pointer to a 𝐹𝑖𝑛𝑑𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑠𝑖𝑐𝑖𝑜𝑛(𝑅𝑖) function, that finds a solution in the next
layer 𝑅𝑖.
// Finding the solutions of the equation for each layer in a separate thread
foreach 𝑅𝑖 ∈ 𝑅′ do in parallel
if 𝑐𝑜𝑢𝑛𝑡𝑈𝑠𝑒𝑑𝑇ℎ𝑟𝑒𝑎𝑑𝑠 < 𝑀𝑎𝑥𝑇ℎ𝑟𝑒𝑎𝑑𝑠 then
𝐵𝑒𝑔𝑖𝑛𝑇ℎ𝑟𝑒𝑎𝑑(); // Start the thread
𝑐𝑜𝑢𝑛𝑡𝑈𝑠𝑒𝑑𝑇ℎ𝑟𝑒𝑎𝑑𝑠++;
𝐹𝑖𝑛𝑑𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝐷𝑒𝑠𝑖𝑐𝑖𝑜𝑛(𝑅𝑖);
𝐸𝑥𝑖𝑡𝑇ℎ𝑟𝑒𝑎𝑑(); // End the thread
𝑐𝑜𝑢𝑛𝑡𝑈𝑠𝑒𝑑𝑇ℎ𝑟𝑒𝑎𝑑𝑠−−;

else
𝑊𝑎𝑖𝑡𝑖𝑛𝑔(); // Wait until the thread is freed

end;
end.

Function 𝑔𝑒𝑡𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑡𝐼𝑛𝑑𝑒𝑥({𝑋}, 𝑇 ) finds index 𝑘 of any of the most relevant and
not checked for truth facts contained in the current {𝑋}. The function uses two above
indices of relevance to minimize the number of calls of the function 𝐴𝑠𝑘(𝑥𝑘). The
process of identifying relevant objects is very expensive, so it is also parallelized. For
the each number of facts the system calculates the number of preimages, containing
these facts using multiple threads (number of threads is limited by 𝑀𝑎𝑥𝑇ℎ𝑟𝑒𝑎𝑑𝑠
parameter). The fact, that belongs to the maximum number of preimages, increments
its relevance score by 1. When accessing shared resources threads are synchronized
using the critical sections mechanism.

The benefits of parallel LP-inference are confirmed experimentally. When process-
ing the large knowledge bases the use of parallel algorithms speeds up LP-inference
by up to 30%.

3. Conclusions

Often the processing of large knowledge bases requires a lot of computational
resources. Thus it is necessary to find ways to improve the efficiency of such systems.
The presented library demonstrates the methods of using the theory of LP-structures
in order to speed up the backward inference production systems, as well as the program
based on the use of multi-threading.

References

1. Gupta A. Parallelism in Production Systems. — London: Pitman, 1987.
2. Liberatore P. Redundancy in Logic II: 2CNF and Horn Propositional Formulae //

Artificial Intelligence. — 2008. — Vol. 172, No 2–3. — Pp. 265–299.



Bolotova S.Yu., Makhortov S.D. The Algorithms of the Mulri-Threaded . . . 219

3. Maciol A. An Application of Rule-Based Tool in Attributive Logic for Business
Rules Modeling // Expert Systems with Applications. — 2008. — Vol. 34, No 3. —
Pp. 1825–1836.

4. Poli R., Langdon W. B. Backward-Chaining Evolutionary Algorithms // Artificial
Intelligence. — 2006. — Vol. 170, No 11. — Pp. 953–982.

5. Katerinenko R. S., Bessmertnyi I. A. A Method for Acceleration of Logical In-
ference in the Production Knowledge Model // Programming and Computer Soft-
ware. — 2009. — Vol. 37, No 4. — Pp. 197–199.

6. Makhortov S. D. Mathematical Foundations of Artificial Intelligence: Theory LP-
structures for the Construction and Studying of Knowledge Models of Production
Type / Ed. by V. A. Vasenin. — Moscow: MCCME, 2009.

7. Richter J. Programming applications for Microsoft Windows. — Grove City: Mi-
crosoft Press, 1999.

УДК 519.688
Параллельные алгоритмы релевантного LP-вывода

С.Ю. Болотова, С. Д. Махортов
Воронежский государственный университет

Университетская площадь, д. 1, Воронеж, Россия, 394006

Релевантный LP-вывод, который основывается на решении логических уравнений, яв-
ляется эффективным средством для исследования и оптимизации продукционно-логи-
ческих систем. Он позволяет существенно сократить количество выполняемых запросов
к внешнему источнику информации (к базе данных или интерактивному пользовате-
лю). Предпочтение отдаётся исследованию только тех фактов, которые действительно
необходимы при выводе. Однако эксперименты показали, что процесс использования
релевантного LP-вывода может потребовать большого количества вычислительных ре-
сурсов компьютера. В связи с этим метод релевантного LP-вывода был модифицирован
путём использования параллельных вычислений. В этой статье описывается реализа-
ция параллельных алгоритмов релевантного LP-вывода и приводятся псевдокоды этих
алгоритмов. Многопоточность является абсолютно новым элементом в реализации, ко-
торый позволяет ускорить процесс построения множеств фактов, которые необходимы
при выводе, и их дальнейшего исследования.

Ключевые слова: обратный вывод, релевантный вывод, логические уравнения,
многопоточность.




