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On Nonstationary Solutions to Yang—Mills Equations
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We study Yang—Mills fields with SU(2) symmetry generated by classical field sources.
It is shown that in this case the Yang—Mills equations can be regarded as a reasonable
nonlinear generalization of the equations of Maxwell’s electrodynamics. We seek new classes
of solutions to the examined Yang—Mills equations and find their nontrivial solutions in the
case of nonstationary spherically symmetric sources and a wide class of their non-Abelian
wave solutions.
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1. Introduction

Let us study the Yang-Mills equations with SU(2) symmetry. They can be repre-
sented as [1,2]

Dy FF1 = 9, F*" + g FHM AT = (4 [c) TP, (1)

Fhm = gr kv — gv Al geyy, AR AT, (2)

where u, v=20,1, 2,3, k, I, m=1,2,3, D, isthe Yang-Mills covariant derivative,
Abr RV are potentials and strengths of a Yang-Mills field, respectively, € is the
antisymmetric tensor, 193 = 1, ¢ is the constant of electroweak interactions, J*" are
three four-dimensional vectors of current densities, and 9, = 0/0z", where z* are
orthogonal space-time coordinates of the Minkowsky geometry.

Consider Egs. (1)—(2) in the case of the following field sources:

Jl,y — Jl/7 JQ,V — JS,V — 07 (3)

where J¥ is a classical four-dimensional vector of current densities.

Then the Yang-Mills equations (1)-(2) have trivial solutions in which A%" =
A3V = 0, F?2# = 3 = ( and the potentials A" and strengths F'* satisfy
the Maxwell equations with the sources J”. Besides, the expressions for the La-
grangian and energy-momentum tensor of the Yang—Mills field are similar to those of
the Maxwell field. That is why the considered Yang—Mills equations with the classi-
cal field sources (3) can be regarded as a reasonable nonlinear generalization of the
Maxwell equations. This nonlinear theory was studied in our works [3-5], where sev-
eral classes of exact solutions to Egs. (1)—(3) were found. In our monograph [6] these
solutions are applied to a number of anomalous phenomena that remain still unex-
plained within the framework of the linear Maxwell theory.

It should be noted that the Yang-Mills equations (1)—(2) with the field sources (3)
are not independent. Namely, from (3) and the well-known identities for the Yang—
Mills covariant derivative D), [1,2] we have that when 6; =1, §, = 63 =0,

6xD, (D F*H — (41 /c)J5"] = 0. (4)

That is why in Refs. [3-6] one more equation to the Yang-Mills equations (1)—(2)
with the field sources of the form (3) was proposed to uniquely determine the field
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strengths F*#¥. This equation has the form
"Ly = JM Ty, T9V =I5 — (ge/dm)epm PP AYY, (5)

where, as follows from Eq. (1), the components I kv satisfy the charge conservation
equations d, %" = 0 and can be regarded as four-dimensional densities of full currents

which include not only source current densities J** but also current densities of field
virtual particles.

The additional equation (5) implies the conservation of the intrinsic energy in a
small part of a field source when charged particles are created inside the source [3-6].

Using Eq. (1), we can represent Eq. (5) in the form
0o FF 0P Fyy g, = (A7 [c)2T"Y Ty . (6)

Further we will seek exact solutions to the Yang—Mills equations (1)—(2) with the
field sources (3) that also satisfy the additional equation (6).

2. Nonstationary solutions to the Yang—Mills equations with
spherically symmetric sources

Consider the Yang—Mills equations (1)—(2) with the following spherically symmetric
sources:

(47r/c),]1’0 = jO(T, ), (47r/c)J1’” =z"j(r,r), n=1,2,3, (7)
JQ,V — JS,V — 0’ = CIJO, r= \/($1)2 + (1;2)2 + (.’1}3)2,

where 7 = ct, t is time, and r is distance from the source center.
Let us seek the field potentials A** in the form

RO — B¥(rp), AR — amak (). (®)
Then from Eq. (2) we find

FROn — gny®(r,r), FR™ =0, kin=1,2,3, (9)
where
uk = 0a* /0T + (1/r)0B% JOor + gepimal B™. (10)
Substituting expressions (7)—(9) into the Yang-Mills equations (1), we derive
rou” /or + 3uF — grlepmula™ = =065, 01 =1, 6y =03=0, (11)
ouF JOT + gepimu' B™ = oy (12)

As is well-known, the Yang-Mills equations (1)—(2) have the following conse-
quence [1,2]:
D,J"" =0. (13)

From (3) and (13) we find

95° /07T + 1035 /0r + 35 =0, (14)

7OBF —r?jak =0, (15)
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where k = 2, 3. However, since J?¥ = J3" = 0, we can impose one gauge condition
on the field potentials and choose the gauge so as to have Eq. (15) satisfied for k£ = 1.
That is why we will further consider Eq. (15) fulfilled for £ =1, 2, 3.

Let us now multiply Eq. (11) by j and Eq. (12) by j° and then add the products.
Then using (15), we derive

§00ur 10T + j(rou” Jor + 3uF) = 0. (16)

Multiplying Eq. (11) by u* and summing over k, we find

3
Zuk(rauk/8r+3uk) = —5%" (17)
k=1

Eq. (11) also gives two equations for a*.
Let us turn to Eq. (16). To solve it we introduce the function

T

q(r,r) = /T2j0(7', r)dr. (18)

0

From (18) we find, using equality (14),

T T T

jO j . (T3j) .

_ 278 _ 2 78 _ 9 I

Bq/aT/r - dr = /r (r r+3‘7> dr = / " dr = —r°j, (19)
0 0 0

dq/or = r*5°. (20)

From (19) and (20) we have

3%0q/0T 4 rjOq/Or = 0. (21)

Using now the equaliy (21), we obtain the following solution of Eq. (16):
uk = PHg) /1%, (22)

where P*(q) are arbitrary differentiable functions of the argument gq.

Indeed, from (21) and (22) we derive

k
§00uk Jor + j(rou® Jor + 3uk) = Tlgd(i] (j°0q/07 4+ rjoq/or) = 0. (23)

Hence, formula (22) gives solutions to Eq. (16). This formula describes general
solutions to Eq. (16) since it contains three arbitrary differentiable functions P*(q)
and Eq. (16) presents three partial differential equations of the first order.

Substituting formula (22) into Eq. (17), we obtain

k
ZPk—dP 00 _ _,2p0p1 (24)
T
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Using formula (20), from (24) we find

3
> P*dP*/dg = —P". (25)
k=1

Let us turn now to Eq. (6). From it and formulas (7) and (9) we derive

w

> [(rou® jor + 3u¥)? — r?(9uF j0r)?) = (5°)% - r?5°. (26)

k=1
Substituting formula (22) into Eq. (26), we obtain

3

> (ap* /dq)® [(9g/0r)? — (dq/0r)?] = r*[(§°)% — r252). (27)

k=1

Using formulas (19) and (20), from Eq. (27) we find

> (dP*/dg) (28)
k=1

Let us seek solutions to Eqgs. (25) and (28) in the following form, taking into account
that J?* = J3¥ = 0 and hence the equivalence of the second and third gauge axes:

P'= _Pcos¢, P?=P>=—-2"12Psing, P=P(q), ¢€=£6(q). (29
Then from (25) and (28) we derive
dP/dq = cos¢, (dP/dq)* + P*(d¢/dq)® = 1. (30)
From these equations we obtain
dP = cos&dq, Pd§ = +sinédg. (31)

Egs. (31) give
dP/P = £ cot £dE. (32)
Integrating this equation and choosing the sign '+’ to have no singularity at £ = 0,

we find
P = Kysinf, K, = const. (33)

Substituting this formula into Egs. (31), we obtain
d§/dg=1/Ky, &=q/Ko+ K1, K; = const. (34)

As follows from formulas (18), (22), and (29), ¢(0) = 0 and P(0) = 0. That is why
we choose K7 = 0 in order to satisfy formula (33) atr = 0. Then from (33) and (34)

we find
P = Kysin(q/Ky), &= q/Kp. (35)

Substituting these expressions for P and & into formulas (29) and then (22) and (9),
we come to the following formulas for the field strengths F*#¥:

n K
FL0 _ frin (‘J(T’ r)) l;’ K = =2 = const,
K r3 2
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F2n0 — 30 ?K [1 — cos <q(m)ﬂ i (36)

K 73
Fkint =0k i,n=1,23.

As follows from (7) and (18), the function ¢(7,7) presents the charge of the part
of the field source situated in the spherical region of radius r at time ¢t = 7/c.
From (36) we find

%:, et (T,7) = Ksin(q(}_(’r)). (37)

FLnO - Qeff(7—7 7")

Here gegt(7,7) can be regarded as an effective charge at the time ¢ = 7/c in the
spherical region of the radius  which includes not only the source charge ¢(7,r) but
also charged quanta of the Yang—Mills field.

The constant K should be considered as some sufficiently large charge. Then
when |¢/K| < 1 we have gegr = ¢ and formula (37) describes the classical electric field.
Therefore, this formula can be regarded as a nonlinear generalization of the classical
formula in the cases of spherical sources with sufficiently large charges.

Formula (37) was applied in Refs. [3,6] to explain the phenomenon of ball lightning,
where a relation between its maximum diameter and the constant K was found. Using
the known estimate of the maximum diameter of the ball lightning which is about 100
cm [7], from this relation we obtain that the constant K ~ 107 coul.

It should be noted that in Ref. [8] a nonlinear model of the Earth ionosphere is
proposed in which strong electric fields are taken into account and described by for-
mula (37). Besides, as shown in [8], just the obtained esimate of the constant K ~ 107
coul provides good agreement of density distributions in the ionosphere computed by
means of the proposed model with experimental data derived from artificial satellites.

Let us now study another class of exact solutions to the examined Yang—Mills
equations.

3. Non-Abelian expanding waves

Consider the Yang-Mills equations (1)—(2) in the region outside field sources where
JEY = 0. (38)

Let us seek their wave solutions in the form
AR = (yo,y1,y2,ys), AP = l;ank’O, yo=a"—r, y,=a", (39)

kon=1,2,3 r=+/(z1)?+ (2?)? + (23)?,

0

where u*

Yn = x".
Substituting these expressions for the potentials A¥* into formula (2) for the
strengths F* " we readily find

are some functions of the wave phase yo = x”—r and of the spatial coordinates

ouF
b

OYn r

Fk,O'rL _ kjin __

1 ( ouk ouF

i— — Yn— |, k,i,n=1,2,3. 40
g yay> in (40)

As will be shown below, these field strengths satisfy Eq. (6) in the considered
case (38).

Let us now substitute formulas (38)(40) for J*¥, A¥* and F*#" into the Yang-
Mills equations (1).
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Then when the index v = 0 we obtain

3
o%uF oy 0%k Ui ,ou™
i, _ 11
2(3%— v ayedy; | o 8%) 4D

and when the index v = n = 1, 2, 3 we derive after reductions
3 2, k 2,k k m
Yn O%u 0%u” |y Ou 0u
r ; <yzayoayi "o ey I gy )
3
ou®
i =0. (42
o () =0

It should be noted that Eqgs. (41) and (42) can be represented in the form

10 Yn Yi  ou™
F P = gz —8klmu N aﬂF”” = 97 75klmu ? . (43)

i=1

From (43) we readily find that the field strengths F*¥#¥ of the form (40) satisfy
Eq. (6) in the considered case (38).

Let us denote s

ouk 292k
i—1 y; im1 8yi2 (44)

Then from (41) and (42) we find

1 [ OpF
k
q :T<ay_95klmul) > r=\/y; +y3+93, (45)

1apt o PF g L), 0P
<r Mo + r2 T&umu Pt OYn

=0, n=1,2,3 (46)

As follows from (40) and (44), in the case p* = 0 the considered expanding waves

are transverse. At the same time when p* # 0, these waves also have longitudinal
components.

Let us substitute expression (45) for ¢* into Eqs. (46). Then we easily obtain

Yynp" N a*
r2 OYn

=0, n=123. (47)

As can be readily verified, these equations have the following solution:

k
s"(yo)
p* = : (48)
T
where s* are arbitrary differentiable functions of the argument .

From (44), (45), and (48) we get

3
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%P 1 [ds*(yo) I m
Z (9yi ) [ dyo — gEkimu s (Yo) | - (50)
As can be readily verified, Eq. (49) has the following solution:

k(yo)

uk(yO)ylayQayi’)) + fk(y07£1’£2553) SZ - %7 1= 15 25 35 (51)

where r = \/y? + y3 + y2 and f* are arbitrary differentiable functions.
Actually, from (51) we derive

ok _ sty , 107" oo K ok sF(wo)
dy o rog Z "0t 2 iy = ' 52)

Consider Eq. (50) using formula (51). For the functions f*(yo, &1, &2, &3) we have

ark 1 Z d fk
8% af]
5“ = 1, 51‘]’ =0 when j 75 i,

. Yi
_515])5 7’:1’2537 é-z:?v

A D
QT T 2 T8, 00 T 6) (B = i) -

(2

8fk
Z o (60 —360) + 260, (59)

Let us substitute expression (51) for the functions u* into Eq. (50) and take into
account that the function 1/r is harmonic. Then using (53) and the evident equality
&2+ &5+ &5 =1, we obtain

=1

) PLE Or 2 dst(y) o
2[1 -2 8&] ZZ S8 5de = g~ gckun ' ). (54
175%

The arguments &; = y;/r of the functions f* are not independent, since £2 + £2 +
€2 = 1. That is why instead of & £2,&3 we can choose two independent arguments.
Let us choose the following two arguments 6 and o:

fk(y07§1,§2>§3):hk(yo,g,ff), 9—;1n<11—2> , o0 = arctan (Z) . (55)

Then we have
of* onk  ofF onF  Of* hk 1 1

g e Il 60 s -
o0&, 00 0&s 0o’ 85

aka ) 82hk ahk aka ) ath ahk
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a2fk ) ath ahk 82 fk 82hk
a2fk 62hk 82fk 82 k ahk
and as can be readily verified, the left-hand side of (54) acquires the form
82 fk afk 3 82 fk
1—¢ 2z~ )&
; {( &) o&; : 9 ] ;1 S 06,08,

1 82hk+ 1 9%nF
1§ T g+g 007

(57)

Since the variables &; = y; /r satisfy the equality &5 + &5 = 1 — €2, from (54), (55),
and (57) we come to the following equation:

g7 T ger = (1 &0)

21k 21k
S . ?gyO) germh's™ (yo) |, € = tanh6.  (58)

Let us put
h* = v (yo,0,0) + 5(y0)s* (o) In(cosh ) + d* (yp), (59)

where v¥(yo,0,0), (o), and d*(yo) are some functions.

Then substituting (59) into (58) and taking into account that ey, are antisym-
metric, we get

o%vk 9%k

902 T 902

Sk 0
= (1 — tanh?0) ddy(?;) — 52(y0)s" (yo) — gerim (V' +d'(yo)) s™(yo) | . (60)

Let us require that the four functions »(yo) and d*(yo) should satisfy the following
system of three algebraic equations which are linear with respect to them:

ds”
d@(,gO) — (y0)s" (o) — germd' (y0)s™ (y0) = 0. (61)
Then from (60) we get
o%k 9%k kK
507 + o2 = —g(1 — tanh® 0)epmv's™ (o), v* = v¥(yo, 0, 0). (62)

After multiplying (61) by s*(yo) and summing it over the index k, we derive the
following simple formula for the function »(yo):

(o) = —— L0 (40)) = 3 sk (y0)) (63)

s(yo) dyo 1
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Let us turn to Eq. (62). We will seek its solution in the following form:

v*(yo,0,0) =R Z V¥ (yo,0) exp(—n(0 +io)), (64)

n=0

where V.*(yo, 0) are some complex functions and n, N are nonnegative integers. Then
substituting (64) into Eq. (62), we come to the equations

82‘/;? 8Vk 2 L.m
G2~ 2 gg = —9(1 — tanh®0)en V"™ (o). (65)

Let us choose the variable ¢ = tanh # instead of # and put
Vi =Vi(yo,¢), ¢ =tanhf =& (66)

Then Eq. (65) acquires the following form, since dg/df = 1 — tanh?f = 1 — ¢?

o2V oV
(1—¢? a0 2(n + 90)% = —germVis™ (yo), ol < 1. (67)

Putting
n=01-¢)/2, 0<n<1l, -1<p<l, (68)

from (67) and (68) we get

8vk k
— > —(n+1-2 n
n(n—1) o ( n) on

Vis™(yo) =0, Vi =VF(yo,m). (69)

Let us seek solutions V,*(yo,n) to Eq. (69) in the form
Z /\j n yO (70)

where /\k »(yo) are some complex functions. Then substituting (70) into (69), we
DYDY

obtain the recurrence relation for \¥ S s A3y

1,n

)\k _ ](] + 1))‘;€,n - gEklmAé’,nsm(yO)
j+ln G+1)(G+1+n) :

7=0,1,2,..., (71)

where the complex functions /\’gvn = )\lg’n(yo) may be assigned arbitrarily.
From (71) we can easily derive that the sequence ’)\fn’ is bounded for any yq.

Actually, let us denote

L(yo) = | max, l9ekims™ (Y0)| (72)

and consider (71) when j > L(yo) — 1 for an arbitrary yo. Then we find

J(G +1) + L(yo) | k:}

G+ 1) +1+mn) 1<k<s max [Aj]. (73)

1<k<3

max )\k+1|
1<k<3

This formula precisely proves that that the sequence |/\§3| is bounded for any .
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From (73) we also get that the values max;<r<s ‘)\ﬂ, 0 € j < oo, are bounded by

their maximum when 0 < j < L(yo).

Consider the case in which the source of non-Abelian waves under examination is
situated along the axis x'. Then for the waves outside the source we have —oco < 6 < oo
and from (66) and (68) we find

0<n<l (74)

Since, as shown above, the sequence |)\§| is bounded for any ¥, the considered
power series (70) is absolutely convergent when 0 < n < 1. Therefore, in the
case || < oo under eximination the functions V,*(yo,n) can be determined by for-
mula (70). After that we can find the functions v*(yg,6,0) and h¥(yo,0,0) using

formulas (64) and (59). Then applying formulas (55) and (51) we determine the func-

tions uk(yo, Y1,Y2,Y3) = uk(xo —r, 2t 2%, 2%) describing non-Abelian expanding waves

radiated from the considered source situated along the axis x'.
As indicated above, the considered wave solutions to the Yang—Mills equations can
have longitudinal components when the functions p* of the form (48) are non-zero.

This property of the found non-Abelian waves can be used to detect cosmic sources
of Yang—Mills fields.
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YIAK 530.182:537.813
O HecTanmmoHapHBLIX penieHUsX ypaBHeHHuit fAHra—Mmiica

A. C. PabunoBuu

Mocxkosckuti 2ocydapcmeerkoili yHusepcumem npubopocmpoerua U WHPHOPMAMUKY
Poccusa, 107996, Mocxksa, ya. Cmpomwvinka, 20

Ucenenyrores nons dara—Mumnca ¢ SU(2) cummerpuei, co3aBaeMble KIACCUIECKUME O~
JIeBbIMHU ucTOYHHKaMu. [loka3bpiBaeTcs, 9To B JaHHOM ciyd4ae ypaBHeHus fHra-Mmiica mo-
I'yT OBITH PACCMOTPEHBI KaK €CTECTBEHHOE HeJIMHelHoe 0000IIeHne YPABHEHII MaKCBEJIOB-
CKO#1 3yieKTpoauHaMuKu. Wy Tcss HOBBbIE KJIACCHI PEIIeHUil UCCIelyeMbIX ypaBHeHui fHra—
Mwusica 1 HaXOIATCS MX HETPUBUAJIBHBIE DEIIEHUSI B CJIyYae HECTAIMOHAPHBIX CPEepPUIECKU-
CHMMETPUYHBIX UCTOYHUKOB U INMUPOKUI KJIACC UX HeabeJIeBbIX BOJHOBLIX PeNIeHU.

KuaroueBnble cioBa: ypasHenus Suara—Mmwmica, SU(2) cummerpusi, KIacCHIecKue HUc-
TOYHMKHU I10JIs, HECTAIIMOHAPHbIE CHEePUIECKU-CUMMETPHYHbIE PellleHns, HeabeeBble BOJIHO-
BbIe PEIeHUs.





