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The paper discusses the generalized mean field solution of the Green function matrix of
the effective two-band two-dimensional Hubbard model of the high-T. superconductivity in
cuprates, as recently modified to include appropriate boundary conditions at zero doping.
Two main results are found. (i) Hybridization of normal state energy levels preserves the
center of gravity of the unhybridized levels. (ii) Hybridization of superconducting state
energy levels displaces the center of gravity of the unhybridized normal levels. The whole
spectrum is displaced towards lower frequencies.
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1. Basic principles of the theoretical description of
cuprates

The high critical temperature superconductivity in cuprates is still a puzzle of the
today solid state physics, in spite of the unprecedented wave of interest and num-
ber of publications. The two-band two-dimensional Hubbard model [1-3] provides a
description of it based on four basic principles:

(1) Deciding role of the experiment.

The derivation of reliable experimental data on various cuprate properties asks for

manufacturing high quality samples, performing high-precision measurements by

adequate experimental methods. The next section summarizes the wealth of data
provided by experiment.

(2) Hierarchical ordering of the interactions inferred from data.

(3) Derivation of the simplest model Hamiltonian following from the Weiss principle,

i.e., hierarchical implementation of the various interactions into the model.

(4) Mathematical solution by right quantum statistical methods which secure rigorous
implementation of the existing physical symmetries and observe the principles of
mathematical consistency and simplicity.

2. Experimental input to the theoretical model

There are five kinds of experimental data which are essential for the derivation of
a consistent theoretical model.

2.1.Crystal structure characterization points to the occurrence of layered ternary
perovskite structures, with an overwhelming contribution to the superconducting pair-
ing coming from the CuOs planes.

Consequence: An effective two-dimensional (2D) model for the CuOs plane is
requested.
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2.2. Ezistence of the Fermi surface was undoubtedly evidenced, first by 2D-ACAR
positron spectroscopy at the beginning of the nineties [4-6] and then by ARPES and
optical methods [7].

Consequence: The energy bands lying at or nearest to the Fermi level are to be
retained in the model.

2.3. The charge-transfer insulator nature of the cuprates occurs with the following
relationship between the energy band parameters, U > A > W.

Consequence 1: The hybridization results in the Zhang-Rice singlet subband.

Consequence 2: The Zhang-Rice singlet and the upper Hubbard subbands enter
the simplest model.

Consequence 3: Since A ~ 2W, the model is to be developed and solved in the
strong correlation limit.

2.4. Tightly bound electrons in the metallic state.

Consequence 1: Occurrence of low density hopping conduction consisting of both
fermion and boson (singlet) carriers.

Consequence 2: This asks for the Hubbard operator description [8] of the system
states.

2.5. Occurrence of cuprate families which are characterized by specific stoichio-
metric reference structures, doped with either holes or electrons.

Consequence 1: The doping parameter ¢ is essential in the theoretical description
of the cuprates.

Consequence 2: The (§,T) phase diagrams arise which have to be accounted for.

3. Input: abstractions, concepts, facts

Besides the straightforward inferences following from the experiment, a number of
additional input items need consideration.

3.1. Abstraction of the physical CuOs plane with doped electron states by a doped
effective spin lattice. This is done by a one-to-one mapping from the copper sites inside
the CuO; plane to the spins of the effective spin lattice. There are four possible spin
states at each lattice site ¢ in the effective spin lattice: |0) (vacuum), |o) = |1) and
|o) = |J) (single particle spin states inside the hole subband), and |2) = [t]) (singlet
state in the singlet subband).

The spin lattice constants equal a,, a,, the CuO; lattice constants.

The effective spin lattice is characterized by antiferromagnetic spin ordering at
zero doping.

The doping of the electron states inside the CuO5 plane is equivalent to the creation
of defects inside the spin lattice, by spin vacancies and/or singlet states.

The occurrence of a hopping conductivity inside the spin lattice is a consequence
of the doping. The hopping conductivity may consist either of single spin hopping
(fermionic conductivity) or singlet hopping (bosonic conductivity).

3.2. Concept: The global description of the hopping conduction around a spin
lattice site can be done by means of the Hubbard 1-forms [9].

3.3. Fact: The hopping induced energy correction effects are finite over the whole
range of the doping parameter § [10], hence appropriate boundary conditions are to
be imposed in the limit of vanishing doping.

4. Model Hamiltonian

The originally derived model Hamiltonian of the 2D Hubbard model [1] was rewrit-
ten in terms of Hubbard 1-forms [9] and then put in locally manifest Hermitian
form [10]

H = Hy + pHyj, = Z (hoi + phni), hai = ho,i, h;m- = hni, (1)

(2
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with the single particle and hopping contributions at the spin lattice site ¢ given
respectively by

hoi = Ey Y _ X7+ EX7?

K11 K

_ 0,00 00,00 22 20,02 02,20

h’h [ (Tl i -7 ,i ) + 92 § : <Tl,z 7-1,1 >+
o

K:Ql 2% 25,00 00,26 00,02 72,00
i —Tii AT T T .

The Hubbard 1-forms define the hopping conduction neighbourhood of i-th lattice
site,

.i.
a,B o Z Vim XCO XN ( aB, ’WY) S

71' 17/
m#i

The Hubbard operators at the spin lattice site i are defined as X = |ia)(if3],
where |a) and |f3) denote the initial, respectively final spin states.

In (1), p implements boundary conditions at vanishing doping. This Hamiltonian
serves to the definition of the quasi-particle spectrum and superconducting properties.

5. Rigorous mean field solution of Green function
matrix

The retarded and advanced Green function (GF) matrices are defined in terms
of Nambu operators in the space-time (r,t) representation [11]. Using the equations
of motion of the involved Heisenberg operators, differential equations of motion are
derived. In this representation, splittings of the higher order correlation functions are
also done.

In the dual space-energy (r,w) representation, which is obtained from the (r,t)-
representation by appropriate Fourier transforms, the differential equations of motion
are transformed in algebraic equations of motion. Analytic extensions in the complex
energy plane result in a unique GF in the complex plane. Calculations of statistical
averages are done in this representation by use of spectral theorems.

Performing one more Fourier transform from the space variable r to the momentum
variable q we get the momentum-energy (q,w)-representation. Within this represen-
tation we get: compact functional GF expressions, equations for the energy spectra,
statistical average calculations from spectral theorems, spectral distributions inside
the Brillouin zone.

The Green function matrices of the model define space-time correlations for the

four-component Nambu column operator [2,3] Xy = (X2 X097 X279 X997 and its
adjoint operator )A(;-fg = (Xj?" X]‘._’O X]‘-_T2 X]Q") (the superscript T denotes the transpo-
sition).

To get a standard eigenvalue problem for the spectrum, the (q,w)-representation
of the generalized mean field approximation (GMFA) GF solution is written in terms
of the energy matriz [10],

@(a.w) = 21w - E (@) %72 )

Eol@) =X A (X5 X = (X, XL D),
As(q) = Zeiq'r“«&‘ja P v =1 - Ajje = <{[Xi07H]7X;‘Lg}>‘

rij
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The X matrix is diagonal,

_ (x 0  [x2 0 5 (00

X - 0 )A( ) X - 0 Xl ) - 0 0 ’
where x2 = (ni,) = (niz) and x1 = (nl) = (n) = 1 — x5 denote spin and site
independent averages of particle number operators. In terms of the doping rate 4, it
results that in the hole-doped cuprates, xo = 4, x1 = 1—4, while in the electron-doped
cuprates, x1 =6, xy2 =1—90.

The energy matrix can be written in the block structure form,

~ E,(q) d,(q)
Es = . . . 3
(@ <<<I>f,<q>>T —<Ea<q>>T> @)

With the choice [10] p = x1X2, the normal and anomalous 2 x 2 energy matrices
are obtained as follows

B(q) = w2 20wa1 - \/X1X2
o\ = 20wW3; - /X1X2 w1 ’

& (@) = —20T% - x1  T21-y/X1X2
7 —T51 - /x1x2 20711 -x2 )’

wy = wa(q) = (B1 + A) + a2 + d22(q)] - x1,
w1 = wi(q) = E1 + [age + di1(q)] - X2,
w1 = wo1(q) = [az1 + da1(q)],
Ty = To(q) = Kazby + (1 — 0)&1b2(q) + 0&1b3(q),
Ty = Ti(q) = Kiiby + (1 — 0)&1b2(q) + 0&1b3(q),
Ty = To1(q) = Ka1b1 + (1 — 6)&2b2(q) + 062b3(q),

where expressions for the r.h.s. terms have been reported in [10].

6. GMFA energy spectrum

All the 16 matrix elements of the Green function (2) share a same denominator,
D =D(q,w) = lw — &,(q), with the following monic bi-quadratic dependence in w:

D(q,w) = (w? — uw + v)(w? + uw + v), (4)

where u and v are spin-independent quantities detailed in [10]. The zeros of D(q,w),
provide the GMFA energy spectrum of the system. In the normal state, the energy
spectrum is given by the roots of the second order equation w? — uw + v = 0 solved
previously [1] in the mean field approximation.

There are two main results established from the study of the energy spectrum of
the energy matrix (3).

(i) Hybridization of normal state energy levels preserves the center of gravity of the
unhybridized levels.

(ii) Hybridization of superconducting state energy levels displaces the center of grav-
ity of the unhybridized normal levels. The whole spectrum is displaced towards
lower frequencies.
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6.1. Energy spectrum of the normal state
The spectral equation w? — ugw 4+ vo = 0 has the coefficients given respectively by
Uy = wp + w1 and vy = wawr — x1X2|w21]*

Its solutions are Qg = wy + [y for the upper subband and Q(l) = w1 — By for the
lower subband respectively. The small parameter 3 satisfies the equation 32 + D3y —
X1X2|w21]? =0 ; Dy = we — wy, wherefrom

Bo = (Dono/2)/(1+/1+m) 5 10 = (4xixzlwai|?)/Df -

6.2. Energy spectrum of the superconducting state

From the factorization (4), it results that Q3 = —Q9 and Q4 = —Q;, with Q9 and
), obtained from the secular equation w? — uw + v = 0, where

v=vi+p = v=r/v}+te = Sv=v—vy=p/(v+uvy).
u? = ud + 200+ = u=/ud+ 200+ = du=u—ug=(20v+)/(u+up).

The hybridization yields Qo = QY + du/2+ 31 and Q; = Q9 + du/2 — 81, where the
small parameter 3 satisfies the equation 57 + D1 +dv/2 —1/4=0; D; = Q9 —QY,

wherefrom
Br=Dm/2)/(1+V14+m);: m= (Y- 25”)/D%~
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®yukiuu 'puHa nis perneHust IBYX30HHOW Moaesin Xabbapaa
B MpUOJN>KEHUU CPETHEro IMoJis B KyInparax
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Obzedunernulti uncmumym AlepruT Uccaedo8arul
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Havuonasvrowi uncemumym dusuru u adephoti mexnosozuu um. X. Xyaybes
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B pabore paccmaTpuBaeTcsi NCIIOJIL30BaHNE TEXHUKHU yPABHEHUsI JIBUXKeHUS PyHKIMA ['pu-
Ha JJ1s1 perennst 3pPEeKTUBHON IBYX30HHON MoAe I Xabbapaa BBICOKOTEMIIEPATYPHOM CBEPX-
IIPOBOJIMMOCTH B IIPUOJIMKEHUM CPEJIHETO TOJIsi B KyIpaTaxX, KOTOpasi HeJaBHO ObLTa MOJIV-
dbunmpoBaHa aBTOpPaMu JJisi BKJIIOYEHHUS HAJJIEXKAIMUX TDAHUYHBIX YCJIOBHUI DU HYJIEBOM
serupoBanuu. llomydeHbl jBa HOBBIX pe3ysibrara. 1. ['ubpuansarnusi HOpMAJIBHBIX YPOBHEN
COCTOSIHUSI SHEPTUH COXPAHSIET IEHTD Ts>KECTH HerMmOPUIN3MPOBAHHBIX ypoBHei. 2. ['mbpu-
JU3AIUs SHEPreTUIEeCKUX YPOBHEN COCTOSTHUS CBEPXIIPOBOJUMOCTH CMENIAET IEHTP TSKECTH
HernOpUIN3UPOBAHHBIX YPOBHEH. Bech criekTp cMmenaercss B CTOPpOHY 60Jiee HUBKUX 9aCTOT.

KimroueBble ¢cjioBa: BLICOKOTEMIIEPATYPHAA CBEPXIIPOBOAMMOCTD, KYIIPATHI, JIBY X30HHAA
Mojesib Xabbapia, dyukmuu ['puHa, npubJimkKeHne CpeTHero moJis.





