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In this paper, we suggest and analyze new three-step iterative methods for solving nonlinear
equations. The analysis of convergence shows that the proposed methods are fourth and
fifth-order convergence. Several numerical examples are given to illustrate the efficiency and
performance of the proposed methods. Comparison of different methods is also given.
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1. Introduction

In recent years, much attention has been given to the development of new higher-
order methods [1-12] for solving a nonlinear equation

f(z) =0, (1)

where f(x) : D C R — R is a scalar or vector function for an open interval D.
Among them the research of the high-order methods free from second derivatives is
getting very active now. In [13] a fourth-order convergent two-step iterative method
was suggested:

=z f(@n) x =y f(yn) n=20,1,... (2)

Yn n - f,(xn)v n+1 n f,(yn)7

Here we assume that x* is a simple root of Eq. (1) and z is an initial guess sufficiently
close to z*. This paper can be considered as a continuation of our previous work [13]
and we propose here two three-step iterative methods:
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with a fourth and fifth-order convergence, respectively. Of course, these methods
belong to Newton-type ones and do not require a second derivative. It is worth to
mention that the iterative method (3) looks more simple, especially for the system of
Eq. (1) than (2), although they have the same order of convergence. In [2,3] three-step
and fourth-order convergence iterative method was suggested using a decomposition
technique. Unlike (2) and (3), this method requires a second order derivative, which is
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a serious drawback. Another fourth-order method free from derivatives was analyzed
by M. Xiangjiang and W. Xinghua in [14].

2. Convergence Analysis

We now proceed to study the convergence analysis of the iterative method (4).

Theorem 1. Let z* € D be a simple root of a sufficiently smooth function f(z) :
D C R — R for an open interval D. If xq is sufficiently close to x*, then the three-step
iterative method (4) has a fifth-order convergence.

Proof. Let e,, = x,, — x* be the error at n-th iteration, and a, = ]{,((3;")). Using

Taylor series expansion of sufficiently smooth function f(z) in the vicinity of x* and
Ty, easy shows that
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Substituting (5) into (9) and after some calculations we obtain
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Wn e + en+0(ey).  (10)

In a similar way, we find that
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Also from (4) and (9) we get

—f”’(wn)) a+0(a?). (11)

fe) = Tz o) (12)

From (5), (8), (10), (11) and (12) it follows that

f(zn) 1 [ (xn) ’ 4 5
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32 Zhanlav T., Chuluunbaatar O., Ankhbayar G.

From (4), we have

—e —a— f(yn) + f(2n)
et = n P )

Substituting (5), (10) and (13) into (14), we have e,+1 = O(e2), i.e., the iterative
method (4) has a fifth-order convergence in the vicinity of the root z*. O

For the convergence order of method (3) we have the following theorem:
Theorem 2. Letx* € D be a simple root of a sufficiently smooth function f : D C

R — R for an open interval D. If xq is sufficiently close to x*, then the three-step
iterative method (3) has a fourth-order convergence.

Proof. Let e, = x,, — x* be the error at n-th iteration, d,, = y,, — z,, = —;,((Z")),
kn = 2pn — Yp = f/((zi") and s, = z, — &, = d,, + k,. Using Taylor series expansion

of sufficiently smooth function f(z,) in the vicinity of * and x,,, we have

f@n) = fl(zn)en — %fll(xn)egz + %fﬁl(ajn)ei - ;Zf(iv) (fL‘n)efL + O(ei),
Flon) = 5 F" )2+ < 7" ) + ifwxn)d‘* +O(d).
f(zn) = f(zn) + f/(xn)sn + f”(xn)s + f'”(xn)s + f(w) (xn)s + O(s )-

(15)
Also we can easy show that
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From (3) we obtain
_ f(zn)
e = T )
1 2

and after some calculation using (15), (16), we get e,41 = 3 (J;“((f:))> er + O(ed),
i.e., the iterative method (3) has fourth-order convergence in the vicinity of the root
x*. O

Remark 1. The proposed iterative methods (3) and (4) work well for solving a
system of nonlinear equations of kind (1). Implementation of these methods looks like

f/(xn)yln = *f<mn)a Yn = Tn + Vip,

f,(xn>l/2n =—f(Yn),  2n = Yn + von, (17)
f,(xn)y?m == (f(yn) + f(Zn)) y Tp4l = Ynt1 + V3n,
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and .
f (.fn = 7f<LL'n), Yn = Tn + Vin,
f/

)Vln
(yn)VQn = _f(yn)a Zn = Yn T V2n, (18)
f/(yn)VSn = —(fyn) + f(2n))s  Tni1 = Ynt1 + V3n.

respectively. The algorithms (17) and (18) show that it is sufficient to invert the
Jacobian matrices f’(x,) and f’(y,) only ones and twice, respectively, thus reducing
the CPU time.

3. Numerical Examples and Efficiency Analysis

We consider the definition of the efficiency index [8] as p'/%, where p is the order of

the method and w is the number of the function evaluations per iterations required by
the method, which is counted as a sum of the number of evaluations of the f(z) itself
plus the number of evaluations of the first derivative f’(x). A theoretical comparison
of efficiency index of various methods for the scalar equation (1) is given in Table 1.
The comparison is given for one-, two- and three-step methods:

NM - Newton’s method

MNM — modification of Newton’s method [8]

MHM - modified Halley’s method [9]

Alg 2.2, 2.3 — algorithms 2.2 and 2.3 in [2]
with our methods (2), (3) and (4).

Since Vv3<V5<vV2<3<4 or

1.3161 < 1.3797 < 1.4142 < 1.4422 < 1.5874,
the efficiency index of these methods does not differ from one another essentially. The
efficiency index of methods (2) and (3) is equal to those for Newton’s method and it
is compatible with those for MNM and MHM.

Table 1
Theoretical comparison of efficiency index of methods
Steps 1 2 3
Methods | NM MNM | MHM | Alg2.2 | (2) [14] Alg 2.3 | (3) (4)
P 2 3 3 3 4 4 3 4 5
w 2 3 3 3 4 3 4 4 5
pl/w 1.414 | 1.442 1.442 1.442 1.414 | 1.587 | 1.316 1.414 | 1.380

Now we present some examples to illustrate the efficiency of the proposed methods
(2), (3) and (4) and compare them with Newton’s and modified Newton’s methods
and then fourth-order convergence method given by [14] for various scalar function
equations. All computations are carried out with a double arithmetic precision and
the number of iterations n such that |f(x,)| < 1.0e — 16 is tabulated (see Table 2).
From Table 2 one can see that the fourth-order convergence methods [14], (2) and (3),
as well as fifth-order convergence method (4) are compatible.

Now we can test these methods for a nonlinear system of equations:

T1T3 + Loy + T3X5 + T4Te
T1T5 + Tole
1 +x3+x5 —1
—T1+ T2 — T3+ Tg— T5+ Tg
—3$1 — 2$2 — I3+ T5 + 2:)36
3%1 — 2%2 + T3 — 5 + 21’6

derived for constructing an orthonormal wavelet system with compact support [15].
Various iterative methods have been used for solving this system starting with initial
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Table 2
Comparison of various iterative methods

@) 7o [ NMNM [ [1] [ (@) [ () [ @
filz) = 2% —e® — 3z +2 3 5 3 3 3 3
fa(x) = cos(z) — x 1 3 2 2 2 2
f3(z)=(x—-1)3 -1 2.5 | 4 3 3 13 |3
Falz) = 2% — 10 1.5 | 5 3 3 |4 |3
fs(z) = ze® —sin®z+3cosz+5 | -2 |6 4 4 5 4
fola) = e +72=30 _ 1 5.5 | 26 19 |22 |27 |19

guess 2(©) = (0,0,0,1,1,0)". The number of iterations n such that ||F(z)| < 1.0e—16
and the number of correct digits after a decimal point of solution to this system are

shown in Tables 3 and 4.

Table 3
Number of iterations
NM [ Alg2.3 [ MNM [ (2) [ (3) | (4)
7 6 4 4 3 3
Table 4

Number of correct digits after decimal point

Number of iterations | MN | Alg 2.3 | MNM | (2) | (3) | (4)
m=1 0 0 0 0 0 1
m =2 0 0 2 4 4 9
m=3 2 2 6 18 | 16 | 59

From Tables 3 and 4 we see that the fifth-order convergent method (4) yields a
more precise result in a less number of iterations as compared to the fourth-order
methods (2) and (3) especially in the case when used a higher arithmetic precision.
The last three calculations in Table 4 was performed using MAPLE.

4. Conclusions

We have suggested and analyzed new three-step Newton-type methods with a free
second derivative for solving nonlinear equations with a fourth and fifth-order conver-
gence. We have obtained new iteration methods of Newton-type. From theorems
1 and 2, we have proved that the order of convergence of the new methods (2), (3)
and (4) is four and five, respectively. From the numerical examples we see that the
new methods have a great practical utility especially in the case of higher accuracy
calculations.
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YIK 519.6
O MeTodax HbroToHOBCKOro Tuma co CXOAMMOCTBIO 9€eTBEepTOoro
1 II£ATOTO IMopdaKa

T. 2Kanmas*, O. Uynyyn6aarap', I. Aux6aap*
* Kagpedpa npuraradnoti mMamemamuri
Mamemamuseckuti axysvmem
Momnzoaveruti eocydapemeennoti yrnusepcumem, Monzoaus
' JTa6opamopus ungopmavuormvis mexnorozui
06Bedunérrbill uHcmMuUmMym A0EPHHL UCCACO0SAHUT
ya. 2Koavo-Kropu 9.6, ybra, Mockosckas obaacmo, 141980, Poccus

B pabote npesiozKeHbl U aHAJIU3UPYIOTCS HOBbIE TPEXIIIAIOBLIE UTEPAIMOHHBIE METOIBI Pe-
MIIEHUsT HeJIMHEWHBIX yPABHEHUN. AHAINS3 CXOAMMOCTH TTOKA3BIBAET, ITO MTPE/IJIO?KEHHBIE METO-
JIBI SIBJISIIOTCS CXOAMMOCTBIO YeTBEPTOrO U MSITOrO MOPSAKA. 1TOOBI IPOUIITIOCTPHPOBATE -
GbEKTUBHOCTD IIPEJJIOKEHHBIX METOJIOB, IPUBOJIUTCSA HECKOJIBKO UMCJIEHHBIX IPUMePOB. Tak-
2Ke IIPOBOAUTCA CPaBHEHHUE PA3IUYHBIX METOIOB.

KuroueBrle cjioBa: nTepalroHHbIE METOJIbI, TOPSIOK CXOJINMOCTH, METOIbI HHIOTOHOB-
CKOT'O THIIA, HEeJIMHEHHbIC YDABHCHUS.





