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The goal of this article is to develop a robust and accurate numerical method for solving
hyperbolic conservation laws in three dimensions.

The basic equations are the three-dimensional Euler equations describing the motion of an
inviscid gas.

The mathematical description of the model is represented by the system of equations of con-
tinuity, motion and energy (three dimensional nonstationary partial differential equations).
We used the equation for adiabatic motion in this article.

The numerical method for solution of the gas-dynamical equations in strict divergent form
has been used in this work. The three-dimensional numerical code for perfect non-stationary
gas-dynamical flows simulation in cylindrical coordinates is constructed. This code is based
on the explicit quasimonotonic, first-order TVD scheme. This scheme admit introduction
of the limits on the anti-diffusion flows, which enhances the approximation order (to third
order in the spatial coordinates) with minimal numerical dissipation and preservation of the
monotonicity of the scheme.

In order to ensure numerical stability, the time step is restricted by a well-known Courant-
Friedrich-Lewy stability condition.

The proposed scheme is comparable to the high order over the classical TVD schemes. Our
scheme has the added advantage of simplicity and computational efficiency. The numerical
tests which were fulfiled by the author in additional researches, validated the robustness and
effectiveness of the proposed scheme.
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1. Introduction

The theoretical foundations of high-resolution TVD schemes for homogeneous
scalar conservation laws and linear systems of conservation laws have been firmly
established through the work of Harten [1], Sweby [2], and Roe [3-5]. These TVD
schemes seek to prevent an increase in the total variation of the numerical solution,
and are successfully implemented in the form of flux-limiters or slope limiters for
scalar conservation laws and systems. However, their application to conservation laws
in strict divergent form written in cylindrical coordinates is still not fully developed
and can be improved. In this work we construct the three-dimensional numerical code
for simulation of a perfect non-stationary gas-dynamical flows. This code is based on
the explicit quasimonotonic TVD-scheme. We use strictly divergent form laws of con-
servation in cylindrical coordinates. This work is continuation and development of the
author work [6] where study is limited to the calculation of two-dimensional free flows.

2. Basic Equations of Gas Dynamics

The basic equations of gas dynamics govern the motion of a perfect non-stationary,
inviscid gas-dynamical flows by conserving mass, momentum and energy (three di-
mensional nonstationary partial differential equations). They are simplifications of
the more general Navier—Stokes equations which include the effects of viscosity on the
flow (Landau and Lifshitz, 1979 [7]).
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2.1. Basic Equations

Using the divergence form, we have the following macroscopic equations:

Orp = —0,(pv") (1)

for the conservation of mass of flow. This expression is often known at the continuity
equation; ‘ o B
Oh(pv') = —0;(pv'v? + P g) (2)

for the conservation of momentum;

7 02
Z — 9. (v,
8t<p2+p5>— 8J<v (p2+p5+P)> (3)

for the conservation of total energy.

Here p (7,t) denotes the fluid density, ¥ (7,t) — the bulk flow velocity, P(7,t) —
the thermal pressure, e = (P, p) — the internal energy per unit mass (specific internal
energy), g;; — the metric tensor, ¥ — the radius vector, and ¢ — the time. In order
to close this system of equations (1)-(3) and fully describe the fluid with this model,
we need a fourth equation, an equation of state.

In condition of local equilibrium, the scalar pressure P can be expressed as a
function of two other thermodynamic variables through an equation P = P(p,¢). An
equation of state is necessary, and we assume the perfect gas equation, P = (y —1)ep,
where 7 is the usual ratio of heat capacities (the index of adiabatic).

2.2. Equations on a Cartesian Coordinate System
In three space dimensions the equations of gas dynamics describing the motion

of an inviscid gas may be written in the following compact dimensionless differential
vector form of the conservation law in an inertial Cartesian coordinate system:

0iq+ 0,F +9,G + 0. H =0, (4)

where q is the vector of conserved variables (the state vector), and F, G, H are the
flux vectors in the corresponding coordinate directions given by

P pu pv pW

pu Fy puv PUW
q=|pv |, F=|pw |, G=|Gs |, H=|pvw], (5)

oW puw PVW Hy

pE puh pvh pwh

and U = {u,v,w}, u, v, w, are the components of velocity along the z, y and z
directions,
Ok Ok P P
FE=—+¢, h=—+4e+—, e6=——n,
2 p (v="1)p
Fo=pi>+P, Gs=pv*+P, Hy=pw?>+P.

Equations (4) are nonlinear hyperbolic partial differential equations for the unknown
q and must be solved with suitable boundary conditions. Even though in (5) F, G,
H are expressed as functions of the primitive variables p, u, v, w, P they can also be
expressed as functions of the conserved variables q.

Hyperbolicity of system equations (4) requires that the matrixes 0F /0q, 0G/0q,
OH/0q have real eigenvalues and be diagonalizable.
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2.3. Governing Equations in Cylindrical Coordinates

The governing equations can be re-expressed in any coordinate system. For many
engineering applications involving non-rectangular general geometries, a non-orthogonal
body-fitted coordinate system (&, 7,s,7) is desirable, which is formally related to the
physical coordinate system (z,y, z,t) as follows:

T=1(t), &=&(x,y,21), n=nxyz2t), <=c¢y,21). (6)

In equations (6) 7 is the time, and &, ), ¢ are the three curvilinear coordinate directions.

Making use of certain mathematical manipulations, the Cartesian derivatives can
be are replaced by the curvilinear counterparts, and the gas-dynamical equations can
be recast in the so called “strong conservation form”. The details of the manipula-
tions can be found in [8], for example. The transformed equations written in strong
conservation form in the generalized curvilinear coordinate system read:

9-4+ 0:F +0,G +0.H =0,
where

.9 a1
q:77 FZ?(&Q"‘&IF"‘&/G"‘&ZH);
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J is the Jacobian of the transformation given by:

& &
D(&,n,5)

= "2 =Nz N Nz . 8

T Dy oM ®)

In an inertial frame in cylindrical coordinates (r,, z) the Jacobian of the trans-
formation (8) is J = r~!, and equations of gas dynamics (4) also can be written in
the strict divergent form of hyperbolic conservation laws. The system is:

0+ 0,F+09sG+0.H=0. (9)

The expressions (7) in this case take the following form:

P o
pu pvru+ Pagg
q=r pv ,ﬁ‘:r pvrv 4+ Pags |,
pw P VW
pE purh
Py pw
pvyu + Pbyo pwu
G=|pugyv+Pbs |, H=r- pPWV ,
PUHW pw? + P
puyh pwh

where we used the the local density p = p(r, ¥, z, t), the local velocity v = ¢ (r, 9, z,t) =
(U, vy, W), a12 = cosV, aig = sind, by = —sind, b1z = cos ¥, u = v,a12 + Vybia, v =
vra13+vybi3, w are the Cartesian components of velocity, the pressure P = P(r, 9, z,t),
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and ) )
J U P
E="+e, P=(y-1ep, h:%+5+s,
as before.

3. Numerical Code

In this section, we construct the three-dimensional numerical code for perfect non-
stationary gas-dynamical flows simulation on the Eulerian cylindrical grid. This code
is based on the explicit quasimonotonic TVD-scheme. Our approach applies to the Roe
method [3-5]. This an explicit finite-difference scheme is first order of approximation.

3.1. Numerical Approach

In cylindrical coordinates this scheme is represented as follows. Consider the sys-
tem of equations (9), which here we rewrite in finite-difference form
Adijk  Fivrjn = Ficipjn  Gignyor = Gijajon  Hijrery2 = Hijreo1/
T Ar A Az

=0,
where AQ; j 1 = élfﬁ — Qi i1 and Qfﬁ: = (73,7}, 2k, tn+1) is the solution at the time
step n+1 (n is the time level); 7, Ar, Ad, Az are the steps of the grid. The numerical
fluxes after using the definition of Jacobian Matrices,

oF oG oH
A= ~ B = A~ C= A~
0q 0q g
are calculated as
i Fi, i,k +Fi+17‘:k 1 m(ak m m( A%
Fiii/ae = — 5 = - 52 RVACIACHSIPES (DR

A.A:diag{vr_cy Upy Up, Up, ’UT—FC},

1,5 1 * %
As; o ik = 22 ((T¢+1P¢+1,j,k —1iPijk) F T (Vriv1 6 — Urz‘,j,k)> :
1
2 _ N
A8i+1/27j,k: = 72c*q (Wi+1,j,k - Uﬁi,j,k) )
A 3 _ 1 * i . ..
Sit1/2,5k = 5o 4 (Wit1,5,6 — Wijk)
Agt _ *2( 0.1 . P s P. . .
Siv1/2,5k = ) Qi1 — Qigik) — (risaPiva g —1iPije) ) 5

the matrix of the corresponding right eigenvectors takes the form:

1 0 0 2 1
u* —c*a1o  2¢*big 0 2u*  u* +c*aio
Ra= |V —c*a1z3 2c*bis 0 v v 4 cfas |
w* 0 2c* 2w* w*

h* —c*v 2c*vl  2cfwt TP hF + ol

where
c=+/7P/p
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is the adiabatic speed of sound, ¢ = rp, and in which ¢*, ¥ *, h*, and ¢* are called the
Roe average.
They can be obtained from

3
q = \/49i+1,5,k 9i,5,k >

v AVit15,k Vid1, gkt /Qigk Uik

/U )

- V@it 15k + /i k
e = VIitisk hitjk + /@i gk ik

V3i+1,5,k T /T jk

— 2 - - 2 — - -
o \/\/Qz,J,k Ci gk T V4it+1,5.k Cii j n o Vi gk Qit1,5,k

— N 9
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\/injvk + \/qi+1,j,k 2 (\/qi,j,k: + \/Qi+1,j,k:)2 ( i+1,5 1,7 )

Similar expressions can be written down for G jt+1/2,x and for H; j kv1/2-

Note that the first order scheme is highly diffusive. This diffusive property is not
desirable since it spreads out the original discontinuity and flattens out the peaks in
the solution. Therefore usually an explicit finite-difference scheme with flux correction
in Chakravarthy—Osher [9-12] form is used. This scheme is first order of approxima-
tion in time and third order of approximation in space and is oscillation-free near
discontinuities.

3.2. Stability and Boundary Conditions

A characteristic feature of explicit difference schemes is the limits on the time
step 7, which is governed by the stability criteria. In order to ensure numerical sta-
bility, the time step is restricted by a well-known Courant—Friedrich-Lewy stability
condition [13], which can be written as

Ar 4
T = o min . . 10
Z’m{w‘!} 5—p+(1+¢)B (10)

where 0 < ¢ < 1 is the Courant number, and Ar is the minimum grid spacing; ¢ and
B is free parametres, and last should satisfy to the condition 1 < 8 < Bnax, here

3-¢
ﬁmax - 1 _ (P .
If ¢ = 1/3 the scheme there is the third order of approximation [9,12]. With known
grid spacing and flow conditions, the time step is evaluated using Eq. (10).

The boundary conditions used usually, are divided into two different types: the
land boundary and the open boundary. For the land boundary, the velocity normal
to the land is set to zero to represent no flux through the boundary. At the open
boundary, it is necessary to solve a boundary Riemann problem [14].

4. Conclusions

The numerical method for solution of the gas-dynamical equations in strict di-
vergent form has been used, in this paper. The three-dimensional numerical code
for perfect non-stationary gas-dynamical flows simulation in cylindrical coordinates is
constructed. This code is based on the explicit quasimonotonic TVD-scheme. The
theory of numerical schemes for homogeneous scalar conservation laws is well estab-
lished. Total Variation Diminishing (TVD) schemes have proved to be particularly
successful at capturing shock waves and discontinuous solutions.
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The investigated TVD scheme produce satisfactory results for the selected relevant

test cases (see, for example, [15,16]). An adapted one-step third order scheme gives a
very good accuracy of the solution in smooth regions and in the proximity of the shock.
This motivates the use of TVD-like schemes for inhomogeneous problems, however,
although care needs to be taken in the inclusion of the source terms.
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Moandukammusa 3D ynciieHHOro Koja JJis ra30AnHaAMNYeCKIX
TeUYeHUl B IMUJIMHJAPUIECKNX KOOpIMHATAX

E. A. ®uaucros

Kagedpa dpusuru
Mocxkosckuti 2ocydapemeervili Cmpoumesvhwvill Yyhusepcumem
Spocrasckoe wocce, 0. 26, Mocksa, Poccus, 129337

Ilesib 3T0# cTaThU COCTOUT B TOM, 9TOOBI MOCTPOUTH HAJIEKHBIN U TOIHBIN IUCIEHHBIN KOJT
JIJIsl PEIIeHUsT TPEXMEPHBIX Ia30IMHAMUYIECKUX YPaBHEHUN.

MaremaTudeckoe onucaHre MOJEIN IMPEJICTaBICHO CUCTEMOI ypaBHEHUN HEIPEPBIBHOCTH,
JNBUKEHUS W SHepruu. B pabore MCmoIb30BaHO ypaBHEHUE A uabaTUIECKOrO MOTOKA HEBSI3-
KOTO Ta3a.

st pacdaéra HeCTAIlMOHAPHBIX TEYEHUN WJEAJTHLHOrO ra3a NpuMeHEH 3(DPEKTUBHBIN KO-
HOMHYHBIN METO/I C UCIIOJIb30BAHNEM ITOJTHOCTHIO KOHCEPBATHUBHON PA3HOCTHOM CXEMBI CTPOTO
JIUBEPTEHTHBIX Ta30[MHAMUYECKUX YPABHEHUN B 3MJI€POBBIX IIEPEMEHHBIX B IIMIUHIPUIECKUAX
koopaunHaTax. Ha ocHoBe siBHO# KBazmMOHOTOHHON TVD-cxeMbl MepBOro mopsi/ika aipoKCH-
MaIuu nocTpoer 3D-unciiennbit KO 71 MOJETUPOBAHMS Fa30BOr0 MOTOKa. CxeMa IomycKaeT
BBeJIeHUE orpaHnduTeseil aHTuud@y3MOHHBIX TOTOKOB, MOBBIIMIAIOIINAX MTOPSIIO0K AITPOKCH-
Manun (10 3-ro mopsi/ika MO MPOCTPAHCTBEHHBIM KOODAMHATAM ), ¢ MUHUMAJIBHOMN IMCIIeHHOM
JUCCUTIaIel, 1 COXPAHSIONINX CBOMCTBO MOHOTOHHOCTH.

YucmoBast yCTONINBOCTH 00ECTIEINBACTCS OTPAHNIEHNEM BPEMEHHOTO Iara N3BECTHBIM YCJIO0-
BueM Kypanta—Ppumapuxca—Jlesn.

IIpecraBiennast cxemMa OTBEYaET BHICOKOMY HMOPSIAKY Kiaccudeckux cxem TVD u obnamgaer
JIOTIOJTHUTEILHHBIM IIPEMMYTIECTBOM IPOCTOTHI U BBIYUCIUTENHHOM dddekTuBHOCTH. HnCTO0-
BBIE TECTHI, BBIITOJIHEHHBIE ABTOPOM, ITOKA3aJI1 HAJIEKHOCTD 1 3P (DEKTUBHOCTD TPE/IJIOKEHHON
CXEMBI.

KiroueBbie cjioBa: ra3oBasi JUHAMUKA, UUCIEHHOE MOJETUPOBAHMUE.





