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In the paper the algorithm is proposed for the numerical simulation of the thermal con-
ductivity for the design and optimization of cryogenic cells pulsed (in the millisecond range)
feeding the working gases into the electron-stringed source of multiply charged ions. Heat-
ing process comes when the electric current passed through one of the layer. A model of the
cryogenic cell with four layers (materials) is investigated. The heat transfer into the object is
described by the system of heat equations with temperature dependent discontinuous ther-
mal coefficients. The discontinuous thermal coefficients are given by experimental data and
approximated by the least-squares method using the polynomial analytical functions. Con-
jugation condition between materials is considered to be ideal. The results are reported for
a common configuration of the cell. The parallel algorithm for modeling thermal processes
into four layer model was developed and speedup of the algorithm in depending on number
of CPUs is shown.
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1. Introduction

The object shown in Fig. 1 is considered to be a cryogenic cell pulsed (millisecond
range) feeding the working gases into the electron-string source of highly charged
ions [1]. This model consists four layers (materials). Two-layer model have been
investigated in [2,3]. The heat conductivity modeling in the composite object, when
the object is heated by the electric current passing through one of the layer (graphite)
is complex, especially if one of the layers is from 50 up to 1200 times less then the
other ones. The main goal of this work is implementation a model of thermal processes
for a given object for systematic studies.

Figure 1. Schematic view of the object slice. The slice of the object: 0 —
cooler, 1 — electrical insulator, 2 — heat source (conductive layer), 3 —
external insulator, 4 — liquid helium temperature terminal with T'=4.2 K
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2. Equations and Boundary Conditions

The heat transfer into the object can be described by the following system of
partial differential equations with temperature dependent discontinuous thermal coef-
ficients [4]:

or 190 oT 0 oT
pmCvm(T) ot  ror <r/\m(T) 87“) + 0z </\m(T) 82) + X (T), (1)
where 7 € [0, Tmax), 2 € [0, Zmax and ¢ > 0.

Index m is introduced for each material, m = 0 — cooler (copper), m = 1 —
electrical insulator, m = 2 — heat source (graphite), m = 3 — external insulator.
The radius ryax = 75 = 0.1301 cm and space variable zpax = 5 cm. The intermediate
radii rj; = 0.12 cm, 7] = 0.125 cm, r5 = 0.13 cm and intermediate space variable
z1 = 4 cm. Source power X (T) is nonzero only in the layer 2, for r € [rf,r3] and
FAS [0, 21].

Coefficients Cy,,, and A, are specific heat capacity and thermal conductivity,
respectively. For the chosen materials the corresponding data is obtained from the [5],
it is measured in the temperature range from T = 4.2 K to T'= 60 K. Their temper-
atures dependences were approximated by the least-squares method using the poly-
nomial analytical functions [6]. Source dependence was approximated by function
X(T) = I?/Sx(T), where x(T) = 1.8/v/T and constant I?/S = 10° [2].

The initial condition is given in the form

T(r,z,t=0) =Ty, (2)
where Ty = 4.2 K (liquid helium temperature) and the boundary ones are taken as

8T(r =0,0<2< Zmax;t) _ aT(T - T8721 S2S Zmax’t)

or or
OT(r =1k, 0< 2< 21,1)
— max’ ) — 0 3
ar ) ( )
OT(0 < r <Tmax,2=0,t) 0T (r§ <7 < rmax, 2 = 21,1)
0z 0z
T(r, 2 = Zmax,t) = Tp. (4)

The functions Cy and A have discontinuities of first kind at the following points:
rg, v and 73 for z € [0, z1]. Conjugation condition between materials is given:

A1) 28 () , (5)

r=r¥ —0 or r=r* +0

m m

where m = 0,1,2 and r;, is a point of the border between the materials m and m + 1
(discontinuity points).

3. Numerical Algorithm

Numerical calculations are carried out on a non-uniform grid of variables r, z and
t with constant spatial steps h,, and time step 7, respectively: w, = {t; =i-7,i =

3
0,....,n:},w,={zi=4h,,i=0,....,n.},w, ={ri,i=0,..., > Ny}, T = tmax/Nr,
m=0

h, = Zmax/Nz, ho = 10/n0s M = (T'm — Tm—1)/nm for m > 1, where r € [0, rmax],
2 € [0, Zmax), t € [0, tmax] and n; and ns are numbers of partitions of variable r , n,



Ayriyan A.S., Pribi§ J. Numerical Algorithm for Simulation of Thermal. .. 69

and n, are numbers of partitions of variables z nad ¢. The nonuniform step h,, has
been introduced to speed up the calculation time. Since the layers 3 much thinner
than layers 1-2 and the layers 1-2 much thinner than layer 0, we can choose the steps
ho > h1 = ho > hs.

For the numerical solution the initial-boundary-value problem (1)—(4) was approx-
imated by the following explicit finite difference scheme [7]:

Tk+L _ Tk 1
k i 0o . k ik .k ik k
POV = = E_Az [k Tl ] + g T + X, (6)
where spatial finite difference operators are:
1 Tk Tk Tk Tk .
. k mk 7 _ k i+1,j (2] k (2% i—1,5
A [riXs T = 7 [ri+%>\i+;aj}lriﬂ _Ti*%/\if%JT ;
AR = 2 e (o TF) = Ak (T - T 7
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Ti}?j = T(ri’ Zj’tk?)a CVZ- = CV(Tilfj)’ Af,j = /\(Ti]fj% Xz‘kjj = X(riv Zj’tk))
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hi:hl,i:O,...,nl—l, hi:hl,i:nl,...,nQ, hlz +2 +1,

hi Tf; + Tl Tk + Tk,
rii%:”iga Afi§7]:)\<732:|:17] , )\ﬁji%:A %’]il .

The algorithm of numerical solution is described, for instance, in [7]. Boundary
conditions (2) have been approximated by the following formulas:

4Tk:+]. o Tk-‘r].
Té‘zjl St A A 3 2 forr =0, 2z € [0, Zmax),
k+1 k+1
k+1 _ 4Tn—1,j - Tn—2

ng 3
Similar formulas can be used for approximation of boundary conditions (3), for z =0
and z = z;. At the right exterior boundary (z = zpax) the temperature values are
known and equal to the temperature of liquid helium, i.e. Tf:{ ' = T, The same

temperature is at the initial time inside the whole object (see (3)).

I for ¢ = To, 2 € [21, Zmax] and 7 = rpax, 2 € [0, 21].

The conjugation conditions are approximated using one-sided derivatives:

+1 _ mpk+1 k+1 k41
A (Tk )iri*vj T’i**laj =\ (Tk: )T;;*‘Fl:j T;*J
mis )= = Ampadie j) ———,
h; h;
% i+1

where i* is corresponding index of discontinuity point, m = 0,1,2 and the values of
temperatures at these points are:
k k+1 k k+1
TR+ _ )‘m(Ti*,j)hiJrlTi*fl,j - /\m+1(Ti*,j)hiTz‘*+1,j

it = )\m(Tﬁ,j)hHl + )\m+1(Tiki7j)hi
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4. Results and Conclusions

[h[? | pCv(T)

The explicit schema (6) is stable only in case if 7 < 2 | NT) nin

|h| = m%ng{hm, h.}. The result shown in Fig. 2 was obtained at a time 0.5 ms for
m .

, Where

ho = 107% em, h123 = 107° c¢m, h, = 1072 cm and 7 = 107! s, when the schema
(6) is stable. For numerical simulation, the parallel algorithm for modeling thermal
processes into four layer cylindrical object was developed. This algorithm is based on
approach described in [2,3]. The speedup of the parallel algorithm is shown in Fig. 3.
It shows approximately 90% of speedup up to 25 CPUs.
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Figure 2. Temperature in the object Figure 3. Speedup VS number of
at the moment ¢ = 0.5 ms CPUs
It is necessary to make systematic studies in order to find an optimal construction
and materials of the object. To make so, a great number of calculations is needed.
One of the ways for such research can be construction of an implicit scheme, which is
stable for a larger time step 7.
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AJII‘OpI/ITM YMUCJIEHHOI'O MOoJde/IMpOBaHMUA TeEIlJIOBbIX IIPOIIEeCCOB B
‘{eTpreXCJIOﬁHOM OUJINHAPUYIE€CKOM obbekTe
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B pabote mpemsioxkeH ajgropuTM MJjIs MOJEJUPOBAHUS IIPOIECCA TEIIONPOBOIHOCTH JIJIst
[IPOEKTUPOBAHUS U ONTUMU3AINN KPUOTEHHOM sT9efKU, UMITYJILCHO ITOJA0IIEeil pabodyne ra3bl
(B MIJIJIMCEKYH/IHOM JINAIIA30HE) B 3JIEKTPOHHO-CTPYHHBIH HCTOYHHUK BBICOKO3aPSIHBIX HOHOB.
Paccmorpena MoJiesib KDHOTEHHOU sIIEHKM C 9eThIpbMs CosiMu (MaTepuasamu). Temmosbre
TIPOITECCHI B UCCTETYEMOM OOBEKTE BOZHUKAIOT TP MTPOIYCKAHUY SJIEKTPUTIECKOTO TOKA Tepe3
OJINH U3 MPOBOJSIINIX CJIOEB. 1€IJIOBbIE MPOIECCHl OMUCHIBAIOTCS YPABHEHUEM TEILIOPOBO/I-
HOCTH C 3aBHUCSIIUMHU OT TEMIIEPATYPhI PA3PBIBHBIMU TENI0MDUNIECKUMU KO3(PDUIIIEHTAMY.
Kosddurnmentsr MaTepuaioB mpu KPUOTEHHBIX TEMITEPATYPAX JTaHBI TAOIUIHO U AIPOKCH-
MUPOBAHDBI AHAJTUTHIECCKUMU DYHKITUSIMA. YCJIOBUS COIPSI?KEHUS CPEJT CINTAIOTCS U1eaIbHbI-
Mu. B pesynbrarax mnpejcTaBiieH pacdeT TeMIEPATyPHOro MOJIsl JIjIsd OIIPe/IeIeHHOM KOHMUry-
paruu sdaeitku. st yckopeHnsi pacieToB pa3paboTaH MapasiIeTbHBIA aJrOpUTM, IPUBEICHO
YCKOp€eHHe aJI'OPUTMa B 3aBUCUMOCTHU OT YHCJIa IPOIECCOPOB.

KurogeBrble ciioBa: Temonepejiada, siBHAas Pa3HOCTHAsI CxeMa, HepaBHOMEDHAasl CeTKa,
rapaJsuIesIbHBII aJrOPUTM, pa3pbIBHbIE TepMudecKue K03 UIINEHTHI.





