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We study Yang–Mills fields with SU (2) symmetry generated by classical field sources.
It is shown that in this case the Yang–Mills equations can be regarded as a reasonable
nonlinear generalization of the equations of Maxwell’s electrodynamics. We seek new classes
of solutions to the examined Yang–Mills equations and find their nontrivial solutions in the
case of nonstationary spherically symmetric sources and a wide class of their non-Abelian
wave solutions.
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1. Introduction

Let us study the Yang–Mills equations with SU (2) symmetry. They can be repre-
sented as [1, 2]

𝐷𝜇𝐹
𝑘,𝜇𝜈 ≡ 𝜕𝜇𝐹 𝑘,𝜇𝜈 + 𝑔𝜀𝑘𝑙𝑚𝐹

𝑙,𝜇𝜈𝐴𝑚𝜇 = (4𝜋/𝑐)𝐽𝑘,𝜈 , (1)

𝐹 𝑘,𝜇𝜈 = 𝜕𝜇𝐴𝑘,𝜈 − 𝜕𝜈𝐴𝑘,𝜇 − 𝑔𝜀𝑘𝑙𝑚𝐴𝑙,𝜇𝐴𝑚,𝜈 , (2)

where 𝜇, 𝜈 = 0, 1, 2, 3, 𝑘, 𝑙, 𝑚 = 1, 2, 3, 𝐷𝜇 is the Yang–Mills covariant derivative,
𝐴𝑙,𝜇, 𝐹 𝑘,𝜇𝜈 are potentials and strengths of a Yang–Mills field, respectively, 𝜀𝑘𝑙𝑚 is the
antisymmetric tensor, 𝜀123 = 1, 𝑔 is the constant of electroweak interactions, 𝐽𝑘,𝜈 are
three four-dimensional vectors of current densities, and 𝜕𝜇 ≡ 𝜕/𝜕𝑥𝜇, where 𝑥𝜇 are
orthogonal space-time coordinates of the Minkowsky geometry.

Consider Eqs. (1)–(2) in the case of the following field sources:

𝐽1,𝜈 = 𝐽𝜈 , 𝐽2,𝜈 = 𝐽3,𝜈 = 0, (3)

where 𝐽𝜈 is a classical four-dimensional vector of current densities.
Then the Yang–Mills equations (1)–(2) have trivial solutions in which 𝐴2,𝜈 =

𝐴3,𝜈 = 0, 𝐹 2,𝜇𝜈 = 𝐹 3,𝜇𝜈 = 0 and the potentials 𝐴1,𝜈 and strengths 𝐹 1,𝜇𝜈 satisfy
the Maxwell equations with the sources 𝐽𝜈 . Besides, the expressions for the La-
grangian and energy-momentum tensor of the Yang–Mills field are similar to those of
the Maxwell field. That is why the considered Yang–Mills equations with the classi-
cal field sources (3) can be regarded as a reasonable nonlinear generalization of the
Maxwell equations. This nonlinear theory was studied in our works [3–5], where sev-
eral classes of exact solutions to Eqs. (1)–(3) were found. In our monograph [6] these
solutions are applied to a number of anomalous phenomena that remain still unex-
plained within the framework of the linear Maxwell theory.

It should be noted that the Yang–Mills equations (1)–(2) with the field sources (3)
are not independent. Namely, from (3) and the well-known identities for the Yang–
Mills covariant derivative 𝐷𝜇 [1, 2] we have that when 𝛿1 = 1, 𝛿2 = 𝛿3 = 0,

𝛿𝑘𝐷𝜈 [𝐷𝜇𝐹
𝑘,𝜇𝜈 − (4𝜋/𝑐)𝐽𝑘,𝜈 ] ≡ 0. (4)

That is why in Refs. [3–6] one more equation to the Yang–Mills equations (1)–(2)
with the field sources of the form (3) was proposed to uniquely determine the field
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strengths 𝐹 𝑘,𝜇𝜈 . This equation has the form

𝐼𝑘,𝜈𝐼𝑘,𝜈 = 𝐽𝑘,𝜈𝐽𝑘,𝜈 , 𝐼𝑘,𝜈 = 𝐽𝑘,𝜈 − (𝑔𝑐/4𝜋)𝜀𝑘𝑙𝑚𝐹
𝑙,𝜇𝜈𝐴𝑚𝜇 , (5)

where, as follows from Eq. (1), the components 𝐼𝑘,𝜈 satisfy the charge conservation
equations 𝜕𝜈𝐼

𝑘,𝜈 = 0 and can be regarded as four-dimensional densities of full currents
which include not only source current densities 𝐽𝑘,𝜈 but also current densities of field
virtual particles.

The additional equation (5) implies the conservation of the intrinsic energy in a
small part of a field source when charged particles are created inside the source [3–6].

Using Eq. (1), we can represent Eq. (5) in the form

𝜕𝛼𝐹
𝑘,𝛼𝜈𝜕𝛽𝐹𝑘,𝛽𝜈 = (4𝜋/𝑐)2𝐽𝑘,𝜈𝐽𝑘,𝜈 . (6)

Further we will seek exact solutions to the Yang–Mills equations (1)–(2) with the
field sources (3) that also satisfy the additional equation (6).

2. Nonstationary solutions to the Yang–Mills equations with
spherically symmetric sources

Consider the Yang–Mills equations (1)–(2) with the following spherically symmetric
sources:

(4𝜋/𝑐)𝐽1,0 = 𝑗0(𝜏, 𝑟), (4𝜋/𝑐)𝐽1,𝑛 = 𝑥𝑛𝑗(𝜏, 𝑟), 𝑛 = 1, 2, 3, (7)

𝐽2,𝜈 = 𝐽3,𝜈 = 0, 𝜏 = 𝑥0, 𝑟 =
√︀
(𝑥1)2 + (𝑥2)2 + (𝑥3)2,

where 𝜏 = 𝑐𝑡, 𝑡 is time, and 𝑟 is distance from the source center.

Let us seek the field potentials 𝐴𝑘,𝜈 in the form

𝐴𝑘,0 = 𝛽𝑘(𝜏, 𝑟), 𝐴𝑘,𝑛 = 𝑥𝑛𝛼𝑘(𝜏, 𝑟). (8)

Then from Eq. (2) we find

𝐹 𝑘,0𝑛 = 𝑥𝑛𝑢𝑘(𝜏, 𝑟), 𝐹 𝑘,𝑖𝑛 = 0, 𝑘, 𝑖, 𝑛 = 1, 2, 3, (9)

where
𝑢𝑘 = 𝜕𝛼𝑘/𝜕𝜏 + (1/𝑟)𝜕𝛽𝑘/𝜕𝑟 + 𝑔𝜀𝑘𝑙𝑚𝛼

𝑙𝛽𝑚. (10)

Substituting expressions (7)–(9) into the Yang–Mills equations (1), we derive

𝑟𝜕𝑢𝑘/𝜕𝑟 + 3𝑢𝑘 − 𝑔𝑟2𝜀𝑘𝑙𝑚𝑢𝑙𝛼𝑚 = −𝑗0𝛿𝑘, 𝛿1 = 1, 𝛿2 = 𝛿3 = 0, (11)

𝜕𝑢𝑘/𝜕𝜏 + 𝑔𝜀𝑘𝑙𝑚𝑢
𝑙𝛽𝑚 = 𝑗𝛿𝑘. (12)

As is well-known, the Yang–Mills equations (1)–(2) have the following conse-
quence [1, 2]:

𝐷𝜈𝐽
𝑘,𝜈 = 0. (13)

From (3) and (13) we find

𝜕𝑗0/𝜕𝜏 + 𝑟𝜕𝑗/𝜕𝑟 + 3𝑗 = 0, (14)

𝑗0𝛽𝑘 − 𝑟2𝑗𝛼𝑘 = 0, (15)
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where 𝑘 = 2, 3. However, since 𝐽2,𝜈 = 𝐽3,𝜈 = 0, we can impose one gauge condition
on the field potentials and choose the gauge so as to have Eq. (15) satisfied for 𝑘 = 1.
That is why we will further consider Eq. (15) fulfilled for 𝑘 = 1, 2, 3.

Let us now multiply Eq. (11) by 𝑗 and Eq. (12) by 𝑗0 and then add the products.
Then using (15), we derive

𝑗0𝜕𝑢𝑘/𝜕𝜏 + 𝑗(𝑟𝜕𝑢𝑘/𝜕𝑟 + 3𝑢𝑘) = 0. (16)

Multiplying Eq. (11) by 𝑢𝑘 and summing over 𝑘, we find

3∑︁
𝑘=1

𝑢𝑘(𝑟𝜕𝑢𝑘/𝜕𝑟 + 3𝑢𝑘) = −𝑗0𝑢1. (17)

Eq. (11) also gives two equations for 𝛼𝑘.

Let us turn to Eq. (16). To solve it we introduce the function

𝑞(𝜏, 𝑟) =

𝑟∫︁
0

𝑟2𝑗0(𝜏, 𝑟) d𝑟. (18)

From (18) we find, using equality (14),

𝜕𝑞/𝜕𝜏 =

𝑟∫︁
0

𝑟2
𝜕𝑗0

𝜕𝜏
d𝑟 = −

𝑟∫︁
0

𝑟2
(︂
𝑟
𝜕𝑗

𝜕𝑟
+ 3𝑗

)︂
d𝑟 = −

𝑟∫︁
0

𝜕(𝑟3𝑗)

𝜕𝑟
d𝑟 = −𝑟3𝑗, (19)

𝜕𝑞/𝜕𝑟 = 𝑟2𝑗0. (20)

From (19) and (20) we have

𝑗0𝜕𝑞/𝜕𝜏 + 𝑟𝑗𝜕𝑞/𝜕𝑟 = 0. (21)

Using now the equaliy (21), we obtain the following solution of Eq. (16):

𝑢𝑘 = 𝑃 𝑘(𝑞)/𝑟3, (22)

where 𝑃 𝑘(𝑞) are arbitrary differentiable functions of the argument 𝑞.

Indeed, from (21) and (22) we derive

𝑗0𝜕𝑢𝑘/𝜕𝜏 + 𝑗(𝑟𝜕𝑢𝑘/𝜕𝑟 + 3𝑢𝑘) =
1

𝑟3
d𝑃 𝑘

d𝑞

(︀
𝑗0𝜕𝑞/𝜕𝜏 + 𝑟𝑗𝜕𝑞/𝜕𝑟

)︀
= 0. (23)

Hence, formula (22) gives solutions to Eq. (16). This formula describes general
solutions to Eq. (16) since it contains three arbitrary differentiable functions 𝑃 𝑘(𝑞)
and Eq. (16) presents three partial differential equations of the first order.

Substituting formula (22) into Eq. (17), we obtain

3∑︁
𝑘=1

𝑃 𝑘
d𝑃 𝑘

d𝑞

𝜕𝑞

𝜕𝑟
= −𝑟2𝑗0𝑃 1. (24)
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Using formula (20), from (24) we find

3∑︁
𝑘=1

𝑃 𝑘d𝑃 𝑘/d𝑞 = −𝑃 1. (25)

Let us turn now to Eq. (6). From it and formulas (7) and (9) we derive

3∑︁
𝑘=1

[(𝑟𝜕𝑢𝑘/𝜕𝑟 + 3𝑢𝑘)2 − 𝑟2(𝜕𝑢𝑘/𝜕𝜏)2] = (𝑗0)2 − 𝑟2𝑗2. (26)

Substituting formula (22) into Eq. (26), we obtain

3∑︁
𝑘=1

(︀
d𝑃 𝑘/d𝑞

)︀2 [︀
(𝜕𝑞/𝜕𝑟)2 − (𝜕𝑞/𝜕𝜏)2

]︀
= 𝑟4[(𝑗0)2 − 𝑟2𝑗2]. (27)

Using formulas (19) and (20), from Eq. (27) we find

3∑︁
𝑘=1

(d𝑃 𝑘/d𝑞)2 = 1. (28)

Let us seek solutions to Eqs. (25) and (28) in the following form, taking into account
that 𝐽2,𝜈 = 𝐽3,𝜈 = 0 and hence the equivalence of the second and third gauge axes:

𝑃 1 = −𝑃 cos 𝜉, 𝑃 2 = 𝑃 3 = −2−1/2𝑃 sin 𝜉, 𝑃 = 𝑃 (𝑞), 𝜉 = 𝜉(𝑞). (29)

Then from (25) and (28) we derive

d𝑃/d𝑞 = cos 𝜉, (d𝑃/d𝑞)2 + 𝑃 2(d𝜉/d𝑞)2 = 1. (30)

From these equations we obtain

d𝑃 = cos 𝜉d𝑞, 𝑃d𝜉 = ± sin 𝜉d𝑞. (31)

Eqs. (31) give
d𝑃/𝑃 = ± cot 𝜉d𝜉. (32)

Integrating this equation and choosing the sign ’+’ to have no singularity at 𝜉 = 0,
we find

𝑃 = 𝐾0 sin 𝜉, 𝐾0 = const. (33)

Substituting this formula into Eqs. (31), we obtain

d𝜉/d𝑞 = 1/𝐾0, 𝜉 = 𝑞/𝐾0 +𝐾1, 𝐾1 = const. (34)

As follows from formulas (18), (22), and (29), 𝑞(0) = 0 and 𝑃 (0) = 0. That is why
we choose 𝐾1 = 0 in order to satisfy formula (33) at𝑟 = 0. Then from (33) and (34)
we find

𝑃 = 𝐾0 sin(𝑞/𝐾0), 𝜉 = 𝑞/𝐾0. (35)

Substituting these expressions for 𝑃 and 𝜉 into formulas (29) and then (22) and (9),
we come to the following formulas for the field strengths 𝐹 𝑘,𝜇𝜈 :

𝐹 1,𝑛0 = 𝐾 sin

(︂
𝑞(𝜏, 𝑟)

𝐾

)︂
𝑥𝑛

𝑟3
, 𝐾 =

𝐾0

2
= const,



278 Bulletin of PFUR. SeriesMathematics. Information Sciences. Physics. No 1, 2013. Pp. 274–283

𝐹 2,𝑛0 = 𝐹 3,𝑛0 =

√
2

2
𝐾

[︂
1− cos

(︂
𝑞(𝜏, 𝑟)

𝐾

)︂]︂
𝑥𝑛

𝑟3
, (36)

𝐹 𝑘,𝑖𝑛 = 0, 𝑘, 𝑖, 𝑛 = 1, 2, 3.

As follows from (7) and (18), the function 𝑞(𝜏, 𝑟) presents the charge of the part
of the field source situated in the spherical region of radius 𝑟 at time 𝑡 = 𝜏/𝑐.

From (36) we find

𝐹 1,𝑛0 = 𝑞eff(𝜏, 𝑟)
𝑥𝑛

𝑟3
, 𝑞eff(𝜏, 𝑟) = 𝐾 sin

(︂
𝑞(𝜏, 𝑟)

𝐾

)︂
. (37)

Here 𝑞eff(𝜏, 𝑟) can be regarded as an effective charge at the time 𝑡 = 𝜏/𝑐 in the
spherical region of the radius 𝑟 which includes not only the source charge 𝑞(𝜏, 𝑟) but
also charged quanta of the Yang–Mills field.

The constant 𝐾 should be considered as some sufficiently large charge. Then
when |𝑞/𝐾| ≪ 1 we have 𝑞eff = 𝑞 and formula (37) describes the classical electric field.
Therefore, this formula can be regarded as a nonlinear generalization of the classical
formula in the cases of spherical sources with sufficiently large charges.

Formula (37) was applied in Refs. [3,6] to explain the phenomenon of ball lightning,
where a relation between its maximum diameter and the constant 𝐾 was found. Using
the known estimate of the maximum diameter of the ball lightning which is about 100
cm [7], from this relation we obtain that the constant 𝐾 ∼ 107 coul.

It should be noted that in Ref. [8] a nonlinear model of the Earth ionosphere is
proposed in which strong electric fields are taken into account and described by for-
mula (37). Besides, as shown in [8], just the obtained esimate of the constant 𝐾 ∼ 107

coul provides good agreement of density distributions in the ionosphere computed by
means of the proposed model with experimental data derived from artificial satellites.

Let us now study another class of exact solutions to the examined Yang–Mills
equations.

3. Non-Abelian expanding waves

Consider the Yang–Mills equations (1)–(2) in the region outside field sources where

𝐽𝑘,𝜈 = 0. (38)

Let us seek their wave solutions in the form

𝐴𝑘,0 = 𝑢𝑘(𝑦0, 𝑦1, 𝑦2, 𝑦3), 𝐴𝑘,𝑛 =
𝑥𝑛

𝑟
𝐴𝑘,0, 𝑦0 = 𝑥0 − 𝑟, 𝑦𝑛 = 𝑥𝑛, (39)

𝑘, 𝑛 = 1, 2, 3, 𝑟 =
√︀
(𝑥1)2 + (𝑥2)2 + (𝑥3)2,

where 𝑢𝑘 are some functions of the wave phase 𝑦0 = 𝑥0−𝑟 and of the spatial coordinates
𝑦𝑛 = 𝑥𝑛.

Substituting these expressions for the potentials 𝐴𝑘,𝜈 into formula (2) for the
strengths 𝐹 𝑘,𝜇𝜈 , we readily find

𝐹 𝑘,0𝑛 =
𝜕𝑢𝑘

𝜕𝑦𝑛
, 𝐹 𝑘,𝑖𝑛 =

1

𝑟

(︂
𝑦𝑖
𝜕𝑢𝑘

𝜕𝑦𝑛
− 𝑦𝑛

𝜕𝑢𝑘

𝜕𝑦𝑖

)︂
, 𝑘, 𝑖, 𝑛 = 1, 2, 3. (40)

As will be shown below, these field strengths satisfy Eq. (6) in the considered
case (38).

Let us now substitute formulas (38)–(40) for 𝐽𝑘,𝜈 , 𝐴𝑘,𝜈 , and 𝐹 𝑘,𝜇𝜈 into the Yang–
Mills equations (1).
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Then when the index 𝜈 = 0 we obtain

3∑︁
𝑖=1

(︂
𝜕2𝑢𝑘

𝜕𝑦2𝑖
− 𝑦𝑖
𝑟

𝜕2𝑢𝑘

𝜕𝑦0𝜕𝑦𝑖
+ 𝑔

𝑦𝑖
𝑟
𝜀𝑘𝑙𝑚𝑢

𝑙 𝜕𝑢
𝑚

𝜕𝑦𝑖

)︂
= 0 (41)

and when the index 𝜈 = 𝑛 = 1, 2, 3 we derive after reductions

𝑦𝑛
𝑟

3∑︁
𝑖=1

(︂
𝑦𝑖

𝜕2𝑢𝑘

𝜕𝑦0𝜕𝑦𝑖
− 𝑟𝜕

2𝑢𝑘

𝜕𝑦2𝑖
+
𝑦𝑖
𝑟

𝜕𝑢𝑘

𝜕𝑦𝑖
− 𝑔𝜀𝑘𝑙𝑚𝑦𝑖𝑢𝑙

𝜕𝑢𝑚

𝜕𝑦𝑖

)︂
+

+
𝜕

𝜕𝑦𝑛

(︃
3∑︁
𝑖=1

𝑦𝑖
𝜕𝑢𝑘

𝜕𝑦𝑖

)︃
= 0. (42)

It should be noted that Eqs. (41) and (42) can be represented in the form

𝜕𝜇𝐹
𝑘,𝜇0 = 𝑔

3∑︁
𝑖=1

𝑦𝑖
𝑟
𝜀𝑘𝑙𝑚𝑢

𝑙 𝜕𝑢
𝑚

𝜕𝑦𝑖
, 𝜕𝜇𝐹

𝜇𝑛 = 𝑔
𝑦𝑛
𝑟

3∑︁
𝑖=1

𝑦𝑖
𝑟
𝜀𝑘𝑙𝑚𝑢

𝑙 𝜕𝑢
𝑚

𝜕𝑦𝑖
. (43)

From (43) we readily find that the field strengths 𝐹 𝑘,𝜇𝜈 of the form (40) satisfy
Eq. (6) in the considered case (38).

Let us denote

𝑝𝑘 =

3∑︁
𝑖=1

𝑦𝑖
𝜕𝑢𝑘

𝜕𝑦𝑖
, 𝑞𝑘 =

3∑︁
𝑖=1

𝜕2𝑢𝑘

𝜕𝑦2𝑖
. (44)

Then from (41) and (42) we find

𝑞𝑘 =
1

𝑟

(︂
𝜕𝑝𝑘

𝜕𝑦0
− 𝑔𝜀𝑘𝑙𝑚𝑢𝑙𝑝𝑚

)︂
, 𝑟 =

√︁
𝑦21 + 𝑦22 + 𝑦23 , (45)

𝑦𝑛

(︂
1

𝑟

𝜕𝑝𝑘

𝜕𝑦0
− 𝑞𝑘 + 𝑝𝑘

𝑟2
− 𝑔

𝑟
𝜀𝑘𝑙𝑚𝑢

𝑙𝑝𝑚
)︂
+
𝜕𝑝𝑘

𝜕𝑦𝑛
= 0, 𝑛 = 1, 2, 3. (46)

As follows from (40) and (44), in the case 𝑝𝑘 = 0 the considered expanding waves
are transverse. At the same time when 𝑝𝑘 ̸= 0, these waves also have longitudinal
components.

Let us substitute expression (45) for 𝑞𝑘 into Eqs. (46). Then we easily obtain

𝑦𝑛𝑝
𝑘

𝑟2
+
𝜕𝑝𝑘

𝜕𝑦𝑛
= 0, 𝑛 = 1, 2, 3. (47)

As can be readily verified, these equations have the following solution:

𝑝𝑘 =
𝑠𝑘(𝑦0)

𝑟
, (48)

where 𝑠𝑘 are arbitrary differentiable functions of the argument 𝑦0.

From (44), (45), and (48) we get

3∑︁
𝑖=1

𝑦𝑖
𝜕𝑢𝑘

𝜕𝑦𝑖
=
𝑠𝑘(𝑦0)

𝑟
, (49)
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3∑︁
𝑖=1

𝜕2𝑢𝑘

𝜕𝑦2𝑖
=

1

𝑟2

[︂
𝑑𝑠𝑘(𝑦0)

𝑑𝑦0
− 𝑔𝜀𝑘𝑙𝑚𝑢𝑙𝑠𝑚(𝑦0)

]︂
. (50)

As can be readily verified, Eq. (49) has the following solution:

𝑢𝑘(𝑦0, 𝑦1, 𝑦2, 𝑦3) = −
𝑠𝑘(𝑦0)

𝑟
+ 𝑓𝑘(𝑦0, 𝜉1, 𝜉2, 𝜉3), 𝜉𝑖 =

𝑦𝑖
𝑟
, 𝑖 = 1, 2, 3, (51)

where 𝑟 =
√︀
𝑦21 + 𝑦22 + 𝑦23 and 𝑓𝑘 are arbitrary differentiable functions.

Actually, from (51) we derive

𝜕𝑢𝑘

𝜕𝑦𝑖
=
𝑠𝑘(𝑦0)𝑦𝑖
𝑟3

+
1

𝑟

𝜕𝑓𝑘

𝜕𝜉𝑖
− 𝑦𝑖
𝑟3

3∑︁
𝑛=1

𝑦𝑛
𝜕𝑓𝑘

𝜕𝜉𝑛
,

3∑︁
𝑖=1

𝑦𝑖
𝜕𝑢𝑘

𝜕𝑦𝑖
≡ 𝑠𝑘(𝑦0)

𝑟
. (52)

Consider Eq. (50) using formula (51). For the functions 𝑓𝑘(𝑦0, 𝜉1, 𝜉2, 𝜉3) we have

𝜕𝑓𝑘

𝜕𝑦𝑖
=

1

𝑟

3∑︁
𝑗=1

𝜕𝑓𝑘

𝜕𝜉𝑗
(𝛿𝑖𝑗 − 𝜉𝑖𝜉𝑗) , 𝑖 = 1, 2, 3, 𝜉𝑖 =

𝑦𝑖
𝑟
,

𝛿𝑖𝑖 = 1, 𝛿𝑖𝑗 = 0 when 𝑗 ̸= 𝑖,

𝜕2𝑓𝑘

𝜕𝑦2𝑖
=

1

𝑟2

3∑︁
𝑗,𝑛=1

𝜕2𝑓𝑘

𝜕𝜉𝑗𝜕𝜉𝑛
(𝛿𝑖𝑗 − 𝜉𝑖𝜉𝑗) (𝛿𝑖𝑛 − 𝜉𝑖𝜉𝑛)−

− 1

𝑟2

3∑︁
𝑗=1

𝜕𝑓𝑘

𝜕𝜉𝑗

[︀
𝜉𝑗(1− 3𝜉2𝑖 ) + 2𝜉𝑖𝛿𝑖𝑗

]︀
. (53)

Let us substitute expression (51) for the functions 𝑢𝑘 into Eq. (50) and take into
account that the function 1/𝑟 is harmonic. Then using (53) and the evident equality
𝜉21 + 𝜉22 + 𝜉23 = 1, we obtain

3∑︁
𝑖=1

[︂
(1− 𝜉2𝑖 )

𝜕2𝑓𝑘

𝜕𝜉2𝑖
− 2𝜉𝑖

𝜕𝑓𝑘

𝜕𝜉𝑖

]︂
−

3∑︁
𝑖,𝑗=1
𝑗 ̸=𝑖

𝜉𝑖𝜉𝑗
𝜕2𝑓𝑘

𝜕𝜉𝑖𝜕𝜉𝑗
=
𝑑𝑠𝑘(𝑦0)

𝑑𝑦0
− 𝑔𝜀𝑘𝑙𝑚𝑓 𝑙𝑠𝑚(𝑦0). (54)

The arguments 𝜉𝑖 = 𝑦𝑖/𝑟 of the functions 𝑓𝑘 are not independent, since 𝜉21 + 𝜉22 +
𝜉23 = 1. That is why instead of 𝜉1,𝜉2, 𝜉3 we can choose two independent arguments.
Let us choose the following two arguments 𝜃 and 𝜎:

𝑓𝑘(𝑦0, 𝜉1, 𝜉2, 𝜉3) = ℎ𝑘(𝑦0, 𝜃, 𝜎), 𝜃 =
1

2
ln

(︂
1 + 𝜉1
1− 𝜉1

)︂
, 𝜎 = arctan

(︂
𝜉2
𝜉3

)︂
. (55)

Then we have

𝜕𝑓𝑘

𝜕𝜉1
= 𝛽

𝜕ℎ𝑘

𝜕𝜃
,

𝜕𝑓𝑘

𝜕𝜉2
= 𝛾𝜉3

𝜕ℎ𝑘

𝜕𝜎
,

𝜕𝑓𝑘

𝜕𝜉3
= −𝛾𝜉2

𝜕ℎ𝑘

𝜕𝜎
, 𝛽 =

1

1− 𝜉21
, 𝛾 =

1

𝜉22 + 𝜉23
,

𝜕2𝑓𝑘

𝜕𝜉21
= 𝛽2

(︂
𝜕2ℎ𝑘

𝜕𝜃2
+ 2𝜉1

𝜕ℎ𝑘

𝜕𝜃

)︂
,

𝜕2𝑓𝑘

𝜕𝜉22
= 𝛾2𝜉3

(︂
𝜉3
𝜕2ℎ𝑘

𝜕𝜎2
− 2𝜉2

𝜕ℎ𝑘

𝜕𝜎

)︂
,
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𝜕2𝑓𝑘

𝜕𝜉23
= 𝛾2𝜉2

(︂
𝜉2
𝜕2ℎ𝑘

𝜕𝜎2
+ 2𝜉3

𝜕ℎ𝑘

𝜕𝜎

)︂
,

𝜕2𝑓𝑘

𝜕𝜉1𝜕𝜉2
= 𝛽𝛾𝜉3

𝜕2ℎ𝑘

𝜕𝜃𝜕𝜎
,

𝜕2𝑓𝑘

𝜕𝜉1𝜕𝜉3
== −𝛽𝛾𝜉2

𝜕2ℎ𝑘

𝜕𝜃𝜕𝜎
,

𝜕2𝑓𝑘

𝜕𝜉2𝜕𝜉3
= −𝛾2

(︂
𝜉2𝜉3

𝜕2ℎ𝑘

𝜕𝜎2
+ (𝜉23 − 𝜉22)

𝜕ℎ𝑘

𝜕𝜎

)︂
(56)

and as can be readily verified, the left-hand side of (54) acquires the form

3∑︁
𝑖=1

[︂
(1− 𝜉2𝑖 )

𝜕2𝑓𝑘

𝜕𝜉2𝑖
− 2𝜉𝑖

𝜕𝑓𝑘

𝜕𝜉𝑖

]︂
−

3∑︁
𝑖,𝑗=1
𝑗 ̸=𝑖

𝜉𝑖𝜉𝑗
𝜕2𝑓𝑘

𝜕𝜉𝑖𝜕𝜉𝑗
=

=
1

1− 𝜉21
𝜕2ℎ𝑘

𝜕𝜃2
+

1

𝜉22 + 𝜉23

𝜕2ℎ𝑘

𝜕𝜎2
. (57)

Since the variables 𝜉𝑖 = 𝑦𝑖/𝑟 satisfy the equality 𝜉22 + 𝜉23 = 1− 𝜉21 , from (54), (55),
and (57) we come to the following equation:

𝜕2ℎ𝑘

𝜕𝜃2
+
𝜕2ℎ𝑘

𝜕𝜎2
= (1− 𝜉21)

[︂
d𝑠𝑘(𝑦0)

d𝑦0
− 𝑔𝜀𝑘𝑙𝑚ℎ𝑙𝑠𝑚(𝑦0)

]︂
, 𝜉1 = tanh 𝜃. (58)

Let us put

ℎ𝑘 = 𝑣𝑘(𝑦0, 𝜃, 𝜎) + κ(𝑦0)𝑠𝑘(𝑦0) ln(cosh 𝜃) + 𝑑𝑘(𝑦0), (59)

where 𝑣𝑘(𝑦0, 𝜃, 𝜎), κ(𝑦0), and 𝑑𝑘(𝑦0) are some functions.

Then substituting (59) into (58) and taking into account that 𝜀𝑘𝑙𝑚 are antisym-
metric, we get

𝜕2𝑣𝑘

𝜕𝜃2
+
𝜕2𝑣𝑘

𝜕𝜎2
=

= (1− tanh2 𝜃)

[︂
d𝑠𝑘(𝑦0)

d𝑦0
− κ(𝑦0)𝑠𝑘(𝑦0)− 𝑔𝜀𝑘𝑙𝑚

(︀
𝑣𝑙 + 𝑑𝑙(𝑦0)

)︀
𝑠𝑚(𝑦0)

]︂
. (60)

Let us require that the four functions κ(𝑦0) and 𝑑𝑘(𝑦0) should satisfy the following
system of three algebraic equations which are linear with respect to them:

d𝑠𝑘(𝑦0)

d𝑦0
− κ(𝑦0)𝑠𝑘(𝑦0)− 𝑔𝜀𝑘𝑙𝑚𝑑𝑙(𝑦0)𝑠𝑚(𝑦0) = 0. (61)

Then from (60) we get

𝜕2𝑣𝑘

𝜕𝜃2
+
𝜕2𝑣𝑘

𝜕𝜎2
= −𝑔(1− tanh2 𝜃)𝜀𝑘𝑙𝑚𝑣

𝑙𝑠𝑚(𝑦0), 𝑣𝑘 = 𝑣𝑘(𝑦0, 𝜃, 𝜎). (62)

After multiplying (61) by 𝑠𝑘(𝑦0) and summing it over the index 𝑘, we derive the
following simple formula for the function κ(𝑦0):

κ(𝑦0) =
1

𝑠(𝑦0)

d𝑠(𝑦0)

d𝑦0
,
(︀
𝑠(𝑦0)

)︀2
=

3∑︁
𝑘=1

(︀
𝑠𝑘(𝑦0)

)︀2
. (63)
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Let us turn to Eq. (62). We will seek its solution in the following form:

𝑣𝑘(𝑦0, 𝜃, 𝜎) = ℜ
𝑁∑︁
𝑛=0

𝑉 𝑘𝑛 (𝑦0, 𝜃) exp
(︀
−𝑛(𝜃 + 𝑖𝜎)

)︀
, (64)

where 𝑉 𝑘𝑛 (𝑦0, 𝜃) are some complex functions and 𝑛,𝑁 are nonnegative integers. Then
substituting (64) into Eq. (62), we come to the equations

𝜕2𝑉 𝑘𝑛
𝜕𝜃2

− 2𝑛
𝜕𝑉 𝑘𝑛
𝜕𝜃

= −𝑔(1− tanh2 𝜃)𝜀𝑘𝑙𝑚𝑉
𝑙
𝑛𝑠
𝑚(𝑦0). (65)

Let us choose the variable 𝜙 = tanh 𝜃 instead of 𝜃 and put

𝑉 𝑘𝑛 = 𝑉 𝑘𝑛 (𝑦0, 𝜙), 𝜙 = tanh 𝜃 ≡ 𝜉1. (66)

Then Eq. (65) acquires the following form, since d𝜙/d𝜃 = 1− tanh2 𝜃 = 1− 𝜙2:

(1− 𝜙2)
𝜕2𝑉 𝑘𝑛
𝜕𝜙2

− 2(𝑛+ 𝜙)
𝜕𝑉 𝑘𝑛
𝜕𝜙

= −𝑔𝜀𝑘𝑙𝑚𝑉 𝑙𝑛𝑠𝑚(𝑦0), |𝜙| 6 1. (67)

Putting
𝜂 = (1− 𝜙)/2, 0 6 𝜂 6 1, −1 6 𝜙 6 1, (68)

from (67) and (68) we get

𝜂(𝜂 − 1)
𝜕2𝑉 𝑘𝑛
𝜕𝜂2

− (𝑛+ 1− 2𝜂)
𝜕𝑉 𝑘𝑛
𝜕𝜂
− 𝑔𝜀𝑘𝑙𝑚𝑉 𝑙𝑛𝑠𝑚(𝑦0) = 0, 𝑉 𝑘𝑛 = 𝑉 𝑘𝑛 (𝑦0, 𝜂). (69)

Let us seek solutions 𝑉 𝑘𝑛 (𝑦0, 𝜂) to Eq. (69) in the form

𝑉 𝑘𝑛 =

∞∑︁
𝑗=0

𝜆𝑘𝑗,𝑛(𝑦0)𝜂
𝑗 , (70)

where 𝜆𝑘𝑗,𝑛(𝑦0) are some complex functions. Then substituting (70) into (69), we

obtain the recurrence relation for 𝜆𝑘1,𝑛, 𝜆
𝑘
2,𝑛, 𝜆

𝑘
3,𝑛, . . . .

𝜆𝑘𝑗+1,𝑛 =
𝑗(𝑗 + 1)𝜆𝑘𝑗,𝑛 − 𝑔𝜀𝑘𝑙𝑚𝜆𝑙𝑗,𝑛𝑠𝑚(𝑦0)

(𝑗 + 1)(𝑗 + 1 + 𝑛)
, 𝑗 = 0, 1, 2, . . . , (71)

where the complex functions 𝜆𝑘0,𝑛 = 𝜆𝑘0,𝑛(𝑦0) may be assigned arbitrarily.

From (71) we can easily derive that the sequence
⃒⃒
𝜆𝑘𝑗,𝑛

⃒⃒
is bounded for any 𝑦0.

Actually, let us denote

𝐿(𝑦0) = max
16𝑘,𝑙63

|𝑔𝜀𝑘𝑙𝑚𝑠𝑚(𝑦0)| (72)

and consider (71) when 𝑗 > 𝐿(𝑦0)− 1 for an arbitrary 𝑦0. Then we find

max
16𝑘63

⃒⃒
𝜆𝑘𝑗+1

⃒⃒
6

𝑗(𝑗 + 1) + 𝐿(𝑦0)

(𝑗 + 1)(𝑗 + 1 + 𝑛)
max
16𝑘63

⃒⃒
𝜆𝑘𝑗
⃒⃒
6 max

16𝑘63

⃒⃒
𝜆𝑘𝑗
⃒⃒
. (73)

This formula precisely proves that that the sequence
⃒⃒
𝜆𝑘𝑗
⃒⃒
is bounded for any 𝑦0.
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From (73) we also get that the values max16𝑘63
⃒⃒
𝜆𝑘𝑗
⃒⃒
, 0 6 𝑗 <∞, are bounded by

their maximum when 0 6 𝑗 6 𝐿(𝑦0).
Consider the case in which the source of non-Abelian waves under examination is

situated along the axis 𝑥1. Then for the waves outside the source we have−∞ < 𝜃 <∞
and from (66) and (68) we find

0 < 𝜂 < 1. (74)

Since, as shown above, the sequence
⃒⃒
𝜆𝑘𝑗
⃒⃒
is bounded for any 𝑦0, the considered

power series (70) is absolutely convergent when 0 6 𝜂 < 1. Therefore, in the
case |𝜃| < ∞ under eximination the functions 𝑉 𝑘𝑛 (𝑦0, 𝜂) can be determined by for-
mula (70). After that we can find the functions 𝑣𝑘(𝑦0, 𝜃, 𝜎) and ℎ𝑘(𝑦0, 𝜃, 𝜎) using
formulas (64) and (59). Then applying formulas (55) and (51) we determine the func-
tions 𝑢𝑘(𝑦0, 𝑦1, 𝑦2, 𝑦3) ≡ 𝑢𝑘(𝑥0−𝑟, 𝑥1, 𝑥2, 𝑥3) describing non-Abelian expanding waves
radiated from the considered source situated along the axis 𝑥1.

As indicated above, the considered wave solutions to the Yang–Mills equations can
have longitudinal components when the functions 𝑝𝑘 of the form (48) are non-zero.
This property of the found non-Abelian waves can be used to detect cosmic sources
of Yang–Mills fields.
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УДК 530.182:537.813
О нестационарных решениях уравнений Янга–Миллса

А. С. Рабинович
Московский государственный университет приборостроения и информатики

Россия, 107996, Москва, ул. Стромынка, 20

Исследуются поля Янга–Миллса с SU (2) симметрией, создаваемые классическими по-
левыми источниками. Показывается, что в данном случае уравнения Янга–Миллса мо-
гут быть рассмотрены как естественное нелинейное обобщение уравнений максвеллов-
ской электродинамики. Ищутся новые классы решений исследуемых уравнений Янга–
Миллса и находятся их нетривиальные решения в случае нестационарных сферически-
симметричных источников и широкий класс их неабелевых волновых решений.

Ключевые слова: уравнения Янга–Миллса, SU (2) симметрия, классические ис-
точники поля, нестационарные сферически-симметричные решения, неабелевые волно-
вые решения.




