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Symbolic Solving of Differential Equations with
Partial Derivatives

N. A. Malaschonok

Tambov State University
Internatsionalnaya 33, 392622 Tambov, Russia

An algorithm for the symbolic solving of systems of linear partial differential equations by
means of multivariate Laplace-Carson transform (LC) is produced. Considered is a system of
K linear equations with M as the greatest order of partial derivatives and right hand parts of a
special type, that permits a symbolic Laplace—Carson transform. Initial conditions are input.
As a result of Laplace—Carson transform of the system according to the initial conditions,
we obtain an algebraic system of equations. There exist efficient methods to solve large size
systems of such types. It gives a possibility to implement the method for solving the large
PDE systems. A method to obtain compatibility conditions is discussed. The application of
LC allows one to execute it in a symbolic way.

Kurouessblie ciioBa: systems of partial differential equations, Laplace-Carson transform,
symbolic solving.

1. Introduction

The Laplace transform has been useful in various problems of differential equations
theory, including problems of partial equations (for example [?,1-5]). On the other
hand, there are many ways to use computer algebra systems for numerical or symbolic
solving of PDE systems, for example the well known usage of MAPLE for characteristics
method that permits to simplify equations in many cases (for instance [6,7]).

We produce an algorithm for symbolic solving of systems of linear partial differential
equations by means of multivariate Laplace—Carson transform. Considered are the
systems of arbitrary number K of unknown functions and equations of arbitrary order
M of derivatives in the cases, described in section 2, under conditions a)-b). The
method allows one not to reduce (or to reduce to canonical form) the problem at initial
stage, it reduces it to solving a linear algebraic system with polynomial coefficients
where efficient methods were developed (for example [8-10]). So large systems of linear
PDE may be solved in real time.

The application of Laplace—Carson transform permits to obtain compatibility conditions
in a symbolic way for many types of PDE equations and systems of PDE equations.

2. Method

Consider the space S of functions f(z), x = (z1,...,2,) € R}, R} = {z :
x; >20,i=1,...,n}, for which M > 0,a = (ay,...,a,) € R", a; >0,i=1,...,n,
exist such that for all X € R’} the following is true: |f(z)| < Me®®, ax = Zl a;T;.
1=
On the space S the Laplace—Carson transform (LC) is defined as follows:
LC : f(x) — F(p) = p* /epr(x)dx,
0
p=@1-spn); P =p1o.pn, pr=» piri, dz=dai... dz,.
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Denote m = (my, ..., my,). Consider a system

ZZZamk 8m1x1 G (@) = fi(2), (1)

k=1m=0 m

wherej=1,...,K,ui(z), k=1,..., K, — are unknown functions of z = (x1,...,2,) €
R’ f; € S, al., are real numbers, m is the order of a derivative, and k — the number
of an unknown function. Here and further summing by m = (my,...,m,) is executed
for mi +...+m, =m.

We solve a problem with initial conditions for each variable. Introduce notations
for them. Denote by I'V a set of vectors v = (v1,...,7,) such that v, = 1, 7, = 0,
if ¢ < v, and v; equals 0 or 1 in all possible combinations for ¢ > v. The amount of
elements in I'V equals 2V~ 1.

Denote 8 = (51,--.,0n), Bi =0,...,m;, a set of indexes such that the derivative
of u*(x) of the order 8; with respect to the variables with numbers i equals ugﬁ(x(”)
at the point x = 27 with zeros at the positions ;v for which the coordinates v, of v
equal 1. For example, if zeros stand only at the places with the numbers 1,2, 3, then
v=(1,1,1,0,...,0).

Let LC : u* — U*, ufy (x(V)) = Uj (QD(W ), f; = Fj, the notation p(*) is correspon-
dent to the notation 13(7). Denote by H7H the “length” of 7 — the number of units in

N, p™ =P pie
Then
LC: o ug(z) —
. 877’7,11-1 . amnxn k
S URp) + 30 S S ()l Ae e (p0),

v=1 B,=0 ~er¥

Denote

mk—za k:Z Z Z( 1)l =Fr= ’71_.,p;n"_ﬁn_'YnUg,’y(p(’Y)).

v=1 B,=0 ~eIv

As a result of Laplace—Carson transform of the system (1) according to initial
conditions we obtain an algebraic system relative to U*

9P I ICIELEETE 95 s AR

k=1m=0 m k=1 m=0

The algorithm component is the definition of compatible initial conditions. The
system (1) should be solved under such conditions.

Denote by D the determinant of the system (2), D; — the maximal order minors
of the extended matrix of (2). A case when there is a set Q of zeros of D with infinite
limit point at Repy > 0, k = 1,...,n is of most interest. Solving the system (2),
we obtain U* as fractions with D in the denominators. The inverse Laplace-Carson
transform is possible if a, k = 1,...,n exist such that these functions are holomorphic
in the domain Rep, > ap,. So we make a demand: D; = 0 at Q. This demand
produces requirements to the LC images of initial conditions functions, and after LC~*
transform to initial conditions. They turns to be dependent. We obtain the so-called
compatibility conditions.

The algorithm of solving the system (1) consists of four main steps:

1. Laplace-Carson transform of the system (1).
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2. Solving of the algebraic system (2).
3. Establishing of compatibility conditions.
4. Inverse Laplace—Carson transform of the solutions of (2) — it is the solution of
the system (1).
At the present stage of research we guaranteer symbolic computations if we may
carry out the following:
a) For LC:
Represent input functions as sums of exponents with polynomial coefficients.

Call a rational fraction “a proper fraction” if the degree of each variable (over C)
in nominator is less than its degree in denominator.

b) For LC:

— represent the solutions of algebraic system as sums of proper fractions with
exponential coefficients;

— reduce the denominator of these proper fractions to a product of functions linear
with respect to each variable.

Note that the class b) does not exhaust all cases that admit pure symbolic computa-
tions. We produce two very simple examples: for a case from b) and out of it. It is
convenient in these cases to change notations for unknown functions, their Laplace
transform, variables, initial conditions.

3. Examples

1. Take a system of two equations with two unknown functions on Ra_.

of (99 Of 09 _ _ g
B oy =T gy o= =@y g=g@y).

Initial conditions:
f(0,9) =a(y); f(x,0)=0b(x); ¢(0,y) =c(y); g(x,0)=d(z),
LC: f(z,y) = u(p,q), g(x,y) — v(p,q),
a(y) = alq), b(x) — B(p),cy) — d(q), d(z)— v(p),

pu—pa(q) +qu —qy(p) = 1/p, qu—qB(p) +pv —pd(q) =1/q.
Then

_ P+ B+ 0 —pg PP+ (o= B¢’ — (0p” —19*)pg
P’ —q ’ pa(p® - ¢*)

The denominator D: D(p,q) = pq(p® — ¢*).

The set of zeros of D with infinite limit points at the right half-plane is ¢ = p.
Substituting ¢ = p into the nominator of u and v, we obtain the compatibility
condition: « — 8+ — 9 = 0.

For example we may take 8 =0; v = g; 0= g; a=0.
Then P !
_ 2 U:_p+2p2+q+2q2—|—2pq.
p+q’ pa(p +q)
LC~

;o 2y, y<=z,  [(@2+yz, y<u=,
o 2, y=>uw, y2+2x), y==x
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2.

1.
2.

2
Consider the equation of parabolic type % — g‘?}; = xy. Initial conditions:
of (x,
0.9 =aty PED T Z i) pa,0) = el
z=0

LC: f(z,y) = u(p, q), aly) — alq), bly) — B(q), c(x)+— ~(p),

1
LC: p*u—p’a—pB—qu+qy= o
Then X ) )
_ 1+pqa+p*eB —pgy
u= 5 .
pa(p* —q)
Substituting p = /g into the nominator of u, we obtain the compatibility condition:

1
a=7vyy= —q—2. For example a =v =1, v= —q—z. Correspondingly, we obtain

1+ pPqa+p*aB — pgPy
U= 2
pq(p* — q)

)

2
and as a result of LC™! f(x,y) = 1 — % under the initial conditions a(y) =

_ _ Y
clx) =1, by) = 5

4. Conclusion

Let us adduce advantages of the algorithm presented in the paper.
The Laplace—Carson transform is a way for symbolic solving of differential equations
as it reduces the solution process to algebraic manipulations.

Representation of righthand side functions by sums of exponents with polynomial
coefficients (in a case when it is possible) makes the Laplace—Carson transform
completely symbolic.

The algebraic system obtained after the Laplace transform may be solved by
methods most convenient and efficient for each specific case.

Representation of the solutions of algebraic system as sums of proper fractions
with exponential coefficients provides a symbolic character of the inverse Laplace
transform.

The application of Laplace—Carson transform permits to obtain compatibility
conditions in a symbolic way for many types of PDE equations and systems of
PDE equations.

JIuteparypa

Dahiya R. S., Saberi-Nadjafi J. Theorems on n-Dimensional Laplace Transforms
and Their Applications // 15th Annual Conf. of Applied Math., Univ. of Central
Oklahoma, Electr. Journ. of Differential Equations, Conf.02. — 1999. — Pp. 61-74.
Dimouski 1., Spiridonova M. Computational Approach to Nonlocal Boundary
Value Problems by Multivariate Operational Calculus // Mathem. Sciences Re-
search Journal. — 2005. — Vol. 9, No 12. — Pp. 315-329.

Malaschonok N. Parallel Laplace Method with Assured Accuracy for Solutions
of Differential Equations by Symbolic Computations // Computer Algebra and
Scientific Computing, CASC 2006. — LNCS 4196. — Springer, Berlin, 2006. —
Pp. 251-261.



14 Malaschonok N.A.

4. Burghelea D., Haller S. Laplace Transform, Dynamics and Spectral Geometry. —
2005. — arXiv:math.DG/0405037v2. ArXiv:math.DG/0405037v2.

5. Podlubny I. The Laplace Transform Method for Linear Differential Equations
of the Fractional Order. — 1997. — arXiv:funct-an/9710005v1. ArXiv:funct-
an/9710005v1.

6. Toaockokos /1. II. // YpaBHenusi mareMarndeckoii dpusuku. Pertenue 3a1a4 B cu-
creme Maple. — CII6: ITurep, 2004.

7. Scott A. S. The Method of Characteristics and Conversation Laws // Journal of
Online Mathematics and its Applications. — 2003. — http://mathdl.maa.org/
mathDL/4/7pa=content&sa=viewDocument&nodeId=389.

8. Strojohann A. Algorithms for Matrix Canonical Forms // Ph. D. Thesis. — Zurich:
Swiss Federal Inst. of Technology., 2000.

9. Malaschonok G. I. Effective Matrix Methods in Commutative Domains // Formal
Power Series and Algebraic Combinatorics. — Berlin: Springer, 2000. — Pp. 506—
517.

10. Malaschonok G. Solution of Systems of Linear Equations by the p-adic Method //
Programming and Computer Software. — 2003. — Vol. 29, No 2. — Pp. 59-71.

UDC 510.676, 519.7
CumBoJsibHOe pernieHne nuddepeHInaIbHbIX YyPaBHEHU B
YaCTHBIX ITPOU3BOJHBIX

H. A. MaJsaimoHok

Tamboscruitl 2ocydapcmeennoitl yHusepcumem,
Hrmeprayuonanrornas ya., d. 33, Tambos, 392622, Poccus

[Ipenmaraercss aJropuTM JUJisi CHMBOJIBHOTO pellleHusi cucreM audpepeHnuaabHbIX ypaB-
HEHU# B YaCTHBIX MPOUW3BOHBIX IMMOCPEICTBOM MHOTOMEPHOrO mpeobpaszoBanus Jlarmraca—
Kapcona. Paccmorpena cucrema K ypaBHeHuit ¢ M Kak HAWBBICIHIUM ITOPSIKOM YaCTHBIX
[IPOM3BOHBIX ¥ IIPABON YaCTbIO 0COOOr0 THIIA, KOTOPBIH JOIYCKAET CUMBOJIBHOE IIPeobpaso-
Banue Jlamraca—Kapcorna. Haganbuble ycioBus sBastoTcd BXoIHbIMU. B pesynprare Jlanmac—
KapcoHnoBckoro npeobpa3oBaHus CHCTEMBI 110 HAYAJBHBIM YCJIOBHSIM IIOJIyYaeM ajrebpandec-
KyIo cucreMmy ypasHeHuit. CyiecTByioT 3p(HEeKTUBHBIE METO/IBI PEIIEHIST CUCTEM TaKOTO THUIIA.
STO JaeT BO3MOXKHOCTDL IIPUMEHATDH HpeﬂﬂaFaGMbeI MEeTOd IJIsd pelieHud 6OJ'H)H_II/IX CucremM
YPaBHEHUH B 9aCTHBIX POU3BOAHBIX. O6CY K IaeTCsl METO/I [TOJLy Y€HUS] YCJIOBUI COBMECTHOCTH.
IIpumenenne npeobpazoBanus Jlamnaca—KapcoHa mo3BoJisieT BBIIOJIHUTH 3TO B CUMBOJIBHOM
BHUJIC.

Key words and phrases: cucremb! quddepeHnna bHbIX YPaBHEHNN B YACTHBIX ITPOU3-
BOJHBIX, IpeobpazoBanue Jlammaca—Kapcona, CHMBOJILHOE peIIeHHe.





