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The paper discusses the generalized mean field solution of the Green function matrix of
the effective two-band two-dimensional Hubbard model of the high-𝑇𝑐 superconductivity in
cuprates, as recently modified to include appropriate boundary conditions at zero doping.
Two main results are found. (i) Hybridization of normal state energy levels preserves the
center of gravity of the unhybridized levels. (ii) Hybridization of superconducting state
energy levels displaces the center of gravity of the unhybridized normal levels. The whole
spectrum is displaced towards lower frequencies.
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1. Basic principles of the theoretical description of
cuprates

The high critical temperature superconductivity in cuprates is still a puzzle of the
today solid state physics, in spite of the unprecedented wave of interest and num-
ber of publications. The two-band two-dimensional Hubbard model [1–3] provides a
description of it based on four basic principles:
(1) Deciding role of the experiment.

The derivation of reliable experimental data on various cuprate properties asks for
manufacturing high quality samples, performing high-precision measurements by
adequate experimental methods. The next section summarizes the wealth of data
provided by experiment.

(2) Hierarchical ordering of the interactions inferred from data.
(3) Derivation of the simplest model Hamiltonian following from the Weiss principle,

i.e., hierarchical implementation of the various interactions into the model.
(4) Mathematical solution by right quantum statistical methods which secure rigorous

implementation of the existing physical symmetries and observe the principles of
mathematical consistency and simplicity.

2. Experimental input to the theoretical model

There are five kinds of experimental data which are essential for the derivation of
a consistent theoretical model.

2.1.Crystal structure characterization points to the occurrence of layered ternary
perovskite structures, with an overwhelming contribution to the superconducting pair-
ing coming from the CuO2 planes.

Consequence: An effective two-dimensional (2D) model for the CuO2 plane is
requested.
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2.2. Existence of the Fermi surface was undoubtedly evidenced, first by 2D-ACAR
positron spectroscopy at the beginning of the nineties [4–6] and then by ARPES and
optical methods [7].

Consequence: The energy bands lying at or nearest to the Fermi level are to be
retained in the model.

2.3. The charge-transfer insulator nature of the cuprates occurs with the following
relationship between the energy band parameters, 𝑈 > Δ > 𝑊 .

Consequence 1: The hybridization results in the Zhang-Rice singlet subband.
Consequence 2: The Zhang-Rice singlet and the upper Hubbard subbands enter

the simplest model.
Consequence 3: Since Δ ∼ 2𝑊 , the model is to be developed and solved in the

strong correlation limit.
2.4. Tightly bound electrons in the metallic state.
Consequence 1: Occurrence of low density hopping conduction consisting of both

fermion and boson (singlet) carriers.
Consequence 2: This asks for the Hubbard operator description [8] of the system

states.
2.5. Occurrence of cuprate families which are characterized by specific stoichio-

metric reference structures, doped with either holes or electrons.
Consequence 1: The doping parameter 𝛿 is essential in the theoretical description

of the cuprates.
Consequence 2: The (𝛿, 𝑇 ) phase diagrams arise which have to be accounted for.

3. Input: abstractions, concepts, facts

Besides the straightforward inferences following from the experiment, a number of
additional input items need consideration.

3.1. Abstraction of the physical CuO2 plane with doped electron states by a doped
effective spin lattice. This is done by a one-to-one mapping from the copper sites inside
the CuO2 plane to the spins of the effective spin lattice. There are four possible spin
states at each lattice site 𝑖 in the effective spin lattice: |0⟩ (vacuum), |𝜎⟩ = |↑⟩ and
|𝜎̄⟩ = |↓⟩ (single particle spin states inside the hole subband), and |2⟩ = |↑↓⟩ (singlet
state in the singlet subband).

The spin lattice constants equal 𝑎𝑥, 𝑎𝑦, the CuO2 lattice constants.
The effective spin lattice is characterized by antiferromagnetic spin ordering at

zero doping.
The doping of the electron states inside the CuO2 plane is equivalent to the creation

of defects inside the spin lattice, by spin vacancies and/or singlet states.
The occurrence of a hopping conductivity inside the spin lattice is a consequence

of the doping. The hopping conductivity may consist either of single spin hopping
(fermionic conductivity) or singlet hopping (bosonic conductivity).

3.2. Concept : The global description of the hopping conduction around a spin
lattice site can be done by means of the Hubbard 1-forms [9].

3.3. Fact : The hopping induced energy correction effects are finite over the whole
range of the doping parameter 𝛿 [10], hence appropriate boundary conditions are to
be imposed in the limit of vanishing doping.

4. Model Hamiltonian

The originally derived model Hamiltonian of the 2D Hubbard model [1] was rewrit-
ten in terms of Hubbard 1-forms [9] and then put in locally manifest Hermitian
form [10]

𝐻 = 𝐻0 + 𝜌𝐻ℎ =
∑︁
𝑖

(︀
ℎ0,𝑖 + 𝜌ℎℎ,𝑖

)︀
, ℎ†0,𝑖 = ℎ0,𝑖, ℎ†ℎ,𝑖 = ℎℎ,𝑖, (1)
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with the single particle and hopping contributions at the spin lattice site 𝑖 given
respectively by

ℎ0,𝑖 = 𝐸1

∑︁
𝜎

𝑋𝜎𝜎
𝑖 +𝐸2𝑋

22
𝑖 ,

ℎℎ,𝑖 =
𝒦11

2

∑︁
𝜎

(︁
𝜏𝜎0,0𝜎1,𝑖 − 𝜏0𝜎,𝜎01,𝑖

)︁
+
𝒦22

2

∑︁
𝜎

(︁
𝜏2𝜎,𝜎21,𝑖 − 𝜏𝜎2,2𝜎1,𝑖

)︁
+

+
𝒦21

2

∑︁
𝜎

2𝜎
[︁(︁
𝜏2𝜎̄,0𝜎1,𝑖 − 𝜏0𝜎,2𝜎̄1,𝑖

)︁
+
(︁
𝜏𝜎0,𝜎̄21,𝑖 − 𝜏 𝜎̄2,𝜎01,𝑖

)︁]︁
.

The Hubbard 1-forms define the hopping conduction neighbourhood of 𝑖-th lattice
site,

𝜏𝛼𝛽,𝛾𝜂1,𝑖 =
∑︁
𝑚̸=𝑖

𝜈𝑖𝑚𝑋
𝛼𝛽
𝑖 𝑋𝛾𝜂

𝑚 ,
(︁
𝜏𝛼𝛽,𝛾𝜂1,𝑖

)︁†
= −𝜏𝛽𝛼,𝜂𝛾1,𝑖 .

The Hubbard operators at the spin lattice site 𝑖 are defined as 𝑋𝛼𝛽
𝑖 = |𝑖𝛼⟩⟨𝑖𝛽|,

where |𝛼⟩ and |𝛽⟩ denote the initial, respectively final spin states.
In (1), 𝜌 implements boundary conditions at vanishing doping. This Hamiltonian

serves to the definition of the quasi-particle spectrum and superconducting properties.

5. Rigorous mean field solution of Green function
matrix

The retarded and advanced Green function (GF) matrices are defined in terms
of Nambu operators in the space-time (r, 𝑡) representation [11]. Using the equations
of motion of the involved Heisenberg operators, differential equations of motion are
derived. In this representation, splittings of the higher order correlation functions are
also done.

In the dual space-energy (r, 𝜔) representation, which is obtained from the (r, 𝑡)-
representation by appropriate Fourier transforms, the differential equations of motion
are transformed in algebraic equations of motion. Analytic extensions in the complex
energy plane result in a unique GF in the complex plane. Calculations of statistical
averages are done in this representation by use of spectral theorems.

Performing one more Fourier transform from the space variable r to the momentum
variable q we get the momentum-energy (q, 𝜔)-representation. Within this represen-
tation we get: compact functional GF expressions, equations for the energy spectra,
statistical average calculations from spectral theorems, spectral distributions inside
the Brillouin zone.

The Green function matrices of the model define space-time correlations for the
four-component Nambu column operator [2, 3] 𝑋̂𝑖𝜎 = (𝑋𝜎2

𝑖 𝑋0𝜎̄
𝑖 𝑋2𝜎̄

𝑖 𝑋𝜎0
𝑖 )⊤ and its

adjoint operator 𝑋̂†
𝑗𝜎 = (𝑋2𝜎

𝑗 𝑋 𝜎̄0
𝑗 𝑋 𝜎̄2

𝑗 𝑋0𝜎
𝑗 ) (the superscript ⊤ denotes the transpo-

sition).
To get a standard eigenvalue problem for the spectrum, the (q, 𝜔)-representation

of the generalized mean field approximation (GMFA) GF solution is written in terms
of the energy matrix [10],

̃︀𝐺0
𝜎(q, 𝜔) = ̃︀𝜒1/2

[︁
𝐼𝜔 − ̃︀ℰ𝜎(q)]︁−1̃︀𝜒1/2 , (2)

̃︀ℰ𝜎(q) = ̃︀𝜒−1/2 ̃︀𝒜𝜎(q)̃︀𝜒−1/2 ; ̃︀𝜒 = ⟨{𝑋̂𝑖𝜎, 𝑋̂
†
𝑖𝜎}⟩,̃︀𝒜𝜎(q) =

∑︁
r𝑖𝑗

e𝑖q·r𝑖𝑗 ̃︀𝒜𝑖𝑗𝜎 ; r𝑖𝑗 = r𝑗 − r𝑖 ; ̃︀𝒜𝑖𝑗𝜎 = ⟨{[𝑋̂𝑖𝜎, 𝐻], 𝑋̂†
𝑗𝜎}⟩ .
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The ̃︀𝜒 matrix is diagonal,

̃︀𝜒 =

(︃
𝜒̂ 0̂

0̂ 𝜒̂

)︃
, 𝜒̂ =

(︂
𝜒2 0

0 𝜒1

)︂
, 0̂ =

(︂
0 0

0 0

)︂
,

where 𝜒2 = ⟨𝑛𝑖𝜎⟩ = ⟨𝑛𝑖𝜎̄⟩ and 𝜒1 = ⟨𝑛ℎ
𝑖𝜎⟩ = ⟨𝑛ℎ𝑖𝜎̄⟩ = 1 − 𝜒2 denote spin and site

independent averages of particle number operators. In terms of the doping rate 𝛿, it
results that in the hole-doped cuprates, 𝜒2 = 𝛿, 𝜒1 = 1−𝛿, while in the electron-doped
cuprates, 𝜒1 = 𝛿, 𝜒2 = 1− 𝛿.

The energy matrix can be written in the block structure form,

̃︀ℰ𝜎(q) = (︃ 𝐸̂𝜎(q) Φ̂𝜎(q)

(Φ̂𝜎(q))
† −(𝐸̂𝜎̄(q))

⊤

)︃
. (3)

With the choice [10] 𝜌 = 𝜒1𝜒2, the normal and anomalous 2 × 2 energy matrices
are obtained as follows

𝐸̂𝜎(q) =

(︂
𝜔2 2𝜎𝜔21 ·

√
𝜒1𝜒2

2𝜎𝜔*
21 ·
√
𝜒1𝜒2 𝜔1

)︂
,

Φ̂𝜎(q) =

(︂
−2𝜎𝑇2 · 𝜒1 𝑇21 ·

√
𝜒1𝜒2

−𝑇21 ·
√
𝜒1𝜒2 2𝜎𝑇1 · 𝜒2

)︂
,

𝜔2 ≡ 𝜔2(q) = (𝐸1 +Δ) + [𝑎22 + 𝑑22(q)] · 𝜒1,

𝜔1 ≡ 𝜔1(q) = 𝐸1 + [𝑎22 + 𝑑11(q)] · 𝜒2,

𝜔21 ≡ 𝜔21(q) = [𝑎21 + 𝑑21(q)],

𝑇2 ≡ 𝑇2(q) = 𝒦22𝑏1 + (1− 𝛿)𝜉1𝑏2(q) + 𝛿𝜉1𝑏3(q),

𝑇1 ≡ 𝑇1(q) = 𝒦11𝑏1 + (1− 𝛿)𝜉1𝑏2(q) + 𝛿𝜉1𝑏3(q),

𝑇21 ≡ 𝑇21(q) = 𝒦21𝑏1 + (1− 𝛿)𝜉2𝑏2(q) + 𝛿𝜉2𝑏3(q),

where expressions for the r.h.s. terms have been reported in [10].

6. GMFA energy spectrum

All the 16 matrix elements of the Green function (2) share a same denominator,

𝒟 ≡ 𝒟(q, 𝜔) = 𝐼𝜔 − ̃︀ℰ𝜎(q), with the following monic bi-quadratic dependence in 𝜔:

𝒟(q, 𝜔) = (𝜔2 − 𝑢𝜔 + 𝑣)(𝜔2 + 𝑢𝜔 + 𝑣), (4)

where 𝑢 and 𝑣 are spin-independent quantities detailed in [10]. The zeros of 𝒟(q, 𝜔),
provide the GMFA energy spectrum of the system. In the normal state, the energy
spectrum is given by the roots of the second order equation 𝜔2 − 𝑢𝜔 + 𝑣 = 0 solved
previously [1] in the mean field approximation.

There are two main results established from the study of the energy spectrum of
the energy matrix (3).

(i) Hybridization of normal state energy levels preserves the center of gravity of the
unhybridized levels.

(ii) Hybridization of superconducting state energy levels displaces the center of grav-
ity of the unhybridized normal levels. The whole spectrum is displaced towards
lower frequencies.
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6.1. Energy spectrum of the normal state

The spectral equation 𝜔2 − 𝑢0𝜔 + 𝑣0 = 0 has the coefficients given respectively by
𝑢0 = 𝜔2 + 𝜔1 and 𝑣0 = 𝜔2𝜔1 − 𝜒1𝜒2|𝜔21|2.

Its solutions are Ω0
2 = 𝜔2 + 𝛽0 for the upper subband and Ω0

1 = 𝜔1 − 𝛽0 for the
lower subband respectively. The small parameter 𝛽 satisfies the equation 𝛽2

0 +𝐷0𝛽0−
𝜒1𝜒2|𝜔21|2 = 0 ; 𝐷0 = 𝜔2 − 𝜔1, wherefrom

𝛽0 =
(︀
𝐷0𝜂0/2

)︀
/
(︀
1 +

√︀
1 + 𝜂0

)︀
; 𝜂0 =

(︀
4𝜒1𝜒2|𝜔21|2

)︀
/𝐷2

0 .

6.2. Energy spectrum of the superconducting state

From the factorization (4), it results that Ω3 = −Ω2 and Ω4 = −Ω1, with Ω2 and
Ω1 obtained from the secular equation 𝜔2 − 𝑢𝜔 + 𝑣 = 0, where

𝑣2 = 𝑣20 + 𝜙 ⇒ 𝑣 =
√︁
𝑣20 + 𝜙 ⇒ 𝛿𝑣 = 𝑣 − 𝑣0 = 𝜙/(𝑣 + 𝑣0).

𝑢2 = 𝑢20 + 2𝛿𝑣 + 𝜓 ⇒ 𝑢 =
√︁
𝑢20 + 2𝛿𝑣 + 𝜓 ⇒ 𝛿𝑢 = 𝑢− 𝑢0 = (2𝛿𝑣 + 𝜓)/(𝑢+ 𝑢0).

The hybridization yields Ω2 = Ω0
2+ 𝛿𝑢/2+𝛽1 and Ω1 = Ω0

1+ 𝛿𝑢/2−𝛽1, where the
small parameter 𝛽 satisfies the equation 𝛽2

1 +𝐷1𝛽1+ 𝛿𝑣/2−𝜓/4 = 0 ; 𝐷1 = Ω0
2−Ω0

1,
wherefrom

𝛽1 =
(︀
𝐷1𝜂1/2

)︀
/
(︀
1 +

√︀
1 + 𝜂1

)︀
; 𝜂1 =

(︀
𝜓 − 2𝛿𝑣

)︀
/𝐷2

1.
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УДК 510.676, 519.7
Функции Грина для решения двухзонной модели Хаббарда

в приближении среднего поля в купратах

Г. Адам, C. Адам
Лаборатория информационных технологий

Объединенный институт ядерных исследований
ул. Жолио-Кюри д.6, Дубна, Московская область, 141980, Россия

Национальный институт физики и ядерной технологии им. Х. Хулубея
Maгурель-Бухарест, 077125, Румыния

В работе рассматривается использование техники уравнения движения функций Гри-
на для решения эффективной двухзонной модели Хаббарда высокотемпературной сверх-
проводимости в приближении среднего поля в купратах, которая недавно была моди-
фицирована авторами для включения надлежащих граничных условий при нулевом
легировании. Получены два новых результата. 1. Гибридизация нормальных уровней
состояния энергии сохраняет центр тяжести негибридизированных уровней. 2. Гибри-
дизация энергетических уровней состояния сверхпроводимости смещает центр тяжести
негибридизированных уровней. Весь спектр смещается в сторону более низких частот.

Ключевые слова: высокотемпературная сверхпроводимость, купраты, двухзонная
модель Хаббарда, функции Грина, приближение среднего поля.




