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This review is concerned applications of matrix models in combinatorics. We will discuss
counting of orientable and nonorientable gluings of regular 2n-gons using gaussian matrix
integrals.
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1. Introduction

First time a gaussian matrix model was proposed by E.Wigner to describe the
excited states of nuclei. Nowadays matrix models have many applications. In high
energy physics the method of 1/N-expansion was presented by G.t" Hooft [1]. He
demonstrated that in the limit of a large number of colors N quantum U(N) Yang-
Mills theory is described by the diagrams, which can be drawn on a plane or a sphere.
Such diagrams are called planar. Contribution (for example, the partition function)
of each chart is included with the factor N in the degree of the Euler characteristic
of the surface on which you can draw graphs. Therefore, the contributions of other
diagrams are suppressed by 1/N.

As is well known, in the main (or planar) approximation of N in the gaussian
hermitian matrix model the correlation functions are the Catalan numbers. At the
same time, the number for ways of gluings 2n-gon to get the sphere, too, will give
the n'? Catalan number. This coincidence is not accidental. Moreover, J.Harer and
D.Zagier [2-4] was found the generating function for the number for orientable gluings
of all sorts. It has a surprisingly simple form. The number of gluings 2n-gon, giving
a surface of genus g, can be regarded as generalized Catalan numbers e4(n). These
numbers were obtained by the recurrence relations. Correlations in this model are
even or odd polynomials of degree N. For odd n, we obtain a polynomial of even
degree and vice versa.

By the way, the main achievement of [2] is even more interesting result, namely the
computation of virtual Euler characteristic of the moduli space for the two-dimensional
surface of genus g with n marked points. The moduli space is the orbifold for which
a cell decomposition has the form R*/G}, where G}, are finite groups. This implies
that its is generally not an integer this is true for the manifold. Euler characteristics
are expressed in terms of Bernoulli numbers, and are particularly remarkable form of
¢(1 — 2g) for a surface of genus g with one marked point.

In this report also we will discuss gluings regular 2n-gon for nonorientable surfaces.
They are described by gaussian integrals on symmetric matrices. We will present
examples of calculations for correlators in this model. They already have the form of
polynomials in N with non-zero coefficients for all the terms of the lowest degrees.

2. Orientable Case

At first the generating function for orientable gluings of regular 2n-gons was ob-
tained by Harer and Zagier [2]. These results were generalized by many authors [5-7]
and so on.

Total number of orientable gluings for regular 2n-gon is (2n — 1)!l.
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It is possible to count the number of orientable gluings using gaussian hermitian
matrix model. The measure of this model with hermitian matrix H is

where h;; = x;; + iy;;. Here correlation functions are given (h;jhii) = 0;16 k.
Let us define a sequence of polynomials

Tu(N) =D eg(n)N" 1720 = 3" ¢ (n) N"~1Hx(9),
g=0 g=0

where x(g) is Euler characteristic.
Then their first few values are

TI(N):N27 TQ(N):2N3+N7
T3(N) = 5N* +10N?, Ty(N) = 14N>+ 70N? + 21N ....

First numbers are Catalan numbers 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862 .... They
obey the following recursion formula C,; = CyC,, + C1C,—1 + ... + C,,Cp and

B 2n!
"opl(n 4+ 1)
, : : < _Ta(N)
Consider generating function T'(N,s) =1 +2Ns+2s > ms"
n=1 n — I

J. Harer and D. Zagier (1986) [2] using matrix integrals

T,.(N) = / tr(H*™) du(H)T, (N) = (trH*™) = / tr(H*")du(H)

obtained that

T(N,s) = G”)N. (1)

-5
For generalized Catalan numbers €, recursion formula takes the form

(n4+1)eg(n) = (4n —2)eg(n—1) + (n —1)(2n — 1)(2n — 3)eg—1(n — 2).

B. Lass [8] obtained pure combinatorial proof of the formula (1). A. Morozov
and Sh. Shakirov [7] introduced another generating function for polynomials and
calculated that

> s2AN A 1
Toi (N)— = .
sz_;o 2l )(21—1)!! 1—=A1—A—(1+\)s?

They also calculated generating functions for two-and three-point correlators. Sur-
prisingly, these generating functions are elementary.

Moreover authors [2] found virtual Euler characteristics of moduli space M, ,, for
curve with genus g and with n punctured points

(29 —3+n)!(2g—1)

Bng
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where By, are Bernulli numbers. Here, the virtual Euler characteristic is not an
integer, because the moduli space is the orbifold.
Especially simple this formula looks for one punctured point

X(Mg1) = ((1 —2g) = —Bay/2g.

Penner [9,10] developed a matrix model that calculate x(M, ). By the way famous
Kontsevich model [11] computes insertion indices on the moduli spaces.

3. General Case

Total number for nonorientable gluings [12] of regular 2n-gon is 2™(2n — 1)!I. Tt
can be demonstrated that the total number of gluings is described symmetric gaussian
matrix model. Matrix models with symmetric matrix were studied many authors [13—
15].

For correlators of elements in the case of symmetric matrix S we can obtain

<8ij8kl> = 5ik:5jl + 5il5jk~

Here the correlators or polynomials take the form [16,17]
/tr(SQ) du(S) = N* 4+ N, /w(s‘*) du(S) = 2N? + 5N? + 5N,
/ tr(S%) du(S) = 5N* + 22N3 + 52N? 4+ 41N,
/ tr(S®) du(S) = 14N® 4 93N* + 374N> 4 690N?2 + 509N.

Here as before first numbers are Catalan numbers. Surfaces with the same Euler
characteristic are taken into account in a suitable coefficient of the polynomial. To
illustrate this let us take gluings of an 4-gon with surfaces of zero Euler characteristics.
As a result we have one torus and four Klein bottle.

Similarly, the oriented case let us define the coefficients of these polynomials as

Un(N) = 3 p1g(m) N7 15000,
g=0

Then these numbers p4(n) have the following recurrent formula [16,17] for every
n>4

(n+1)pg(n) = (8n—=2)pg—1(n—1) = (4n—1)py(n—1)+n(2n—3)(10n—9)uy(n—2)—
—8(2n—3)pg—2(n—2)+8(2n—3)pg—1(n—2)—10(2n—3)(2n—4)(2n—5)ptg—1(n—3)+
+5(2n—3)(2n—4)(2n—5)pg(n—3)—2(2n—3)(2n—4)(2n—5)(2n—6) (2n—T7) g (n—4).

4. Conclusion and Outlook

We have considered the current state of the Harer-Zagier problem for general case
with nonorientable gluings of a regular 2n-gon. Virtual Euler characteristics for nonori-
entable two-dimensional surfaces via symmetric Penner model were counted in [15].
Symmetric Kontsevich model is not investigated.

Author would like to thank V.O. Manturov for discussions, L.O. Chekhov for
providing the article [15] and A.V. Borisov for reading manuscript and remarks.
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PaccmarpuBatorcst mpuiozKeHusT MATPUYIHBIX Mojeseit B KomomHaTopuke. O0CyxKmaeTcs
[IOJICYET OPUEHTUPYEMBIX ¥ HEOPUEHTHPYEMbBIX CKJIEEK IPABUJIBHBIX 21-YIOJBHUKOB C ITOMO-
IO TAyCCOBBIX MHTEIPAJIOB IO OPTOTOHAJIBHBIM MATPHUIIAM.

KuroueBrbie cjioBa: MaTpUYHBIE WHTErpajbl, 0600ménnbe dncaa Kartamana, mpou3Bo-

Astias MYHKIHS CKJIeeK, BUPTyaabHasA 3MIepoBa XapaKTePUCTUKA.





