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We study two- and three-dimensional stationary solitons with non-trivial topology in gauge-
invariant nonlinear sigma models (NSMs) describing interaction of scalar unit S fields with
gauge vector SU(N — 1) fields, N = 2, 3.
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1. Introduction

Nonlinear sigma models (NSMs) are of great importance in the modern mathe-
matical physics, which is due to their universality: they appear in various branches
of fundamental science. Classical NSMs describe evolution in time of N-component
unit isovector field s,(x,t) in (D + 1)-dimensional space-time (a = 1,..., N + 1); field
manifolds of these models are unit spheres S”. The most interesting cases correspond
to D=23and N =2,3.

Below we discuss the A3M model with (N = 2,D = 2), introduced in [1], and
the A4Y M model with (N = 3, D = 3), introduced in [2]. The A4Y M model is the
straightforward extension of the A3M model. On the other hand, one can see deep
resemblance of the A4Y M model with the bosonic sector of the reduced electroweak
Salam-Weinberg theory, widely known as SU2-Higgs model, in which radial degree of
freedom of the Higgs field is frozen (see the A4YM Lagrangian in Sec. 2). In fact, our
gauged NSMs include: i) unit length scalar (/V + 1)-component field, with values on
SN 512+ . snyp12 =1 (N = 2,3), interacting with ii) vector field with U(1) or SU(2)
symmetry (Maxwell or Yang-Mills).

2. A3M model in 2 dimensions

Consider minimal interaction of the S? scalar field (A3-field) with the Maxwell field
A, (x). The resulting “A3M model” is described by the gauge-invariant Lagrangian:

1
L="D,s_D"s; + 0,530"s3 — V(s4) — Zij,

D, =0, +ieA,, D,=0,—icA,, (1)
Sy =81 +1S2, S_ =381 — 1S9,
Fo=0,A, —0,A,, V(sa.) =pB(1-3s3),
where (3, e are coupling constants and wp,v = 0,1,2. The localized distributions of

unit isovector s,(x) in this model are divided into classes with different topological
inidices (“charges”) Qy; solitons with nonzero topological charges are referred to as
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“topological solitons” [1]. We look for the topological solitons of the A3M model using
the “hedgehog-like” ansatz for the A3-field

s1 = cosmysind(R), sy =sinmysind(R), s3 = cos?(R),
E? COSX:%v R2:1‘2+y2,

where m is an integer number. We use also the standard “vortex” ansatz for the vector
field A,,, describing localized distributions of a stationary magnetic field:

siny =

Ag=0, A=A, =-ma(R) Ay = A, = ma(R)%

Y
R’
For them Q; = m

After rescaling (a = ae™

L R=re
at coupled equations for ¥(r) and «(r)

—1) we calculate 6 H /69 and §H /S, arriving

29 1d9 . m?(a —1)?

(17«2+7«dr_81n19(30819[7~2 +p:| —O7 (2)

d?a  1da 5
ﬁ ;df—FQSln 19(1—0[)—0 (3)

to be solved under the following boundary conditions:

9(0) =7, J(o0) =0, (4)

da
0)=0, — =0. 5
a(0) =0, () 5)

Using series expansion of ¥(r) and «(r) at r — 0, we find from Egs. (2) and (3)
form=1
I(r)=m—Cir+o(r),

a(r) = r? (Ef — inrQ) + 0(r4),

and for m = 2

I(r) =7 — Cor® + o(r?),
1
a(r) = r? (ES - 12C22r4> + 0(r6).
The asymptotic form of the soliton solution for r — oo is:

T
¥(r) = —=exp(—/pr), T = const,
a e
a(r) & as — (1 — am)% exp(—2./pr).
We studied the problem (2)—(5) by various numerical methods, among them shooting
technique, stabilization method. The method based on power and asymptotic series
and on the analytic continuation technique (re-expansions and Pade approximants)
was used as well [3].
Solutions exist and are stable for the values of dimensionless anisotropy parameter

0<p<pe =~ 041.

The plots of radial functions «(r) and J(r) and corresponding distributions of en-
ergy density and magnetic field have been presented in [1]. Later we have found the
dependence of @; = 1 soliton energy on parameter p [4]. It is interesting to note
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that the dependence a(co) on p proved to be surprisingly symmetric (see Fig. 1).
Presently the only way to explain such a symmetry is to refer to high (U(1) ® Z(2))
symmetry of the A3M model (1). Then we studied @; = 2 solitons. We have
found that for all 0 < p < per = 0.41 their energies turned out to satisfy inequal-
ity Fsor(Qt = 2,p) < 2% Es(Q¢ = 1,p). This means that two @, = 1 solitons attract
to each other, forming the (); = 2 bound states as a result of initial configuration
evolution.
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Figure 1. a(oo) vs p for the A3M model.

3. A4YM model for D =3

Further we shall consider another gauged sigma model, which describe minimal
interaction of the easy-axis 4-component unit isovector field ¢*(z*) (“the A4-field”)
interacting with the vector SU(2) Yang-Mills field Af,(z").

The Lagrangian density of this (“the A4YM”) model is:

1
£ =Duq"D"q" +0,4"0"¢" = V(¢*) = (FL,)*,
Duqa _ 8Mqa _|_g€abcAl; 67
Fy, = 0,A) —0,A; + ge“bcAZAf,,
V(g®) =B[1-(")?],

where a, u, v =0,1,2,3; a,b,c=1,2,3; 5, g are coupling constants.
First we looked for stationary topological solitons of the A4YM model using the
following ansatz for the A4- and the SU(2) Yang-Mills fields:

" =cos9(R), ¢"= sinﬂ(R)%, R? =2+ % + 2%,
A =0, A¢=c(R)e" st

Then the Hamiltonian density distributions of localized field bunches are spheri-
cally symmetric:

dv\? | 2sin®0 , ,
Hst(R) = (dR) + % + 4gesin®d + 2¢g2%c? R?sin?9 + 6¢2+

de\” 1 d
+ (d]é) R* + §g204R4 + 4R0£ + 2gR%c® + Bsin?9).
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Introduce dimensionless variables r = gR, b(r) = g~ ter?.
Calculating 6H /99 and 6H /or, we get coupled equations (P = i)
g
d29 249 2(b+1)2
— + —— —sind cos ¥ u + P| =0,
dr2 = rdr r2 (6)
d2b  2b . b2

When searching for localized solutions we set the following boundary conditions:
19(0) =T, ﬁ(oo) =0, b(()) =0, b(oo) =G. (7)

Solutions to above problem (6)—(7) would define localized distributions ¢®(z*) (o =
0,1,2,3, and k = 1,2,3) of the Ad-field with unit topological charge, @; = 1. Here
Q: is the “mapping degree” of continuous maps Ri’omp — §3. However such solutions

have not been found. Because of that we look for more general ansatz.
More general ansatz keeps the “hedgehog” form for ¢* and a generalized expression
for A;:
B(R D(R
.(R ) + nani%. (8)

Af(l‘) = GM‘jnjC(R)R + (5(”‘ — nani)

a
However such ansatz should respect Lorentz gauge. Equating =0, we find

85(71‘

B(R) = -5 ——(R*D(R)). (9)

Finally we obtain the ansatz defined by equations (8) and (9).
We calculate the hamiltonian density H:(R) for such ansatz using the computer al-
OHst(R) 0Hst(R) dHa(R
gebra system Maple [5]. Equating variational derivatives Hoil ), H(Sg ), i 539( )
to 0, we obtain coupled equations for radial functions C(R), D(R),9(R). Their so-
lutions (if exist) define localized soliton solutions to A4YM model. The study of
coupled equations for C(R), D(R),¥(R) is in progress.

4. Conclusions

In this paper we discussed the existence and properties of localized solutions of
the A3M model (D = 2) and the A4YM model (D = 3). Topological solitons of
these models can be considered as soliton analogues of the so-called defect solu-
tions: 2D strings-vortices in the Abelian Higgs model [6,7] and 3D 't Hooft-Polyakov
“hedgehogs”-monopoles [8-10] correspondingly.

References

1. Bogolubsky I. L., Bogolubskaya A. A. 2D Topological Solitons in the Gauged Easy-
Axis Heisenberg Antiferromagnet Model // Phys. Lett. B. — 1997. — Vol. 395. —
Pp. 269-274.

2. Bogolubsky I. L., Bogolubskaya A. A. On Multidimensional Topological Solitons in
Gauged Sigma Models with Spontaneously Broken Z(2) Symmetry // Ann. Fond.
Louis de Broglie. — 1998. — Vol. 23, No 1. — Pp. 11-14.

3. Bogolubsky A. I., Skorokhodov S. L. Pade Approximants, Symbolic Evaluations,
and Computation of Solitons in Two-Field Antiferromagnet Model // Program-
ming and Computer Software. — 2004. — Vol. 30, No 2. — Pp. 95-99.



156

Bogolubsky I. L., Bogolubskaya A.A.

o ot

10.

Stable-Extended String-Vortex Solitons / I. L. Bogolubsky, A. A. Bogolubskaya,
A. 1. Bogolubsky, S. L. Skorokhodov // Path Integrals — New Trends and Per-
spectives. Proceedings of the 9th International Conference / Ed. by W. Janke,
A. Peltser. — Singapore: World Scientific, 2008.

Maple 12 User Manual. — http://www.maplesoft.com/view.aspx?sid=5883.
Abrikosov A. A. On the Magnetic Properties of Superconductors of the Second
Group // Soviet Physics JETP. — 1957. — Vol. 5, No 6. — Pp. 1174-1182.
Nielsen H. B., Olesen P. Vortex-Line Models for Dual Strings // Nuclear
Physics. — 1973. — Vol. B61. — Pp. 45-61.

't Hooft G. Magnetic Monopoles in Unified Gauge Theories // Nuclear Physics. —
1974. — Vol. B79. — Pp. 276-284.

Polyakov A. M. Particle Spectrum in Quantum Field Theory // JETP Lett. —
1974. — Vol. 20, No 6. — Pp. 194-195.

Polyakov A. M. Isomeric States of Quantum Fields // JETP. — 1975. — Vol. 68. —
Pp. 1975-1990.

YIK 517.957, 530.145
JIByxI1i0/1eBbI€ COJIUTOHBI B ABYX- U TPEXMEPHOM HPOCTPAHCTBE

1. JI. Borosiobekuii, A. A. Boroaiobckas

Jlabopamopusa ur@OPMAUUOHHBLT METHON02UT
Ob6sedunennvili uHCmumym AJEPHHLL UCCALIO8AHUTL
ya. 2Koauo-Kiropu 0.6, dybra, Mockoscras obaacmo, 141980, Poccus

B pabore HCCIEAYIOTCST [BYX- U TPEXMEPHBIE CTAIMOHAPHBIE COJUTOHBI C HETPUBUAJIBLHON
TOLIOJIOTHEHl B KAJIMOPOBOYHO-MHBAPUAHTHBIX HEJMHEHHBIX CHIMAa-MOJEJSIX, OIUCHIBAIOIIAX
B3AMMOIEiCTBIE CKATSPHBIX TOJIeli co 3nadenusvu na chepax S° ¢ KaIubPOBOUHBIME BeK-
ropubiMu SU (N — 1) mossimu (N = 2, 3).

KirroueBblie cjioBa: HemHeiHbIE curmMa-mMozaeJsin, COJIMTOHDI.





