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This paper proposes a method for constructing the kinematic equations of the mechani-
cal system, which imposed geometric constraints. The method is based on the consideration
of kinematic constraints as particular integrals of the required system of differential equa-
tions. Runge-Kutta method is used for the numerical solution of nonlinear differential equa-
tions. The developed methods allow us to estimate the range of variation of the parameters
during the numerical solution which determine conditions for stabilization with respect to
constraint equations. The numerical results illustrate the dependence on the stabilization of
the numerical solution is not only due to the asymptotic stability with respect to the con-
straint equations, but also through the use of difference schemes of higher order accuracy.
To estimate the accuracy of performance of the constraint equations additional parameters
are introduced that describe the change in purpose-built perturbation equations. It is shown
that unstable solution, with respect to constraint equations, obtained by the Euler method
can be stable by using Runge-Kutta method.
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1. Introduction

Let the kinematic state of a mechanical system be determined by the position co-
ordinates q1, go, . . ., ¢, and dependent velocities ¢1, ¢, - - , ¢, described by the system
of ordinary differential equations [1]:

. . dg n
i=v(gt), ¢= o 1€ B (1)

where v is a vector valued function and we shall assume that the function v together
with its first partial derivatives are continuous in some domain D C R" X R.
The functions ¢(t) satisfy the equations (1) and take prescribed values q° at the
initial time %g:
q(to) = ¢°. (2)

And assume that the system is subjected to m holonomic constraints:
f(g,t) =0, where, feR™, m<n (3)

then it is usually assumed that the initial values of the coordinates also exactly satisfy
the constraint equations
f(d°, to) = 0. (4)

As stated in [2] relations (1) should be constructed according to the constraint equa-
tions (3), which under relations (4), form a set of particular integrals of the system of
differential equations (1).

Moreover, on all solutions ¢ = ¢(t),t > to, of system (1) satisfying condition (3),
the vector v(q, t) of the right-hand side should be chosen so as to satisfy the conditions

fqv+ft:()) (5)
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af; ofi . .
where fq = (flj)) ft = (fit)) f’L] = 8(];’ fit = 8{;7 1= 1)2>"')ma J = 1,2,...,TL
j
which form a system of m linear equations with n unknowns vy, vg, ..., v, forming the

vector v.

2. Solution of systems of differential equations

The equation (5); the system of m ordinary differential equations with n unknowns,
can be rewritten as
Muv =b, (6)

where M = f, is an m X n matrix and b = —f; is a column matrix. As we can see
from the dimension of matrix M, we cannot apply inverse (the usual method) to solve
the system in (6).

The structure of the general solution of equation (6) is described by the following
theorem [3]:

Theorem 1. The set of all solutions of the linear systems (6), in which the matriz
M has rank m is determined by the relation

v=c[MC]+ M"b, (7)

where ¢ is an arbitrary scalar quantity, [MC]| = [My ... MpChyga ... Cr1] is vector
product, M; = (M;;), and arbitrary Cr = (C;), T=m+1,...,.n—1,j=1,...,n,
Mt = MT(MMT)",

Note that M+ = MT(MMT)~! is pseudo-inverse (Moore—Penrose inverse) of ma-
trix M. Given an m by n matrix M, the n by m matrix M is a unique matrix that
satisfies the following four relations [4]:

1. MM*™M = M;
2. MTMM*Y=MT;
3. (MM = MM™; and,
4. (MTM)T = MTM.
Since Mt M and MM™ are both symmetric matrices,
MT(MMT)™ ' = MT(MH)T MY = (MTM)TM*T = MTMM* = M™.
In our case replace f, instead of M in (7), accordingly f, = M, M = fq)+ and
v = c[fyCl+ (fo) T (= o). (9)

In order to compensate the deviation of (5) during numerical integration it is
necessary to use a correcting term and restate equation (5) as [3]:

fq’U + ft = F, (10)
where F' = F(f,q,t), F(0,q,t) = 0.

Definition 1. The function f(g,t) is a particular integral of (1) if the equality
(10) and F(f,q,t) vanishes when the condition f(q,t) = 0.

It is usually assumed that the equality (4) is satisfied exactly. However, if the
initial conditions ¢(tg) = ¢ do not satisfy the constraints (3), depending on how you
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will be determined by the function F(f;q,t) in equation (10), the solution will either
approach the manifold (3), or away from it.

Having a general solution of equation (10), we can obtain the desired set of systems
of differential equations that determine the kinematic relations between the coordi-
nates of constrained mechanical systems and their derivatives [3]

q=clfoCl+ (f)"(F = fo). (11)

In the expression (11), [f,C] = [fiqf2q--- fmqCm+1-..Cn_1] is vector product

fo=(fij): fij = g ;

Cm+2(q),-..,Crn_1(q) are arbitrary vectors, (f,)" = (f,)T (f,f.)*)~*. Equation (3)
represents a collection of particular integrals of the system (11).

(i=1,...,m, j=1,...,n) is row vector matrix and C,,+1(q),

3. Numerical Solutions

The physical phenomena of the differential equations (11) are highly nonlinear
and usually solved by numerical methods (numerical approximations). Let us assume
that the initial value q(ty) = ¢" be given and suppose F can be expressed as a linear
product of f; F' = K f, where K is m x m matrix. Then we may use one of different
numerical methods to solve (11). Among these methods we use the Euler’s method,
second order, third order and fourth order Runge-Kutta methods.

3.1. Euler Method

For the system of differential equation in (11) we construct the equation:
¢ =q + ¢, (12)

where ¢' = q(t:), tiy1 = ti + 7 and ¢’ = c[fClgiry + (f)T(Kf = fi)giuny, @ =
0,1,2,....
In relation to (12) we state the following statement [5]:

0
i) 0] <
i) T < 11, and forall g =¢*, t=1t;, i =0,1,2,... fulfilled the inequality,
) HI+7’KH <1, (13)

w 2] <3 “)67

(2)
(
(
(iv)
where f(2) = UquTqU+2fth+ftt, then the solution of the difference equation (12) will
satisfy the condition ||f(qi, tl)H < forany i =1,2,---, where a, €, 7, are constants.

3.2. Second Order Runge-Kutta Method

In Euler method there was no attempt made to include information from the
point #;11 at which the solution is being obtained. Heun (Second order Runge-Kutta)
method uses Euler method but takes the result ¢* +7¢" to calculate the gradient there

and then, whereas Euler method just uses ¢° for the gradient over the interval, Heun
method uses the mean of that value and the approximately calculated value at ¢;41.

¢ =q + < [v(q t)) +o(d +7,¢" +To(d’, 1)), (14)
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where ¢* = v(q', t;).
For our system (11):

v(g'sti) = c[foCligi ey + (f) TEf = fi) g i) (15)

3.3. Third Order Runge-Kutta Method

The solution of (11) can also be solved using Runge-Kutta method in more efficient
order: ‘ ‘
ql+1 =q' + T(Clk’l + coko + 63]{3), (16)

where the multipliers k;(j = 1,2,3) and ¢;(j = 1,2, 3) are obtained as in [6]:
qi+1 = qi + %(k}l + 4ko + k‘3), (17)

and
.

. . T
klzw(qz,ti); kzzv(ql+§k1,ti+ 9

) o ks =ov(q" — 7ky + 27ko, t; + 7).
Now to solve (11) in this method, expand each expressions of ki, ko, ks up to order
three: '
v(q' 1) = c[feClgien) + ()T ES = fi)(gi;
i T T
k2:U(q +§vati+§)§

ks =wv (qi —27v(q%, t;) + 27V (qi + %v(qi,t,—),ti + %) St + 7') .

The second and third order Runge-Kutta methods are available in MATLAB as
built in functions called ODE solvers ode23. It is also possible to construct user
defined functions and solve ODE problems with efficiency as desired. The approximate
solution will be close to the actual solution if n is taken sufficiently large enough.

3.4. Fourth Order Runge-Kutta Method

The fourth order Runge-Kutta method is the popular version of the members, for
which reference can be made to any book on numerical methods. They require the
ability to solve the initial value problem for a system of ordinary differential equations
at a number of points intermediate between ¢; and ;11 [7].

If the function v and the data ¢°, ¢y are given, then

0" = '+ 2 (k1 + 2k + 2k + ), (18)
where ‘
ki =v(q" t:) = c[foCligie,) + (fo)T(Kf— Tt) (g t);
T . T .
ke =wv (ti + 5791 + §U(qzvtz‘)> ;
ko = (tA_|_z i_|_z (tA_|_z i_|_z (t. l)))
3=V \l 27q 2” i 27q 2U irqd )
b= (titma 4o (ti+ 5.0+ Zo i+ 50 + Zold 1))
4= % T, q TU |1 27(] 21) 7 2aq 2UQaz .
Here ¢'*! is the Runge-Kutta approximation of q(t;11), and the next value (¢**1)

is determined by the present value (¢‘) plus the weighted average of corresponding
(2,3,4) increments, where each increment is the product of the size of the interval,
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7, and an estimated slope specified by the function G on the right-hand side of the
differential equation [8]:
— kq is the increment based on the slope at the beginning of the interval, using ¢ ;
— ko is the increment based on the slope at the mid-point of the interval, using
q+ Ski;
— k3 is the increment based on the slope at the mid-point of the interval, but now
using ¢ + Sko;
— k4 is the increment based on the slope at the end of the interval, using ¢ + Tks.
Note that the 4" 5t" order Runge-Kutta methods are combined together and
termed as ‘oded5’, which is available in MATLAB. It is also possible to build user
defined functions.

Example 1. Let us consider systems of ordinary differential equations of two vari-

ables:
?:Ul(wvy)v (19)
Y = va(x,y),
and satisfy a constraint equation:
fla,y) =1/2(92° +y* - 9) = 0. (20)

Differentiating (20) with respect to time and assigning the result to a function F we
get

We assume this function F' as a linear combination of the given constraint function f;
F=kf.

The solution for this equation (21) can be found using Theorem 1, it gives

9x
. _ %
T cy + 8122 T 2( f)v (22)
j=— — 7 _(kf).
7 90x+81a;2—|—y2( f)
Substitute f in relation (22) we obtain
9kx
R — (9 2 2 9
e A TE TP L
k
Y= —9cx + i (922 + 4% —9).

2(8122 + y?)

Next we solve (22) numerically and investigate the stability of the solution as k varies.
For simplicity we consider k as constant and ¢ = 1.

case I: Let k > 0, say k = 2, and initial values (2°,4°) = (1,0). Therefore, relation
(22) becomes

. 9z
m=y+m(9x2+y2—9), (23)

As we can see from Fig. 1, the numerical solution of (23) is unstable, neither it is
solved in Euler method nor in Runge-Kutta methods.
case II: let k = 0, the system reduces to

{j” Y (24)

y = —9x.
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a Position versus time k = 2; unstable solution b Phase portrait graph for £ = 2; unstable so-
lution

Figure 1. The numerical solution of (23)

This system has exact solution: u(t) = (¢ cos 3t, co sin 3t) and take 2° = 1,9° =0
we get u(t) = (cos 3t, —3sin 3t).
case III: Let k < 0, say k = —2, the system (22) becomes

9z
— (922 4% - 9),
81x2 + y2 (25)

= —9z (922 + y2 — 9).

T=1y
8122 4 32

The numerical solution of (25) is stable in any of the methods discussed above,
see Fig. 2. But the stability of the solution depends on not only the value of the
parameter k but also the method we use to solve it. For instance, taking k = —400
the solution is unstable when we use Euler method but it is stable in Runge-Kutta
methods as shown in Fig. 3.

xlalue

3 N r A — — yovalue 3

solution

Time t x

a Position-time graph for k = —2; stable solu- b Phase portrait graph for £k = —2; stable solu-
tion tion

Figure 2. The numerical solution of (25)

From the above cases the solutions are
— Unstable for all values of k in case 1 (k > 0);
— Stable for case 2 (k = 0) or it gives more sense if we say F' = 0;
— Stable for case 3 (k < 0) for certain domain of k values.
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a Position versus time graph using Euler b Position versus time graph using Runge-
method for £ = —400; unstable solution Kutta methods for k = —400; stable solution

Figure 3. The numerical solution of (25)

To determine the possible values of k£ so that the solutions obtained are stable we
proceed as follows. To approximate equation (22) numerically we guess the possible
values of the parameter k

i

aa :Zi—’—TZi? < :Z(ti)v ti-‘rl :ti+T7 = (Ivy)v

z
9kx
2(8122 + ¢?)
Referring these with the statements of (22) [3]:
9f 0 O°F

or2" + 0y?

ky

=y 2(8122 1 12)

(922 + 9% —9), §=—9cx + (922 4+ 52 — 9).

@ = % = 932 + 2.

2(1 —
From the last condition of (13), we have [942 + | < %.
Ti

Letting k£ = ¢ and using (22), condition 3 can be rewritten as

90A |z |y| |92% + y? — 9| N A2(7292% + y?) |92% + y? — 9}2 _ 201 —a)e

9(922 + 2 <
(927 +y7) + 81x2 4 42 4(8122 + y?)2 27

Now we take |z| < 1.1, |y| < 3.1, 8122 + y? > 2% + y? > 0.81, and substitute these
to variables in the above inequality results

2(1 —
819+ 37.9) +3.4\% < %
C°Tq

To have possible range of the discriminates of the inequality must be nonnegative:

. (1—a)e
>0, this leads, 7 < 1/ —— €
) is leads, T 53

3197 - 434) (319 - 200

1

Now choose ¢ =1, a = 0.99, ¢ = 0.1, 7 < 0.0045, say 7 = 0.002.
Then from the quadratic inequality we get —359.6 < A < 6.
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On the other side from condition 2 above; |1 + 7k| < a < 1, we get

(a+1) <k<®1 _g05<k<—05
T T

Hence —359.6 < k=) < —-0.5.

4. Conclusion

The paper considers a method of constructing kinematic equation of mechanical
system that contains holonomic constraints. It is shown that the sign and size of
the factor (parameter) in the general equation affects the stability of its solution.
Experimental investigations using MATLAB are made to find the range and sign of
the factor especially for Euler numerical method.

A remarkable result is obtained that stability depends not only on the size and
sign of factor but also on the numerical method. In the demonstrative example, the
Euler method results in unstable solution for £k = —400 whereas Runge-Kutta method
produces stable solution, see Fig. 3. This paper can be used as an initial for further
research on the factor (indicated in the paper) in other numerical methods.
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VIIK 531.3
HucseHnHoe pelleHne YpaBHEHUN KMHEMATUKN MEXaHUYIECKUX
cucreM
A. B. Bemay

Kagedpa mamemamuru
Baxpdapcrui yrusepcumem
Sguonus, Baxpdap

Pabotra mocssitieHa permenunio 3a1a9u CTAaOUIN3AINN CBSI3€i IPYU 9MCIEHHOM DEeIeHun Trud-
(bepeHLH/IaJ'H)HI)IX ypaBHeHHﬁ, OIINCBIBAIOIINX KMHEMaTHUIYECKNE COOTHOIIIECHUA B MeXaHUYeCKOMN
cucreMe. B crarbe npejjaraercsi MeTo | IOCTPOEHUS CUCTEMbBI quddepeHInalbHbIX ypaBHe-
HHﬁ, COOTBETCTBYIOIIMNUX KUHEMATUYICCKUM COOTHOIICHUAM B MeXaHIIeCKOMn cucreMe, Ha KO-
TOPYIO HAJIOXKEHBI TeOMeTPUYEeCcKre CBsi3u. [IpeiaraeMblil METOJ[ OCHOBAH Ha IPECTABJIECHUHI
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KMHEMATUIECKUX CBA3€H B KAUECTBE YACTHBIX MHTEIPAJIOB COOTBETCTBYIOIIEH CUCTEMBI TUdD-
depeHmaibHbIX ypaBHeHui. [ onpeesiennst TUCIEHHOTO PEIeHNsT HeJIMHEHHbIX tudde-
PEHIMAJIbHBIX ypaBHEHUil ucnoib3yercs meron Pysre-Kyrra. Paspaboranubiii MeTos mos-
BOJISIET B TPOIECCE YUCJIEHHOTO peleHust auddepeHInajbHbIX yPABHEHUN OIEHUTH TPAHU-
bl U3MEHEHUsT apaMeTPOB YIIPABJIAIONINX BO3IEHCTBUI, KOTOPbIE COOTBETCTBYIOT YCJIOBH-
M CTAabDMJIM3AIMY PENIEeHNUs 110 OTHOIIEHHWIO K 3aJIaHHBIM yPaBHEHUsIM CBsi3eil. Pe3ysibrarhbl
BBIUHC/ICHUI MMOKA3BIBAIOT, YTO CTAOMIN3AINS UUCJIEHHOTO PEITeHNs 3aBUCUT HE TOJIBKO OT
ACUMIITOTUYECKON YCTOMYMUBOCTHU 110 OTHOIIEHWIO K YPaBHEHWSIM CBsi3eil, HO TaKxKe OT TOY-
HOCTH HCIOJIb3yeMOil TON My MHON Pa3HOCTHON cXeMbl. J[JIsi OIeHKM TOYHOCTH BBIIOJIHEHUS
yPpaBHEHUIT CBsA3€il BCJIEICTBIE CTAOMIN3AIINN CBA3€H BBOISITCS JOMTOTHUTEIBHBIE TAPAMETPHI,
U3MEHEHNEe KOTOPBIX OIPEJIeJISIeTCs CIIEIUAIBHO IOCTPOEHHBIMU JindDepEeHIINATBHBIMY YPaB-
HEHUSIMM BO3MYIIeHuit cBsseil. [lokazaHo, 4TO YHCIEHHOE peIeHne, MOJYyIeHHOE METOIOM
Ditnepa, KOTOPOe OKA3BIBAETCS HEYCTOWIMBBIM, MOXKET OKA3aTbCsl YCTOWIMBBIM MIPU UCITOTb-
30Bannu mMetojia Pynre-Kyrra.

KiroueBble cjioBa: kKnHeMaTUYeCKHe ONPAHUYEHUsI, TPUOJIMYKEHHOE PEeIleHue, ICEeBI0-
oOpaTHBIH, YyCTOWIUBOCTD, METOJ, Ditiepa, MeToabl Pynre—KyTToi.
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