
UDC 531.55
On One Numerical Method of Integrating the Dynamical
Equations of Projectile Planar Flight Affected by Wind

V. V. Chistyakov

Faculty of Engineering
Yaroslavl’ State Academy of Agriculture

58, Tutaevskoe highway, Yaroslavl’, Russian Federation, 150042

Common way to integrate the dynamical equations of projectile planar motion introduces
two Cartesian coordinates 𝑥(𝑡) and 𝑦(𝑡) and attack angle 𝜗(𝑡), all depending on time 𝑡,
and three coupled ordinary differential equations (ODE) each nominally of II-nd order. It
leads to inevitable computational complexities and accuracy risks. The method proposed
excludes the time variable and diminishes the number of functions to 𝑛 = 2: the attack angle
𝜗(𝑏) and intercept 𝑎(𝑏) of the tangent to the trajectory at the point with slope 𝑏 = tan 𝜃
with the 𝜃 being the inclination angle. This approach based on Legendre transformation
makes the integration more convenient and reliable in the studied case of quadratic in speed
aerodynamic forces i.e. drag, lifting force, conservative and damping momenta and the wind
affecting the flight. The effective dimensionality of new ODE system is diminished by 2
units and its transcendence is eliminated by simple substitution 𝜂 = sin𝜗. Also the method
enables to obtain easily and reliably the projectile trajectories in conditions of tail-, head-
or side wind. Investigated are main ranges of aerodynamic parameters at which takes place
different behavior of the attack angle 𝜗 vs slope 𝑏 including quasi-stabilization and aperiodic
auto-oscillations. In addition, it was revealed non-monotonous behavior of speed with two
minima while projectile descending if launched at the angles 𝜃0 close to 90∘. The numerical
method may implement into quality improvement of real combat or sporting projectiles such
as arch arrow, lance, finned rocket etc.
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1. Introduction

In stationary conditions of no wind and when neglecting the Coriolis force the
motion of finned symmetrical rigid projectile launched in the plane of its symmetry
will stay planar up to its landing assumed as a rule at the start height. The tail-or
head wind with constant velocity changes the projectile trajectory but conserves flight
plane. As for side wind, it turns the plane around vertical direction on some angle
which value depends on speeds’ ratio, flight time and so on.

The dynamic system describing the flight includes 𝑛 = 3 ODEs with two ones in
Cartesian coordinates being of order 𝑘 = 1 responding for mass-center (c. m.) motion
and the third of order 𝑘 = 2 describing the rotation of launched projectile in the flight
plane around the c. m.

As a typical example of such dynamic system may be taken arch arrow [1] or lance,
or finned combat projectile shot from the gun, or rocket moving freely after the short
correcting jet impulse [2]. Also for the bullet shot from smoothbore gun. In all these
and other analogous cases, the flight trajectories of c. m.’s and their characteristics
are of large more interest than detailed flight process in real time. In addition, the
projectile orientation in landing moment is not less importance. This is especially for
combat projectiles in order to avoid ricochets and for effective target engagement.

Therefore the problem of integrating of ODEs of planar resistive motion especially
in wind condition is actual both in mechanics of archery/lance and in exterior ballis-
tics of finned projectiles. Moreover, the aerodynamically symmetrical projectile is a
relatively simple experimental model for verifying qualitative and even quantitative
conclusions of the theory of so-called variable dissipation systems [3] with its complex
and various mathematical apparatus.
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In this paper, an alternative way is developed how to determine the trajectory of
projectile motion in vertical plane of its own symmetry also the attack angle behavior
in assumption of quadratic law for all aerodynamic efforts regarded drag and lifting
forces, conservative and damping momenta. Earlier the method was tested successfully
for a heavy point [4,5] and gyro-stabilized axially symmetrical rigid projectile [6] and
it is based on Legendre transition from Cartesian coordinates (𝑥(𝑡), 𝑦(𝑡)) to dual
projective variables. These ones are slope of the c. m. trajectory 𝑏 = tg 𝜃 and
intercept 𝑎 = 𝑦 − 𝑏𝑥 or more precisely its variation.

The temporal characteristics considered are in second turn in this work as not being
of direct interest but influencing some physical values, e.g. a spectrum of infrasonic
waves emitted on different parts of the trajectory.

An additional advantage of dual-projective variables is their monotonic behavior
and invariance relatively parallel shift of the coordinate axes.

As for the slope 𝑏 = tg 𝜃 this value is more preferable as natural angular measure
in ballistics than the angle 𝜃 itself because of more convenience of targeting by ratio
of vertical and horizontal catheta than that of arc and radius.

2. Primary Equations with no Wind Affecting

It’s necessary first to integrate the flight dynamical equations at no macroscopic
air motion or the same in wind-connected frames assumed be inertial due to constant
wind velocity 𝑈⃗ = (𝑢, 0, 𝑤). The solution obtained should then be adapted for fixed
frames connected with launching point and shot direction.

It is assumed that the projectile has some longitudinal axis 𝑙⃗ of symmetry along

which is directed the initial velocity 𝑉⃗0 = (𝑉0 cos 𝜃0, 𝑉0 sin 𝜃0, 0) with 𝜃0 = 𝜃(0) being
the angle of throwing, and drag force is minimal for this direction too. In addition,
the lift force is equal to zero for the direction though this is not obligatory and the
body may be launched at attack angle of 𝜗0 ̸= 0. The last takes place when taking
into account tail- or headwind.

The projectile rotation considered is in non-inertial reference frames with its be-
ginning in mass center point 𝐶 so the gravitational and entrainment inertial momenta
are equal to zero. Therefore, the dynamics of attack angle defined is only by aero-

dynamic torque 𝑀⃗𝐶 decomposing on conservative static part 𝑀𝑠 and the dissipative
damping momentum 𝑀𝑑.

For the momenta above used are model formulae [7] used in exterior ballistics as
follows 𝑀𝑠 = −𝜎𝑉 2 sin𝜗, 𝑀𝑑 = −𝛿𝑉 2𝜔 where 𝑉 is velocity of c. m., 𝜃 for the attack
angle, 𝜔 for angular velocity, 𝜎 and 𝛿 both are the corresponding coefficients assumed
in the model not depending on 𝜗 and 𝜔.

Figure 1. Projectile moving in planar way
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As for the motion of mass center itself observed from fixed inertial reference frames
𝑂𝑥𝑦 (Fig. 1) it is defined along with gravity 𝑚𝑔 also by the aerodynamic force vector

R⃗𝑎𝑑 decomposing on the drag 𝑅 = −𝑚𝑔𝛼0(1 + 𝜀 sin2 𝜗)𝑉 2 and normal force 𝑁 =
𝑚𝑔𝛾0𝑉

2 sin𝜗 both quadratic in speed 𝑉 . The finned tail makes it impossible for the

projectile to rotate about longitudinal axis 𝑙⃗, so the Magnus force and momentum
don’t appear.

The parameter 𝜀 describing relative increase of the drag 𝑅 under changing of
attack angle from 0 to 90∘ may be large enough, i.e. for arrow of sporting arch this
may achieve some decades because of the fact that along with large increase of the
frontal square 𝑆 hugely worsens its streamlining.

In fixed reference frames Oxy the dynamic equations for mass center are as follows⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥̈ = −𝛼0(1 + 𝜀 sin2 𝜗)

𝑔𝑥̇2

cos 𝜃
− 𝛾0 sin𝜗

𝑔𝑥̇2 sin 𝜃

cos2 𝜃
,

𝑦 = −𝛼0(1 + 𝜀 sin2 𝜗)
𝑔𝑥̇2 sin 𝜃

cos2 𝜃
+ 𝛾0 sin𝜗

𝑔𝑥̇2

cos 𝜃
− 𝑔,

𝑦̇ = tan 𝜃 · 𝑥̇.

(1)

The system may be reduced to⎧⎪⎪⎨⎪⎪⎩
𝑥̈ = −𝛼0(1 + 𝜀 sin2 𝜗)

𝑔𝑥̇2

cos 𝜃
− 𝛾0 sin𝜗

𝑔𝑥̇2 sin 𝜃

cos2 𝜃
,

𝜃 = 𝛾0
sin𝜗𝑔𝑥̇

cos 𝜃
− 𝑔 cos2 𝜃

𝑥̇
.

In frames moving in translational way with c. m. rotation of the projectile is
described by the ODE of II-nd with respect to the orientation angle Θ = 𝜃 + 𝜗

between the axis 𝑙⃗ and horizon 𝑂𝑥

𝐽𝐶𝑧
d2(𝜃 + 𝜗)

d𝑡2
= −𝛿 𝑥̇2

cos2 𝜃
sin𝜗− 𝜎

𝑥̇2

cos2 𝜃

d(𝜃 + 𝜗)

d𝑡
, (2)

where 𝐽𝐶𝑧 is the central transversal momentum of inertia, i.e. with respect to hori-
zontal axis 𝐶𝑧.

Thus, we receive the ODE system with three unknowns that is complicated enough.
By solving it, we find time dependences for attack 𝜗 and inclination angle 𝜃 and for
horizontal velocity 𝑥 too. The nominal order of that system is equal 𝑘 = 5 but in fact
is 4.

3. New Equation for Mass Center

In Eqs (1)–(2) when taking into account the relations 𝑏 = tan 𝜃 =
𝑦̇

𝑥̇
and Θ = 𝜃+𝜗

there are three independent spatial variables and argument 𝑡 — the time past from
the start.

Multiplying the first equation in (1) by 𝑏 and then subtracting it from the second
one it receives

𝑦 − 𝑏𝑥̈ = −𝑔 + 𝛾0 sin𝜗𝑔𝑥̇
2(1 + 𝑏2)3/2.

Given the fact that 𝑦̇ = 𝑏𝑥̇ it means

𝑏̇𝑥̇ = −𝑔 + 𝛾(𝑏)𝑔𝑥̇2(1 + 𝑏2)3/2.
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As far as 𝑥 = −d𝑎(𝑏)

d𝑏
[6] and hence 𝑥̇ = −d2𝑎

d𝑏2
𝑏̇ > 0 then

𝑏̇

(︂
−d2𝑎

d𝑏2
𝑏̇

)︂
= −𝑔 + 𝛾0 sin𝜗𝑔

(︂
−d2𝑎

d𝑏2
𝑏̇

)︂2

(1 + 𝑏2)3/2 (3)

and

𝑏̇ = − 1

𝑎′′𝑏𝑏

√︃
𝑔

1
𝑎′′𝑏𝑏

+ 𝛾0𝑔 sin𝜗(1 + 𝑏2)3/2
. (4)

The negative sign is ascribed there when normal gravity projection exceeds the
lifting force 𝑚𝑔 cos 𝜃 > 𝑁 , otherwise curvature of trajectory is negative and projectile
flies convex trajectory.

Mass center velocity determined is as

𝑉 (𝑏) =
d𝑥

d𝑏
𝑏̇(1 + 𝑏2)1/2 =

√︃
𝑔(1 + 𝑏2)𝑎′′𝑏𝑏

1 + 𝛾0 sin𝜗𝑔𝑎′′𝑏𝑏(1 + 𝑏2)3/2
=

=

√︃
𝑔(1 + 𝑏2)

1
𝑎′′𝑏𝑏

+ 𝛾0 sin𝜗𝑔(1 + 𝑏2)3/2
. (5)

For the square of loss of the 𝑉⃗ -inclination rate it receives

𝑏̇2 =
𝑔

𝑎′′𝑏𝑏 + 𝑔𝛾0 sin𝜗(𝑎′′𝑏𝑏)
2(1 + 𝑏2)3/2

=
𝑔

(𝑎′′𝑏𝑏)
2
· 1

1
𝑎′′𝑏𝑏

+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2
. (6)

For the derivative of II-nd order respectively

𝑏̈ = −
𝑔

(︂
𝑎′′′𝑏𝑏𝑏 + 2𝑔𝛾0 sin𝜗𝑎

′′
𝑏𝑏𝑎

′′′
𝑏𝑏𝑏(1 + 𝑏2)3/2 + 𝑔(𝑎′′𝑏𝑏)

2 d(𝛾0 sin𝜗(1+𝑏2)3/2)
d𝑏

)︂
2
(︀
𝑎′′𝑏𝑏 + 𝑔𝛾0 sin𝜗(𝑎′′𝑏𝑏)

2(1 + 𝑏2)3/2
)︀2 . (7)

Horizontal acceleration of c. m. is determined in new variables as

𝑥̈ =

(︂
−d2𝑎

d𝑏2
𝑏̇

)︂′

𝑏

𝑏̇ = −d3𝑎

d𝑏3
𝑏̇2 − d2𝑎

d𝑏2
𝑏̈. (8)

Then the first of Eqs (1) is written after substitution (4), (6), (7) as

− 𝑎′′′𝑏𝑏𝑏
𝑔

𝑎′′𝑏𝑏 + 𝛾0 sin𝜗𝑔(𝑎′′𝑏𝑏)
2(1 + 𝑏2)3/2

−

− 𝑎′′𝑏𝑏

⎛⎜⎜⎝−
𝑔

(︂
𝑎′′′𝑏𝑏𝑏 + 2𝛾0 sin𝜗𝑔𝑎

′′
𝑏𝑏𝑎

′′′
𝑏𝑏𝑏(1 + 𝑏2)3/2 + 𝑔(𝑎′′𝑏𝑏)

2 d(𝛾0 sin𝜗(1+𝑏2)3/2)
d𝑏

)︂
2
(︀
𝑎′′𝑏 + 𝛾0 sin𝜗𝑔(𝑎′′𝑏𝑏)

2(1 + 𝑏2)3/2
)︀2

⎞⎟⎟⎠ =

= −
(︀
𝛼0(1 + 𝜀 sin2 𝜗) + 𝛾0𝑏 sin𝜗

)︀
𝑔(−𝑎′′𝑏𝑏)2×

×
(︂

𝑔

𝑎′′𝑏𝑏 + 𝛾0 sin𝜗𝑔(𝑎′′𝑏𝑏)
2(1 + 𝑏2)3/2

)︂√︀
1 + 𝑏2. (9)

After simple rearrangement, it takes the form
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𝑎′′′𝑏𝑏𝑏
(𝑎′′𝑏𝑏)

2
= 2𝑔

(︀
𝛼(𝑏) + 𝑏𝛾(𝑏)

)︀
𝑎′′𝑏𝑏

(︂
1

𝑎′′𝑏𝑏
+ 𝑔𝛾(𝑏)(1 + 𝑏2)3/2

)︂√︀
1 + 𝑏2+

+ 𝑔
d
(︀
𝛾(𝑏)(1 + 𝑏2)3/2

)︀
d𝑏

. (10)

The 𝛼(𝑏) and 𝛾(𝑏) are projectile drag and lift force coefficients respectively in very
general case but here these 𝛼(𝑏) = 𝛼0

(︀
1+𝜀 sin2 𝜗(𝑏)

)︀
and 𝛾(𝑏) = 𝛾0 sin𝜗(𝑏). Therefore,

the equation is

𝑎′′′𝑏𝑏𝑏
(𝑎′′𝑏𝑏)

2
= 2𝑔

(︀
𝛼0(1 + 𝜀2𝜗(𝑏)

)︀
+ 𝛾0𝑏 sin𝜗(𝑏)

)︀
𝑎′′𝑏𝑏

(︂
1

𝑎′′𝑏𝑏
+ 𝑔𝛾(𝑏)(1 + 𝑏2)3/2

)︂√︀
1 + 𝑏2+

+ 𝑔
d
(︀
𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

)︀
d𝑏

. (11)

Its solution would describe parametrically the trajectory and flight time plot through
following inverse transition formulas [4, 5]:

𝑥(𝑏)− 𝑥0 = −
𝑏∫︁

𝑏0

d2𝑎(𝑏′)

d𝑏′2
d𝑏′, 𝑦(𝑏)− 𝑦0 = −

𝑏∫︁
𝑏0

𝑏′
d2𝑎(𝑏′)

d𝑏′2
d𝑏′,

𝑡(𝑏) = −
𝑏∫︁

𝑏0

d𝑏′√︂
𝑔

𝑎′′𝑏′𝑏′ + 𝛾0 sin𝜗(𝑏′)𝑔(𝑎′′𝑏′𝑏′)
2(1 + 𝑏′2)3/2

, 𝑏0 = tan 𝜃0.

(12)

The parameter 𝑏 above gets useful geometrical meaning, namely inclination of vec-

tor 𝑉⃗ to the horizon. However, independent integration of the equation is impossible
since it contains unknown function 𝜂(𝑏) = sin𝜗 = sin

(︀
Θ(𝑏)− arctan 𝑏

)︀
, which can be

found only by solving the joint system of Eq. (11) and that for rotational motion of
the projectile around its mass center 𝐶.

4. Rotational Equation in Projective Coordinates

The equation (2) of the plane rotation around c. m. requires transition from time
𝑡 to projective dual variable 𝑏 according to the formulas

𝜔 =
dΘ

d𝑡
=

dΘ

d𝑏
𝑏̇, 𝜔̇ =

d2Θ

d𝑏2
𝑏̇2 +

dΘ

d𝑏
𝑏̈. (13)

The derivatives of the angle Θ by slope 𝑏 are

dΘ

d𝑏
=

d𝜗

d𝑏
+

1

1 + 𝑏2
,

d2Θ

d𝑏2
=

d2𝜗

d𝑏2
− 2𝑏

(1 + 𝑏2)2
. (14)

For the second derivative of slope 𝑏 by 𝑡 it receives after substitution of (10) in (7)
and elementary transformations

𝑏̈ = −
𝑔2

(︁
𝛼0(1 + 𝜀 sin2 𝜗)

√
1 + 𝑏2 · 𝑎′′

𝑏𝑏

(︁
1

𝑎′′
𝑏𝑏

+ 2𝑔𝛾0 sin𝜗(1 + 𝑏2)
3
2

)︁
+ d

d𝑏

(︀
𝛾0 sin𝜗(1 + 𝑏2)

)︀ 3
2

)︁
𝑎′′
𝑏𝑏

(︁
1

𝑎′′
𝑏𝑏

+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)
3
2

)︁ .

(15)
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Then it receives two ratios — the dimensionless one

𝑏̈

(𝑏̇)2
= −𝑔𝑎′′𝑏𝑏

(︃
𝛼0(1 + 𝜀 sin2 𝜗)

√︀
1 + 𝑏2 · 𝑎′′𝑏𝑏

(︂
1

𝑎′′𝑏𝑏
+ 2𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2

)︂
+

+
d
(︀
𝛾0 sin𝜗(1 + 𝑏2)3/2

)︀
d𝑏

)︃
, (16)

second one

𝑉 (𝑏)2

𝑏̇2
=

𝑔(1 + 𝑏2)
1
𝑎′′𝑏𝑏

+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2
:

(︃
𝑔

(𝑎′′𝑏𝑏)
2
· 1

1
𝑎′′𝑏𝑏

+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2

)︃
=

= (𝑎′′𝑏𝑏)
2(1 + 𝑏2). (17)

The substitution (14)–(15) in the starting rotational equation (2) and dividing

both its sides by 𝑏̇2 with taking into account (16)–(17) results in the next system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑎′′′𝑏𝑏𝑏
(𝑎′′𝑏𝑏)

2
= 2𝑔

(︁
𝛼0

(︀
1 + 𝜀 sin2 𝜗(𝑏)

)︀
+ 𝛾0𝑏 sin𝜗(𝑏)

)︁
×

× 𝑎′′𝑏𝑏

(︂
1

𝑎′′𝑏𝑏
+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2

)︂√︀
1 + 𝑏2 + 𝑔

d
(︀
𝛾0 sin𝜗(1 + 𝑏2)3/2

)︀
d𝑏

,

d2𝜗

d𝑏2
=

2𝑏

(1 + 𝑏2)2
+

(︂
d𝜗

d𝑏
+

1

1 + 𝑏2

)︂
×

× 𝑎′′𝑏𝑏

(︃
𝑔
(︁
𝛼0

(︀
1 + 𝜀 sin2 𝜗(𝑏)

)︀
+ 𝛾0𝑏 sin𝜗(𝑏)

)︁√︀
1 + 𝑏2×

× 𝑎′′𝑏𝑏

(︂
1

𝑎′′𝑏𝑏
+ 2𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2

)︂
+

+ 𝛾0(1 + 𝑏2)3/2 cos𝜗
d𝜗

d𝑏
+ 3𝛾0 sin𝜗 · 𝑏(1 + 𝑏2)1/2+

+
𝛿

𝐽𝐶𝑧
· (1 + 𝑏2) ·

√︃
𝑔

1
𝑎′′𝑏𝑏

+ 𝑔𝛾0 sin𝜗(1 + 𝑏2)3/2

)︃
− 𝜎

𝐽𝐶𝑧
(1 + 𝑏2)(𝑎′′𝑏𝑏)

2 sin𝜗.

(18)

It has total order of 𝑘 = 3, i.e. two units less than nominal one of primal system (1)–
(2) and one unit less of its real order. Besides, substituting 𝜂(𝑏) = sin𝜗(𝑏) we achieve
its full algebraization up to square roots and exclude even such elementary functions
as sin / cos𝜗. The last is more than important for numerical integration.

5. The Cauchy Problem in Projective-Dual Variables

After introducing into consideration the new dependent value

Φ(𝑏) =
1

𝑎′′𝑏𝑏(𝑏)
+ 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

which mechanical sense is the ratio
𝑔

𝑥̇2
(5) the system (18) transforms to
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dΦ(𝑏)

d𝑏
= −2𝑔

(︁
𝛼0

(︀
1 + 𝜀 sin2 𝜗(𝑏)

)︀
+ 𝛾0𝑏 sin𝜗(𝑏)

)︁
×

×
(︂
1 +

𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

Φ(𝑏)− 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

)︂√︀
1 + 𝑏2,

d2𝜗

d𝑏2
=

2𝑏

(1 + 𝑏2)2
+

(︂
d𝜗

d𝑏
+

1

1 + 𝑏2

)︂
×

×

(︃
𝑔
(︁
𝛼0

(︀
1 + 𝜀 sin2 𝜗(𝑏)

)︀
+ 𝛾0𝑏 sin𝜗(𝑏)

)︁√︀
1 + 𝑏2×

× Φ(𝑏) + 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2(︀
Φ(𝑏)− 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

)︀2+
+
𝛾0(1 + 𝑏2)3/2 cos𝜗d𝜗

d𝑏 + 3𝛾0 sin𝜗 · 𝑏(1 + 𝑏2)1/2 + 𝛿
𝐽𝐶𝑧

· (1 + 𝑏2) ·
√︁

𝑔
Φ(𝑏)

Φ(𝑏)− 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

)︃
−

− 𝜎(1 + 𝑏2) sin𝜗

𝐽𝐶𝑧
(︀
Φ(𝑏)− 𝑔𝛾0 sin𝜗(𝑏)(1 + 𝑏2)3/2

)︀2 .

(19)

Highlighted are the aerodynamic parameters to be determined experimentally in
tube or somehow else.

As for initial conditions (ICs) for slope angle of the axis 𝑙⃗ and its time derivative
it is assumed the possibility of some starting attack angle but not any rotation

Θ(𝑏0) = 𝜃0 + 𝜗0,

dΘ(𝑏0)

d𝑡
=

dΘ(𝑏0)

d𝑏
· 𝑏̇(𝑏0) = 0.

For 𝑏̇(𝑏0) ̸= 0 (6), then
dΘ(𝑏0)

d𝑏
= 0, hence

d𝜗(𝑏0)

d𝑏
=

d(Θ− 𝜃)

d𝑏
= − 1

1 + 𝑏20
.

With account of (5) the initial launch condition of non-rotating projectile may be
written as

Φ(𝑏0) =
𝑔

𝑉 2
0 cos2 𝜃0

, 𝜗(𝑏0) = 𝜗0, 𝜗′𝑏(𝑏0) = − cos2 𝜃0. (20)

As for initially rotating projectile, say, the knife thrown rotating the initial condi-
tions should take into account the equality (6) for 𝑏̇(𝑏0)-value.

Thus to receive so-called resolventa-function [4] 𝑓(𝑏) = 𝑎′′𝑏𝑏 and attack angle 𝜗(𝑏)
behavior on the trajectory it’s necessary to solve the systems of 𝑛 = 2 ODEs, one of
second, another of the first order. Alternatively, after standard substitution Ω(𝑏) =
𝜗′𝑏(𝑏) the same as the systems of 𝑛 = 3 eqs each of order 𝑘 = 1. It follows that
Legendre transformation decreases the dimensionality on one unit.

The solution of Cauchy problem (19)–(20) determines the coordinates and time as
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𝑥(𝑏) = −
𝑏∫︁

𝑏0

d𝑏′

Φ(𝑏′)− 𝑔𝛾0 sin𝜗(𝑏′)(1 + 𝑏′2)3/2
,

𝑦(𝑏) = −
𝑏∫︁

𝑏0

𝑏′d𝑏′

Φ(𝑏′)− 𝑔𝛾0 sin𝜗(𝑏′)(1 + 𝑏′2)3/2
,

𝑡(𝑏) = − 1
√
𝑔

𝑏∫︁
𝑏0

√︀
Φ(𝑏′)d𝑏′

Φ(𝑏′)− 𝑔𝛾0 sin𝜗(𝑏′)(1 + 𝑏′2)3/2
.

(21)

6. The Wind Affection

Let it be tail- or headwind with the constant velocity 𝑢. It may be taken into
consideration through simple recalculating of these two values:
a) initial conditions for Φ(𝑏) and 𝑏 itself into reference frames connected with blowing

wind in a standard way

𝛽0 = tan 𝜃′0 =
𝑉0 sin 𝜃0

𝑉0 cos 𝜃0 − 𝑢
, (22)

b) initial velocity with respect to the air as 𝑊0 =
√︀
𝑉 2
0 + 𝑢2 − 2𝑉0 cos 𝜃0𝑢.

Then comeback transition is due to formulas

tan 𝜃0 =
𝑊0 sin 𝜃

′
0

𝑊0 cos 𝜃′0 + 𝑢
, 𝑉0 =

√︁
𝑊 2

0 + 𝑢2 + 2𝑊0𝑢 cos 𝜃′0. (23)

After integrating the system (19) with thus recalculated ICs the absolute horizontal
coordinate is recalculated as 𝑥abs = 𝑥(𝑏) + 𝑢𝑡(𝑏) with 𝑥(𝑏) and 𝑡(𝑏) according to (21).
As for vertical coordinate 𝑦(𝑏) it is calculated by unchanged formula and the trajectory
is determined parametrically. The absolute inclination is determined by this as

𝑏abs(𝑏) =
𝑦′(𝑏)

𝑥′(𝑏) + 𝑢𝑡′(𝑏)
.

As for perpendicular to initial velocity 𝑉⃗0 side wind with speed 𝑤, its effect may
be taken into account by recalculating in connected with the wind frames the initial

inclination angle and start velocity 𝑊⃗0. The first is done according to following formula

𝛽0 = tan 𝜃′0 =
𝑉0 sin 𝜃0√︀

𝑉 2
0 cos2 𝜃0 + 𝑤2

≈ tan 𝜃0

(︂
1− 𝑤2

2𝑉 2
0 cos2 𝜃0

)︂
, 𝑤 ≪ 𝑉0 cos 𝜃0, (24)

the second one is simply 𝑊0

√︀
𝑉 2
0 + 𝑤2.

After the integration of (19) with the modified ICs the perpendicular coordinate

is determined as 𝑧abs(𝑏) = 𝑤𝑡(𝑏), the horizontal one is 𝑥abs(𝑏) =
√︀
𝑥2(𝑏)− 𝑧2abs(𝑏) ≈

𝑥(𝑏) − 𝑤2𝑡2(𝑏)
2𝑥(𝑏) and the vertical 𝑦abs(𝑏) = 𝑦(𝑏) with 𝑥(𝑏), 𝑦(𝑏) and 𝑡(𝑏) also according

to (21).
As for arbitrary wind direction 𝜙 with respect to the axis 𝑂𝑥 and hence the velocity

of 𝑈⃗ = (𝑢, 0, 𝑤) = (𝑈 cos𝜙, 0, 𝑈 sin𝜙) the appropriate solution is received by applying
twice the for-mulas above with account of small size of the perpendicular component 𝑤.
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7. Numerical Integration, Main Results

It was executed by use of Maple 15 for the system of 𝑛 = 3 ODEs of 𝑘 = 1 order
obtained by introduction of additional simple equation of 𝜗′𝑏(𝑏) = Ω(𝑏). This results
in that one of two other nonlinear equations contains all three unknowns and another
only two.

In such the system could be used easily to calculate the trajectory of sporting or
combat projectile just after preliminary determination of aerodynamic coefficients and
parameters.

Varied are the next values: initial velocity 𝑉0 = 0.15÷ 0.7 and 1.5÷ 2.3 of Mach,
angle of throwing 𝜃0 = 0 . . . 85∘, coefficients 𝛼0, 𝜀, 𝛾0, 𝜎 and 𝛿 for the forces and
torques involved in wide range.

The next types of 𝜗(𝜃)-behavior were found in different ranges of the parameters
above.
1. A monotonous increase and the temporary stabilization of the fall velocity at

about a flat maximum and for attack angle of up to about 𝜃0 +
𝜋
2 (Fig. 2). All

these take place for little ratios 𝜎/𝐽𝐶𝑧 and different coefficients of damping 𝛿.
At abnormally large negative slopes stabilization is replaced by fall of attack angle

up to 90∘ what entails loss of speed along with increasing of the d2𝑎(𝑏)
d𝑏2 . However

to reveal this is possible only when throwing projectile from great height.

As for the stabilization, it is not simple conservation of axis 𝑙⃗ direction in space
for angular velocity 𝜔 = dΘ

d𝑡 yet differs slightly from zero and the attack angle
is not anytime close to 𝜃0 +

𝜋
2 which is expected for almost vertical landing. It

depends in particular on damping coefficient 𝛿 (thick and thin lines). However,
at abnormally high its values the axis orientation conserves in fact.
Actually this stabilization effect may occur, such as when shooting from a special
arch or heavy crossbow arrows, poorly oriented to the velocity vector due from
large moment of inertia.

2. Non-monotonous 𝜗(𝜃)-dependence modulated by fast damping 𝑏-oscillations of
low “frequency” (Fig. 3) at mean 𝜎

𝐽𝐶𝑧
-ratios and large 𝛿, these oscillations being

without damping in the limit 𝛿 → 0 (Fig. 4).
3. High frequency damped 𝑏-oscillations at large 𝜎/𝐽𝐶𝑧-ratios with decrement de-

pending on 𝛿 too (Fig. 5, 6).

Figure 2. Attack angle 𝜗(𝑏), angular
dΘ
d𝑡

and linear 𝑉 (𝑏) velocities vs 𝑏 for
small 𝜎/𝐽𝐶𝑧-ratios

Figure 3. This for mean 𝜎/𝐽𝐶𝑧 and
large 𝛿
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Figure 4. Attack angle 𝜗(𝑏), angular

𝜔 = dΘ(𝑏)
d𝑡

and linear 𝑉 (𝑏) velocities vs
slope 𝑏 at average 𝜎/𝐽𝐶𝑧-ratios and

𝛿 = 0

Figure 5. This for large 𝜎/𝐽𝐶𝑧 and
small 𝛿

In general, beyond the vertex region of trajectory both attack angle and angular
velocity behave in 𝑏-representation like classical oscillatory system with damping.

The 𝜗(𝑏) large varying, with no doubt, greatly affects the mass center trajectory,
and this influence is defined mainly by the coefficient 𝜎 of static torque. The less the 𝜎
the wider range of 𝜗(𝑏) varying and the trajectory is shorter and lower (Fig. 7). Vice
versa, the greater this coefficient the less amplitude of attack angle oscillations and
the trajectory is closer to that of a heavy mass point. Other factors like lift power and
damping coefficients in their real ranges are not able to affect the trajectory in such
extent.

Figure 6. The 𝜗(𝑏) and dΘ
d𝑡

vs 𝑏 at
mean 𝜎/𝐽𝐶𝑧 and large 𝛿

Figure 7. The trajectory plots at
different 𝜎/𝐽𝐶𝑧-ratios

It is worth to pay attention on essentially non-monotonous behavior of the speed
at descending part of the trajectory when launching at high angles of throwing close
to 90∘ (Fig. 8). This affect may be explained simply by projectile rotation arising at
the top of trajectory from sudden aerodynamic impact due to reverse. And finally the
attack angle is stabilized at 𝜗 ≈ 4𝜋 ≈ 0 (mod 2𝜋), e.i. after of about two turns.
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Figure 8. Non-monotonic velocity
behavior 𝑉 (𝑏) due to rotation when

descending

Figure 9. Trajectory plots for the
arrow launched at 𝜃0 = 45∘ with
𝑉0 = 50 mps by different tail- or

headwind speeds

As for the wind affection on the trajectory it is demonstrated by the plots below
calculated for different wind velocities 𝑢 = −10 · · · + 10 mps (Fig. 9) and the same
projectile and launch parameters.

8. Conclusions

Thus, the developed method using dual-projective coordinates is more convenient
than standard way with Cartesian coordinates and time. First it gives though para-
metrically the trajectory equation and excludes non-important time variable.

Also it enables to fulfill numerically the qualitative analysis of such dynamic sys-
tems as systems with variable dissipation [3] and build up its phase portrait in 𝜔 − 𝜃
and 𝜗− 𝜃 planes for detailed study.

As for practical applications, the ODE system derived may use as an alternative
method for verifying other ones in exterior ballistics of both sporting and combat pro-
jectiles. In addition, its application would allow improving these projectiles for better
target engagement and more easily use. Finally the method when being elaborated
may be implemented into ballistic calculators.
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УДК 531.55
Об одном методе численного интегрирования динамических

уравнений плоскопараллельного полёта спортивного или
боевого снаряда в условиях воздействия ветра

В. В. Чистяков
Инженерный факультет

ФГБОУ ВПО «Ярославская государственная сельскохозяйственная академия»
Тутаевское шоссе, 58, Ярославль, Россия, 150042

Стандартный путь интегрирования динамических уравнений для плоскопараллель-
ного резистивного движения твердого тела подразумевает введение двух декартовых
переменных 𝑥(𝑡) и 𝑦(𝑡) и угла атаки 𝜗(𝑡) и, соответственно, трёх взаимосвязанных обык-
новенных дифференциальных уравнений (ОДУ), каждое номинально II-го порядка. Это
приводит к большому вычислительному объёму и рискам в точности получаемых ре-
шений. Предлагаемый метод исключает временную переменную 𝑡 и уменьшает число
функций до 𝑛 = 2: угол атаки 𝜗(𝑏) и подкасательная к траектории 𝑎(𝑏), где 𝑏 = tg 𝜃, а
𝜃 — угол наклона к горизонту вектора скорости 𝑉⃗ центра масс снаряда. Этот базирую-
щийся на преобразованиях Лежандра подход делает интегрирование контролируемым
и удобным особенно в рассматриваемом случае квадратичных по скорости аэродинами-
ческих усилий: лобовое сопротивление, подъёмная сила, консервативный и диссипатив-
ный моменты. Также метод позволяет получить легко и надежно траектории снаряда
в условиях встречного, попутного или бокового ветров. Исследованы основные обла-
сти аэродинамических параметров, в которых имеет место различное поведение угла
атаки 𝜗(𝑏): квазистабилизация и апериодические автоколебания. Также обнаружено су-
щественно немонотонное поведение величины скорости на участке падения с двумя ми-
нимумами при высоких углах запуска. Развитый метод может быть внедрён в процесс
совершенствования реальных спортивных и боевых снарядов, таких как стрела лука,
копьё, неуправляемый оперенный снаряд и др.

Ключевые слова: свободное резистивное движение, траектория, квадратичное со-
противление, подъёмная сила, консервативный и диссипативный моменты, угол атаки,
проективно-двойственные переменные, ветер.
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