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This paper modifies an explicit dynamic equation of constrained mechanical system. Kine-
matic position of the system is defined by generalized coordinates, which are imposed on
constraints. The equations of motion in the form of the Lagrange equations with unde-
termined multipliers are constructed based on d’Alambert—Lagrange’s principle. Dynamic
equations are presented to the mind, resolved relative accelerations. Expressions for the un-
determined multipliers are defined by considering the possible deviations from the constraints
equations. For constraints stabilization additional variables used to estimate the deviations
caused by errors in the initial conditions and the use of numerical methods. For approxima-
tion of ordinary differential equations solution, in particular, the nonlinear equations of first
order, use explicit numerical methods. Linear equations of the constraints perturbation are
constructed. The matrix of the coefficients of these equations is selected in the process of the
dynamic equations numerical solution. Stability with respect to initial deviations from the
constraints equations and stabilization of the numerical solution depend on the values of the
elements of this matrix. As a result values for the matrix of coefficients corresponding to the
solution of the dynamics equations by the method of Euler and fourth order Runge-Kutta
method are defined. Suggested method for solving the problem of stabilization is used for
modeling of the disk motion on a plane without slipping.

Key words and phrases: unconstrained system, holonomic constraints, nonholonomic
constraints, stabilization, Taylor series, numerical solution.

1. Introduction

Consider a discrete mechanical system of n particles P;, i = 1,2,...,k of masses
mi, Mo, ..., mg. The position of a particle in a system can be denoted by an ordered
duple of scalar coefficients (x,y, z) in an inertial reference frame. The total number of
displacement components in the system will be denoted N-vector [1]:

u(t) = (wi(t), uz(t),. .., un(t)),

where vy = x1, us = Y1, uz = 21, Uy = T3, ..., uny = 2k, N = 3k. When the
configuration coordinates (uj,us,...,uy) are not all independent variables, a set of
reduced-order variables ¢ = (q1,qa2,...,qy) exists, where n < N, that is sufficient

to define a system configuration [2]. Reduced-order coordinates are related to the
configuration coordinates through displacement transformation equations such that

ui:ui(ql,qg,...,qn,t), iZl,...,N.

Now let us consider the system as unconstrained whose configuration is described
by the n generalized coordinates ¢ = [q1,q2, - .., qn]T, here

q(to) =¢°,  q(to) = 4" (1)

When we say the Mechanical system is unconstrained, we mean that the com-
ponents ¢; of the velocity of the system can be assigned independently at any given
initial time, say t = to. The equation of motion of the system can be obtained, using
Lagrange equation
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where = ¢;. The equation of motion of the system (2) can be rewritten by a

relation MG = f, where M is an n X n symmetric, positive-definite, generalized mass
matrix and f = f(q,q,t) is an n x 1 column array of generalized applied forces and
generalized inertia force terms (including the so-called “centrifugal” and “Coriolis”
terms). The generalized acceleration of the unconstrained system, which we denote it
by the n-vector a, = ay(q,q,t), is then given by

G=M1f=a,. (3)

2. Construction of Dynamic Equations of the System

Suppose the system is subjected to m constraint equations of the form

where ¢ = (¢1,%9,...,1%,,) and the constraint equations (4) include all the usual
varieties of holonomic and nonholonomic cases. The constraint equations are assumed
to satisfy the initial conditions q(to) = ¢, 4(to) = ¢°: ¥(¢°, ¢°,to) = 0.

Under the assumption of the differentiability of constraint equations, we can dif-
ferentiate equations (4) with respect to time:

b =i + Ved + Vi (5)

To avoid the stability problems during numerical integrations of constraints let us
add terms to compensate the deviations. So that equation (5) can be rewritten as

VG + Ygd + 1y +9 =0, (6)

where g = ¢(0,q,q¢,t) = 0. Rearranging the coefficients of (6) along with acceleration,
velocity and other terms we get

Aj = Bj+C, (7)
here A =1y, B= -1, C=—(;+g).

Equation (7) shows the kinematical relations in connection with the constraints.
Now we consider the dynamical conditions. The presence of the constraints (4) im-
poses additional constraint forces on the system which change its acceleration. Using
Lagrange’s method of undetermined multipliers the equation of motion of the con-
strained system can be obtained from the relation [3]

d /0T or " Oy

From equation (8) an equivalent form can be reset [4]:
Mi=f+ A" p. (9)

This is solved using the method of Lagrange multipliers whereby an additional set
of m variables py are introduced. Solving for acceleration from (9) will give us [5]

G=M"(f+ATp). (10)
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If the combined mass and constraint matrix is nonsingular (i.e., A has full row
rank, and all particles have nonzero mass), equation (10) can be solved as

(g = @y, + Dipu, (11)
where j is the Lagrange multiplier obtained from (10) , a! is unconstrained accel-
eration of the system which is obtained from (3) and a! is the actual acceleration
of the constrained system. The relations in equation (11) are second order differ-
ential equations, we may rewrite them as systems of first order ordinary differential
equations:

dq¢t i
=0 y
dt, (12)
dv i 4 pi
=a )
ar e TR

Substitute (10) in equation (7) and solve for 1 we get
p=(AMAT) " Bi+ (AMTAT) TN (C — AMTLS). (13)
The dynamic equations of motion of the system can be obtained by replacing the

Lagrange multiplier (13) from relation (10)

G=M'f+ MTAT(AM'AT) Y [Bg+ (C — AM~'f)). (14)

Equation (14) further simplified and can be written in the form:
a, = ay, + H(Bv+ C — Aay), (15)
where H = M~YAT(AM~1AT)~! is an n by m matrix.
Again relation (15) may be put in the form
aq, = Pa, + Sv+ R, (16)
where P = I — HA, S = HB and R = HC. To solve equation (16) numerically

we should change the equation from second order to first order ordinary differential
equations as:

dg' i
=0
dt ' an
dv? & dv] & L
i = ]E_l _PUH + jg_l Sij'UJ —+ 7.

The terms added in (6) to correct deviation of constraints during numerical inte-
grations may be represented as a multiple of constraints themselves:

gi =Y kijbj, i=12...m, (18)
j=1

Using relation (6) equation (18) can be expressed as

) = Ky, (19)
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where
kii ki ... ki
ka1 koo ... kop
K =
kml km2 cee kmm

As the result of this the value of C' in (7) will be replaced by C = (K¢ — ).

In turn, as its consequence, the value of R in the equation of motion (16) will be
changed.

3. Stabilization of Constraints During Numerical solutions

Let the initial values ¢°, v% satisfy the condition HwOH o and the system (17) is
solved by Euler method [6]
{q”l =q +7d’

vitl = yi 4 T, (20)

where ¢* = q(t;), T = tiy1 — t;, ¢ = v* and

n dJ n
:ZPZJ (;)t +ZSZJUJ+T i:071727"'

J=1

Taking 7 sufficiently small and the inequality ||W|| < o holds for t = tg, and
expanding the components of ¥ in powers of 7 in relation with (16) we get

2
i i i T i - .
W =gt gt Syt where v = g+ gd + U

2
Y = [ (Pay + Sv+ R) 4 g0 + i)' + ', (21)

where ¥ = ¥(q*,¢",t;) and %Zwi(2) is the remainder of Taylor expansion. From the
relation (21) and the supposition (19) it follows that

W = (1 Ky 4 D 1/)’(2) (22)

where [ is the identity matrix. The following statements can be proposed by estimating
the right-hand side of (22).

Theorem 1. In the power series expansion of V't if ||WH < o, HI—i—TKiH <
w’(Q)H (1=10)o, then ||p" | <o.

That is, ||| < [|[T+ 7K ||o7] + % '@ < b0+ (1—8)g=0.

The proof of this follows from (21)—(22) as it is proved in [7]. If the system (16) or
(17) is solved by the fourth order Runge-Kutta method the constraint equation can
be expressed as (the detail mathematical formulation is given in [8])

Ty + 2k + 2k + ka), (23)

i+l _ 1
P =i+
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where k; = 4%, and let ¢ = f(t;, "),

by = f(ti+ D0+ DR 00))s hy = (b4 2w+ Df (i 50+ D (,0Y),

By = (4 70"+ mf (b 500+ 2+ 2,0+ F (6, 0))).
Expanding k2, k3, k4 up to order three using Taylor series with respect to two

variables and substituting the result in (23) we get

3

. . 2 . . . . . .
AY! = rf 4 TF (G fUF) 4 (HZ+I’FZ+wa1 (fi)2F')+7 R, (24)

24
where F' = fi v £}, G = fiy + 200 fiy + (W) F 0 I' = Fiy 40 Fys HY = fig +
30"l + 30" i + (vi)?’fé}ww and v* = 9%, Consider the row decomposition of fit! =
f(wi+17 ti-i-l):

. i L 1 1
P =P A fi 4 S 4 S f O 4 Y TR (25)
where

f (12) _ flszd} A?/JZ + 2Tftszqu]Z + Tzftta
PO = gy A AY NG + 37 f AT A + 372 fly A+ 70 fyy,
PO = [l DG DY A AP + 47 ff, . A A A+
+ 677 ftthpA@Z’lAW + 47'3ftittwAwi + T4ftittt'
Theorem 2. If a solution of (25) used the fourth order of accuracy (24) and for

all values of the variables 1 = ¢, t = t;, (i =0,1,2,...,N), and the matriz K(¢,t),
Y0 and the remainder T5Rff’ in Taylor series expansion satisfy the conditions:

|00 <e 70 ||RES| < 1+7Ki+%p+lpi+;—4@i

6

2 3 4
0)e, H <0<,

then ||1/10|| € for all n = 1,2,...,N, where 7 > 0, 6§ >0, L = K + K2,
P=K+3KK+K3 Q=K+4KK +3K?+6KK + K*.

Proof. Substitute (24) in (25) and rearranging terms gives:

2 3
i+1 i i, T i i i T i i i i i i\2 i
e R (€ +f¢F)+E(H +3IF + f1,G' + (f},)°F')+

4
5 (2P + ()G + fLH' + 4I'G+ (26)
FON'F 4 TILFT 4 30, (F)? + M) + TR},

where N = v fypy 420 frpp+ frow, M = 0* fyppy+40% frappnp +60° fropy +40 frrop + freer.
Let us consider the relation 1) = K1 and respective derivatives:

b= (K+ K= fyu+fr, &= (K+3KK+K*p=f3F+ f,G+3FI +H,
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¢ = (K +4KK +3K* + 6 KK? + K*)¢ =
= fiF+ f}G+ fuH +AGI + 6NF + Tfy,FI + 3fyuF* + M.

Therefore, equation (26) can be written in the form

. . . 2 . . 3 .. . .
I = TR (R K0 T (R KK+ K
4

o (B +4KK + 3K + 6K K + K + PRI, (27)
Taking into account the given conditions and assuming that

2 3 .. . .
HI YK+ %(K + K24 %(K +3KK + K34

7_4

+ (K +4KK +3K? + 6KK? + K*)!

<0<,
24

70 HRk5|| < (1 —0)e,
so we obtain

73

2 4
i+1 i, T ri i T i
[ }\<HI+TK+2L+6P +5;@

||WH <de+(1—de=e.

4. Example

A disk that rolls on a plane without gliding can be considered as a system with
differential coordinates. The disk shall always stand perpendicular to the xy-plane
(Fig. 1).

The center of the disk is exactly above the contact point (z,y), and the velocity
of the circumference Ry of the edge equals the velocity of the contact point in the
zy-plane [9] (Fig. 2):

v=r¢Y, T=rpsindg, y=rpcosd.

= ¥

disk axis

Figure 1. Position of the disk Figure 2. Orientation of velocity
of the disk
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These nonholonomic constraint equations can be put in the form [5]

Y1 =2 —rpsind =0, Yy=y+rocosd =0. (a)

We differentiate these (a) once with respect to time:

i —r@sing —rgdcosd =0, §j+r@cost — rgpdsingd = 0,

or in matrix form

where
1 0 —rsind 0

B T
10 1 rcosv 0Of° )

A b= [r¢dcos? rgdsind]

The kinetic energy is
1 1 1 1.
T=_-Mi*+ -My* + -Lp* + = [9?
9 x° + 9 y + 2 1 + 2 2V (C)

where I; is the moment of inertia of the disk about the axis perpendicular to the disk
through the center, and I3 is the moment about the axis through the center and the
contact point (x,y).

Applying Lagrange’s equations on (c¢) we get

Mm = Qa: +)\1)

My:Qy_’_)\Q? (d)
Iip = Qp — Airsind + Aarcos v,

LY = Qy.

with Q., Qy, Qy, Qv as possible external forces in respective directions. We consider
the system without such forces and therefore let them equal to zero. This trans-
forms (d) into

mL = A,
my = Az,
L1y = —Airsind 4+ Aor cos v,
L) = 0.
In matrix form
M= AT\, (e)
where .
m 0 0 0 T
0 m 0 O y A1
M=1o o 1 o 77 |¢| A:[&}
0 0 0 I 0,

Since M is positive definite matrix, we can solve for ¢ in (e) and write it in the
form
G=M"TAT. (f)
Substituting this (f) in relation (b) we obtain:

i = (AM1AT) . @
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Replacing A in (f) by the expression (g) we get:
G=MTAT(AM AT b (h)
Note that it is very difficult to calculate these results without help of machines;

symbolic math program in MATLAB produces such cases within fraction of seconds.

Regarding that I = 1/2mr?, Iy = 1/4mr? and supposing m = 1 kg, 7 = 1 unit
let us try to solve equation (h) using numerical methods. As the result,

10 0 0 | 0
01 0 0 T 0 1 » o . .

M= 0 0 1/2 0 , AW = _gind  cosd ,bz[goﬁcosﬂ gpﬂsmﬁ] . @)
00 0 1/4 0 0

As we can see from equation (i), equation (h) can’t be solved analytically. But the
position and velocity of the disk can be approximated using numerical integration.

To solve equation (i) using numerical methods let us reduce it into systems of first
order ordinary differential equations:

v=xz(1), y=z3), ¢=x05), J=1(7),
B(1) = 2(2), #(3)=x(4), @(5)=x(6), @(7)=ax(8), @(8) =0,
#(2) = ( +2cos(x(7) 2)/(1 +2cos(x(7))” + 28111(3:(7))2) - 2(6) 2(8) cos (z(7)) +
+2sin(2(7)) cos(z(7))/ (1 +2cos(x(7))” + 2sin(aj(7))2) - 2(6) 2(8),
#(4) = 2sin(2(7)) - cos(z(7))” (1 +2cos(x(7))” + 251n(x(7))2) - 2(6) z(8)+
+ (1 2sin(2(7)*) /(1 4+ 2cos((7)” + 2sin(2(7))?) - 2(6) 2(8) sin (2(7)),

%(6) = (—2 sin(z(7)) - (1 + 2008(:5(7))2)/(1 + 2008(:17(7))2 + QSin(:E(7))2)+

2

+ 4 cos(x(7)) Siﬂ(:t(?))/(1+2cos(ac(7))2+2sin(m(7))2>> x 2(6) z(8) cos(x(7)) +

+ <—4 : sin(:ﬂ(?))2 COS(Q:(?))/(l + 2005(:E(7))2 + 25in(x(7))2)—|—

+2 cos(z(7))- (1+2 sin(a:(?))2) / (1+2 cos(z(7)) 42 sin(x(?))2)> x2(6) (8) sin (2(7)).

Now let us apply stabilization of the constraint equations as discussed above
(Fig. 3). In doing so, we have

i —r@sing —rgdcostd 4+ g1 =0, §j+r@cosd — rgpdsind + g = 0,

or in matrix form A§ = b+ Dy, where g = Dy and D = D(t) is a two by two matrix.

From this the equation of motion for the disk will be

G=MTTAT(AM~TAT)"1(b + D).
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position x
0.06 T

0.05 1

0.03 |

absolute difference

0,02 1

0.01 1

Figure 3. Absolute difference of stabilization of constraint equations
for position =

Finally taking the following initial values for position and velocity we get the
corresponding values of position and velocity at any time ¢

2 =2%(1) =0, " =2°2) =1, y* =2°(3) = 0, §° =2°(4) = V3,
@ =2°5) =0, " =2%6) =2, 90 =2°(7) =n/6, I° =2°(8) = 1.

5. Conclusion

In this paper a modified method of constructing dynamic equation of constrained
mechanical system is presented. The equation is done applying the principle of La-
grange with stabilization of constraint equations. It contains unknown coefficient
matrix which determines the stability of the solution. The choice of the matrix is
performed experimentally using MATLAB program during numerical solution.

The stability of the initial value problem we considered depends on the size and
sign of elements of this matrix.

Finally an example is given and investigation is made to determine the possible
values of the elements of the proposed matrix. During experimental investigation
of the elements of the coefficients, the results show better approximation for small
simulation time.
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VIIK 531.3
ypaBHeHI/IH ANHAMWKHU HeCBO60,D;HOI71 MeX&HquCKOﬁ CUCTreMbnbl

A. B. Bemay

Kagedpa mamemamuru
Baxpdapcrut ynusepcumem
Sgpuonusn, Baxpdap

Pabora noceamena moaudukanuy ypaBHEHUH TUHAMIKH MEXaHUYECKOW CHCTEMBI CO CBSI-
3amu. KuaeMaTnyeckoe MOJIOYKEHUE CUCTEMBI OIPENEISIeTcss OOOOIEHHBIMU KOOPIUHATAMU
¥ CKOPOCTSIMHU, Ha KOTOpbIE HAJIOXKeHbI cBsi3u. Ha ocHoBe mpunnuma lamambepa—Jlarpamxka
COCTaBJIAIOTCS YPaBHEHUs JBHM2KeHUsA B dopMme ypaBHeHui Jlarpan»ka ¢ HeolpeneIéHHBIMUI
MHOXKHUTEJIIMU. Y pDaBHEHUS JIUHAMUKU IPUBOIATCH K BHUJY, PA3PEINIEHHOMY OTHOCHUTEJIHHO
yckopennii. BoIpaskeHust Jj1s1 HEONPEIEIEHHBIX MHOXKHUTEEH ONPENesIAIOTCs ¢ yIETOM BO3-
MOKHBIX OTKJIOHEHUI OT ypaBHeHU cBsizeit. [lyist crabunmuzanum cBsizeil BBOJASTCS JIOMOJTHU-
TeJIbHbIE TIEPEMEHHBIE, UCIIOJIb3yeMbIE JJIsl OIEHKN OTKJIOHEHU, BPI3BAHHBIX IIOTIPENTHOCTSIMU
3aJaHUs HAYAJIBHBIX YCJIOBUM M MCIOJIH30BAHUA UHCICHHBIX METONOB. i anmpoxcuMariuu
pelteHuit OOBIKHOBEHHBIX UM dePEHIINAIBHBIX YPABHEHU, B 9aCTHOCTU, HEJIMHENHBIX yPaB-
HEHUIT TIEPBOTO MOPSIKA, MCIOJb3YIOTCS SIBHbIE YHCJCHHBIE MeTOAbI. [locTpoens! jinHeiHbIE
ypaBHEHUs BO3MYIIEHU CBA3€el, MaTPHUIA KOIMDMUIIMEHTOB KOTOPBIX BHIONPAETCs B IIPOIECcCe
YHUCJIEHHOTO PeIlleHns] yPaBHEHU IMHAMUKA. YCTOWYHUBOCTD 110 OTHOIIIEHUIO K HAYAJIbHBIM OT-
KJIOHEHUSIM OT YPABHEHUH CBsI3eil 1 CTAOMIN3AINS TNCIEHHOTO PEIIeHNS 3aBUCAT OT 3HAYUCHUN
3JIEMEHTOB 3TOI MaTpunpbl. B pe3ysbrare HCCIeI0BaHUS OIPENEISIOTCS JOIIYCTUMbIE 3HaUe-
HUSI MATPHUIBI KOIMPUIIMEHTOB, COOTBETCTBYIOIUE PEIIEHUIO YPABHEHU TUHAMUKHA METOIOM
Oitnepa u meronoMm Pynre-Kyrra derBéproro nopsaka. [IpengokeHHbII MeTO/T pelieHns 3a-
Ja49i CTaOMJIN3alNH UCIIOJIb3YeTCs JJIsi MOJIEIUPOBAHUS JIBUXKEHUS JUCKA TI0 IJIOCKOCTH 6e3
IIPOCKAJIb3bIBAHHUSI.

Kuro4geBbie ciioBa: cBOOO/HASI CHCTEMA, TOJIOHOMHBIE CBSI3U, HETOJIOHOMHBIE CBSI3U, CTa-
ounuzanus, psia Teitopa, YUCIEHHOE peleHue.
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