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It is assumed that the introduction of stochastic in mathematical model makes it more ade-
quate. But there is virtually no methods of coordinated (depended on structure of the system)
stochastic introduction into deterministic models. Authors have improved the method of sto-
chastic models construction for the class of one-step processes and illustrated by models of
population dynamics. Population dynamics was chosen for study because its deterministic
models were sufficiently well explored that allows to compare the results with already known
ones.

To optimize the models creation as much as possible some routine operations should be
automated. In this case, the process of drawing up the model equations can be algorithmized
and implemented in the computer algebra system. Furthermore, on the basis of these results
a set of programs for numerical experiment can be obtained.

The computer algebra system Axiom is used for analytical calculations implementation.
To perform the numerical experiment FORTRAN and Julia languages are used. The Runge—
Kutta method for stochastic differential equations is used as numerical method.

The program complex for creating stochastic one-step processes models is constructed. Its
application is illustrated by the predator-prey population dynamic system.

Computer algebra systems are very convenient for the purposes of rapid prototyping in
mathematical models design and analysis.

Key words and phrases: stochastic differential equations; “predator—prey” model;
master equation; Fokker—Planck equation; computer algebra software; Axiom system.

1. Introduction

This work corresponds our research on mathematical models stochastization. This
item is interesting due to the following problems: the construction of population
models from first principles and the introduction of the stochastic into such models
(the population dynamics is studied because of similar models introduction in other
areas).

The problem of stochastic term introduction arises during mathematical models
stochastization. There are several ways to solve this problem. The easiest option is an
in the deterministic equation. But when additive stochastic term is introduced some
free parameters that require further definition appears. Furthermore, these stochas-
tic terms usually interpreted as an external (rather than structural) random impact.
In this regard, we used and improved the stochastic one-step processes models con-
struction method, based on master equation [1,2]. Stochastic differential equation is
considered as its approximate form. It allows to get the model equations from general
principles. Furthermore, deterministic and stochastic parts are derived from the one
equation so we can regard it as stochastic and deterministic parts consistency.

The aim of this work is the software complex development for rapid prototyping
construction of stochastic one-step processes models. This complex consists of two
blocks. The first block generates the equations of dynamic stochastic process model on
the principles similar to chemical kinetic relations describing the investigated process.
This block is implemented by means of the computer algebra system — system FriCAS,
which is offshoot of Axiom.

The second block is used for the numerical analysis of the resulting model. For
numerical solution of deterministic and stochastic models equations some Runge—
Kutta different orders methods [3,4] are used.
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To illustrate the developed system the well-known population model predator—prey
is used [5-7].

The structure of the paper is as follows. The basic notation and conventions
are introduced in Section 2. Section 3 is devoted to brief introduction to the one-
step processes stochastization method. Further, in the Section 4 the model under
investigation is described. In the subsection 4.1 there is a brief reference to standard
(deterministic) approach, and in the subsection 4.2 the stochastic extension of our
model with the help of the one-step processes stochastization method is obtained.

In the Section 5.1 we justify selection of the system, which implements the model
equations generating unit. The actual interface of this part of the program complex
is described in the Section 5.2.

The possibility of applying Runge-Kutta methods for the analysis of stochastic
differential equations is considered in the Section 6. The software interface of the
model equations numerical analysis unit is also described in this section. Calculations
example is based on the predator—prey model.

2. Notations and Conventions

1. We use abstract indices notation [8]. In this notation tensor as a whole object is

denoted just as an index (e.g., 2*), components are denoted by underlined index
e.g., ).

2. ng Will)adhere to the following agreements. Latin indices of the middle of the
alphabet (i, 7, k) will apply to the space of the system state vectors. Latin
indices from the beginning of the alphabet (a) will relate to the Wiener process
space. Latin indices from the end of the alphabet (p, ¢) will refer to the indices
of the Runge-Kutta method. Greek indices («) will set a number of different
interactions in kinetic equations.

3. A Dot over a symbol denotes differentiation with respect to time.

4. The comma in the index denotes partial derivative with respect to corresponding
coordinate.

3. One-Step Processes Modeling

Let’s briefly review the method of one-step processes stochastization on the basis
of [9].

We understand one-step processes as Markov processes with continuous time with
values in the domain of integers, which transition matrix allows only transitions be-
tween neighbouring portions. Also, these processes are known as birth-and-death
processes.

One-step processes are subject to the following conditions:

1. If at the moment ¢ the system is in state ¢ € Z>q,then the probability of transition
to state ¢ + 1 in time interval [t,t + At] is equal to kT At + o(At).

2. If at time moment ¢ the system is in state ¢ € Z, ,then the probability of transition
to state ¢ — 1 in the time interval [¢,¢ + At] is equal to k= At + o(At).

3. The probability of transition to a state other than the neighbouring is equal to
o(At).

4. The probability to remain in the same state is equal to 1 — (k™ + k™) At + o(At).

5. State ¢ = 0 is an absorbing boundary.

The idea of the one-step processes stochastization method is as follows. Based on
the patterns of interaction we construct a master kinetic equation, expand it into a
series, leaving only the terms up to and including the second derivative. The resulting
equation is the Fokker—Planck equation. In order to get more convenient model we
record corresponding Langevin equation. In fact, as we shall see , from the patterns of
interaction we will immediately obtain the coefficients of the Fokker—Planck equation
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(and accordingly, the Langevin equation), so for practical use of the method there is
no need to construct the master kinetic equation.

3.1. Interaction Schemes

We will describe the state of the system by a state vector ! € R™, where n is the
system dimension (the state vector is considered as the set of mathematical values,

fully describing system). The operator n; € L5, X LY defines the state of the system
before the interaction and the operator m§ € Z;’O X Zgo — after the interaction. The
result of interaction is a system transition to another state [1,10].

There are s kinds of different interactions that may happen in the system, s € Z..
SO.’ instead of nj and m; let’s consider the operators ;€ Zgo X Zgo X Z‘;O and
mit € Ly X L5 X L.

System elements interaction will be described with the interaction schemes similar
to chemical kinetic schemes [11]:

niopl = méaxj. (1)

Here Greek indices specify the number of interactions and Latin ones specify dimen-
sionality of the system. The state change is given by the operator

o (16 i
Tt =mi" —ni (2)
Thus, one-step interaction « in forward and opposite directions can be written as

= 2 + r?mﬂ
(3)

Tzt — ' — rj*m].

We can write (1) not in the form of vector equations, but in the more traditional

form sums:
n

6 = m;axj 0;, (4)
ko

o

nj

where §; = (1,...,1).
Also, we will use the following notation:

R =it i = i, e = e, (5)

3.2. Master Equation

Transition probabilities per unit of time from the state z* to the state x* + T;ng

(to the state x% — r;-ng ) are proportional to the number of ! combination from a set
of n'® elements (of 2* — combinations from a set of m’®) and are given by:
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Thus, the general form of the master kinetic equation for the states vector z® (it
changes by r;-ng per step), takes the form:

Ip(z',t) — (i i iy ia (Y (4
T—Z{[Sg@c + % Op(at + 79 t) — s, (2")p(at, 1) | +

=1 -

fe)

+ [sg (2 — ', p(a — 12, 1) — 55 (a*)pla t)} } G

3.3. Fokker—Planck Equation

With the help of the Kramers—Moyal expansion, the Fokker—Planck equation [11]
is obtained. For this purpose we will make several assumptions:

1) there are only small jumps, ie s, () is a slowly varying function with the change
of x%;
2) p(at,t) also slowly changes with the change of z°.

Then in Fokker-Planck equation (7) one can shift from the point (z° & r;g;cj) to the

point !, and by expanding the right-hand side in a Taylor series and dropping terms
of order higher than the second, we obtain Fokker—Planck equation:

dp i 1 ij
a = —8i [A p] + 5(918] [B jp] 5 (8)

where

A= AR ) = e [Sg B S;} ’

(9)

B .= BU(zk t) = riopi [sl‘ — s;} , a=1m.

As seen from (9), the coefficients of the Fokker—Planck equation can be obtained
directly from (2) and (6), i.e. in practical calculations, there is no need to write the
master equation.

3.4. Langevin Equation
The Langevin equation corresponds to the Fokker—Planck equation:
dz’ = a'dt + b’ .dW*, (10)

where a’ := a'(2F 1), bl = bl (2" t), 2* € R® — is the system state vector, W® €
R™ — m-dimensional Wiener process. Wiener process is implemented as dW =
eV dt, where ¢ ~ N(0,1) is normal distribution with average 0 and variance 1. Latin
indices from the middle of the alphabet denote the values related to the state vectors
(dimension of the space is n), and Latin indices from the beginning of the alphabet
denote the values related to the Wiener process vector (dimension of the space is
m < n).
The connection between the equation (8) and (10) expressed by the following re-
lationships:
A'=a', BY =0b0" (11)

We will use Ito interpretation. Under the Ito interpretation, differential of complex
functions does not obey the standard formulas of analysis. To calculate it rule or Ito
lemma are used.
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Let f := f(2*,t) is a function of a random process z*(¢), f € C2. Then the formula
of the differential is [12]:

. 1. . ,
df = |Of +a'fi+ §bflbwf,ij dt + by fdW*, (12)

where f:= f(z¥,t), a’ = a’(2*,t), b := b} (2%, ¢), and AW := AW (2).

4. Predator—Prey Model
4.1. Deterministic Predator—Prey Model

Systems with the interaction of two predator-prey populations types are extensively
studied and there are a lot of various models for these systems. The very first predator-
prey model is considered to be a model which was obtained independently by A. Lotka
and V. Volterra. Lotka in [13] described some hypothetical chemical reaction:

Al x By By B (13)

where X,Y are intermediates substances, coefficients ki, ko, k3 are rates of chemical
reactions, A is a initial reagent, and B is a resultant. As a result was a system of

differential equations:
{:ic = kix — kaxy,

. (14)
y = kawy — k3y.

This system is identical to the system of differential equations, obtained by Volterra,
who considered the growth mechanism of two populations with predator—prey interac-
tion type. In order to get equations [5] Volterra made a series of idealized assumptions
about nature of intraspecific and interspecific relationships in the predator—prey sys-
tem.

4.2. Stochastic Predator—Prey Model

Consider a model of predator—prey system, consisting of two individuals species,
one of which hunts, second is provided with inexhaustible food resources. Let’s in-
troduce the notation, where X is a prey and Y is a predator, then we can write the

possible processes (4) for the state vector zt = (X,Y)7 [14-17]:

X k—1> 2X, 7‘1'1 = (170)T7
X+Y 20y, 2= (—1,1)7, (15)
v E50, 3 =(0,-1)7,

which have the following interpretation. The first relation means that the prey which
eats the food unit immediately reproduced. The second relation describes the case
when predator absorbs the prey and then it is instantaneously reproduced. Only such
possibility of prey death is considered. Last ratio is a natural predator death.
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All processes are irreversible, so s, = 0, and

!yl
st (z,y) = klma = ki,
n B x! yl
S5 (z,y) = ks CE e kazy, (16)

z! !
53 (2, y) = k3;m = kay.

With the help of the formula (8) we have the Fokker-Planck equation:

op(zx, ; 1 y
% = =0 (A'(z,y)p(x,y)) + 50:0; (BY (z, y)p(, ) , (17)
where 4 '

Ala,y) = s¢(z,y) e 18)

BY(z,y) = Sg(a’;,y),rla,r.]a.

As a result:
i 1 -1
0 klx — k2$y
+ ( ) k3y = < > ,
1 koxy — k

20Y 3Y (19)

B (z,y) = (é) (1,0)k12 + ( 11> (=1, D) kozy +

0 _ (Fk1z + kay —koxy
+ <—1> (O’_l)kBy o ( —kz:ﬁy k2$y+ kgy ’

In order to write a stochastic differential equation in Langevin form (10) for
predator—prey model, it is enough to take the square root of the resulting matrix
B% in Fokker—Planck equation

T kix — kozy i (AW
d = dt + b
<y> </<:2:ch - ka?/) Tl (dW2 ’

kix + koxy —koxy
—koxy koxy + ksy ) -

(20)
bobi® = B = (

It should be noted that the specific form of the matrix b’ is not written out because
of the extreme awkwardness of the expression. However, with further studies we will
need not actually matrix b}, but its square, i.e. the matrix B*.

5. Implementation of the One-Step Stochastic Processes
Model in the Computer Algebra System

5.1. Justification of the Computer Algebra System Choice

Let’s consider systems of analytical calculations, Maxima and Axiom. Maxima is
the first system of analytical calculations and it is written in Lisp. Maxima successfully
runs on all modern operating systems: Windows, Linux and UNIX, Mac OS and
even on PDA running Windows CE/Mobile. Documentation is integrated into the
program as a handbook with search. There is no distinction between objects and data



52 Bulletin of PFUR. Series Mathematics. Information Sciences. Physics. No 3,2014. Pp. 46-59

in Maxima, and there is no clear distinction between the operator and function. There
is no integrated graphics rendering in the system.

Unlike Maxima Axiom language is strongly typified for better mathematical objects
and relationships display. The mathematical basis is written in Spad language. Axiom
portability is slightly worse: the system runs under Linux, UNIX, and graphs does
not work under Windows. Axiom has its own graphics subsystem.

In 2007 two Axiom open source forks appeared: OpenAxiom and FriCAS. Open
Axiom is developed by adhering to the ideology of Axiom, problems that occurred
in the Axiom are eliminated. FriCAS developers reorganized the assembly process,
expanded functionality. Furthermore, FriCAS supports not only GCL, which operates
on limited number of platforms, but ECL, Clisp, sbcl or openmcl, that allows to run
FriCAS under wider range of platforms.

5.2. Implementation Description in the Axiom Computer Algebra
System

Method of one-step processes randomization is organized as a module for the
FriCAS computer algebra system. To display all the calculations on the screen the
variable SHOWCALC: =true is used. To call the method you need to use the main func-
tion, which has the following view:

osp(Matrix(Integer), Matrix(Integer), Vector, Vector, Vector)

where the first argument is before interaction states matrix né, the second argument
is after interaction states matrix m;'-, the third argument is the vector k', the fourth
argument is the vector k,, the fifth argument is the state vector x’. Let’s consider
the features of the language FriCAS on auxiliary functions. For example, the function

calcProd is used to simplify the calculations s} and s,. In the implementation of
the function operator of the condition and built-in function reduce are used:

calcProd : (Matrix(Integer), Vector, Integer, Integer) -> Void
calcProd (n, x, a, i) ==

nai:Integer := n(a,i)

if nai = 0 then 1 else reduce(*,[x(i) - j for j in 0..(nai-1)])

In the function Bi intermediate calculations for elements of the matrix B% are
made:

Bi (rv, sp, sm, i) == rv(i) * (tramspose rv(i)) * (sp(i) + sm(i))

In order to use the module for predator—prey system model, we call the function
with the following arguments:

osp ([[1,01,[1,1]1,[0,11],[[2,01,[0,2],[0,0]1],
vector([k1,k2,k3]), vector([0,0,0]),vector([x,y]))

Fig. 1 represents the result obtained in TEXmacs shell. In fact, we repeated the
results obtained in (19).
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Buffer File Edit Insert Text Paragraph Document Project Options Help
CAHGeAX | XBERERDROG fHAFS
tVivinr | (l)as<>¢e|BCSBHE

osp ([[1,0],[1,1],[0,1]1],[[2,0],[0,2],[0,01],vector([k1,k2,k3]),vector([0,0,
01) ,vector([x,y1))

FriCAS will attempt to step through and interpret the code.

Cannot compile map: calcProd

We will attempt to interpret the code.

Compiling function Ai with type (List(Matrix(Integer)),List(
Polynomial (Integer)) ,List (Polynomial(Integer)) ,NonNegativelnteger
) -> Matrix(Polynomial (Integer))

Compiling function A with type (List(Matrix(Integer)), List(
Polynomial (Integer)),List (Polynomial (Integer)), NonNegativeIlnteger
) -> Matrix(Polynomial (Float))

Compiling function Bi with type (List(Matrix(Integer)),List(
Polynomial (Integer)) ,List (Polynomial(Integer)),NonNegativeInteger
) -> Matrix(Polynomial (Integer))

Compiling function B with type (List(Matrix(Integer)), List(
Polynomial (Integer)),List (Polynomial (Integer)), NonNegativeInteger
) -> Matrix(Polynomial (Float))

—kxy+Klz \ [ k2xy+klz  —k2xy
—k3+k2xy )’ —k2xy  k3y+k2xy

Figure 1. The output of the module for predator—prey model in graphic
TEXmacs shell

6. Numerical Experiment for the Program Complex
6.1. Stochastic Runge-Kutta Methods

Euler—-Maruyama method is one of well-known numerical methods for solving SDE,
it is a special case of a more general Stochastic Runge-Kutta method. Classical Runge—
Kutta method can be generalized to the case of the SDE system (10) in the following
manner [3,4]:

X =xi + hRra' (X}, .. XP) + ReJob (X}, X,

. . . . (21)
ot =xb + hrlat (X}, .. XT) 4+ PO (XL XY,

Indexes k = 1,...,s and | = 1,...,n refer to stochastic Runge-Kutta method.
J ~ N(0,h) or J ~ Vhe, e ~ N(0,1) are normal distributed random variables. Such
a choice of these numerical values for approximation is made because the Wiener
process is implemented as dW = ev/dt. You should also pay attention to double

summation in the third term of both numerical scheme formulas as well as the fact
that each number J*, ..., J" should generated separately.

The method coefficients, as well as for the classical analogue, can be grouped into
a table called the Butcher table:
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For calculations we used a method with the table

0 0 00 0 o0
2/3 0 0 [2/3 0 0
-1 1 0 |-1 1 0

| 0 3/4 1/4] 0 3/4 1/4

6.2. Software Implementation Description

The purposes of the programs complex were to automate the SDE coefficients A*
and BY computation with the help of general principles described above, and to find
a numerical solution of the equation obtained by means of stochastic Runge-Kutta
methods. From a programming standpoint we can derive three subtasks:

1. coefficients A* and B" generation using the computer algebra system:;

2. generation of source code in languages Fortran and Julia, implementing the SDE
on the basis of the coefficients, saved as a text file;

3. writing subroutines/functions implementing stochastic Runge-Kutta methods in
Fortran and Julia, and their subsequent compilation together with automatically
generated source codes.

As a result of its work Axiom module creates a text file which contains the coeffi-
cients A* and BY in the following form:

# A
Al1]
A[N]
# B
B[1,1] B[1,2] .. B[1,N]

B[N,1] B[N,2] .. B[N,N]
Matrix b%, = /bi,bi® = v/ B% is calculated numerically with the help of the singular
value matrix decomposition (a subroutine DGESVD from library LAPACK is used).

For the second subtask scripting language Python was chosen (version 3). This
language has a wide set of tools to work with strings and text files. Except matrices
A" and B% additional information about the mathematical model was specified as
dictionary (standard data type in Python), with model name, list of variables, list
of parameters, initial values of variables, parameters values and parameters of the
numerical method (integration section and step size).

On the basis of these data, the script automatically generates two files functions.£90
and main.f90, where the first is a module with functions defining the SDE, and the
second one is a main program file. While compiling these files the third additional
module with auxiliary procedures with Stochastic Runge-Kutta method is added.

6.3. The Numerical Experiment Description

For the programs complex work verification a well-known predator—prey model was
chosen with vector a* components

a' = ax — Bry, a®> = —yy + dzy (22)

and matrix B¥:
az + Bry —Bxy
—Bry By +nw

x is the number of preys, y is the number of predators. Coefficients also have the
following physical (biological) meaning: « is the growth rate of the prey population, 3

; (23)
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is a frequency of predators and prey meetings, - is an intensity of predators death or
migration in a lack of preys, ¢ is a predator population growth rate on the assumption
of the excess of the prey.

During numerical simulations it was taken into account that the value of variables
x,y could not be less than zero (program stop working when one of the variables
becomes equal to zero).

Numerical simulation shows that the addition of stochastic to the classical predator—
prey model leads to the fact that after a certain time death of one of the competing
species comes. So, for the following parameters: o = 10, 5 = 1.5, v =8.5,§ = 1.8 and
the initial values: © = 9.7, x = 6.77, victims are first to die, and after that predators
die due to lack. This case is illustrated in Fig. 2. For comparison in Fig. 3 is a graph
for the deterministic case.

Stochastic Predator-Prey model
20 T T T

— Preys quantity
==+ Predators quantity

x,, u y, — preys and predators quantity

I i |
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

n

Figure 2. Stochastic predator—prey model, prey die

14 Deterministic predator-prey model
T T T T

L : : : : i | — Preys quantity
-+++ Predators quantity

x,, Y, — preys and predators quantity

Figure 3. Deterministic predator—prey model

Under other conditions (a = 10, 8 = 1.5, v = 8.5, § = 0.5, z = 22, y = 6.76)
predators die, and the number of victims is increasing rapidly, as for their model
assumes an infinite source of food. Graphics for this case are shown in Fig. 4, and
Fig. 5 shows for comparison with deterministic case.
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Stochastic Predator-Prey model
25 T T T

T
— Preys quantity

""" Predators quantity

= — %)
o 73 S

x,, u y, — preys and predators quantity

[

Figure 4. Stochastic predator—prey model, predators die

Deterministic predator-prey model

25 T T T

— N
@ S

x,, u y, — preys and predators quantity

I I I HEMMEELTION R 2 I L

5
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5. Deterministic predator—prey model

7. Conclusions

This work demonstrates the application of the developed initial physical system
formalization method. The system is presented in the form of one or more one-step
processes. Formalization of the system is done by introducing the evolution operator.
Wherein the analytical description of the model requires a lot of routine operations.
To simplify the work we propose to use the computer algebra system (Axiom fork
FriCAS).

We have developed an analytical software package block that receives inlet evolu-
tion operator and produces the SDE, which describes the original model. For numeri-
cal studies of obtained SDE system a second software unit that converts the resulting
system of equations into the program code in Fortran and gives its numerical solu-
tion was developed. Thus, the software system is applicable for both analytical and
numerical study of the original model.

Currently the software package does not cover all possibilities, incorporated in
the proposed method of formalizing the original physical system. Since the original
system description uses ODE, we should introduce the boundary conditions by ties
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or indicator functions. Partial differential equations can help to solve this problem.
Further objective is the development of a complete software complex for a method of
one-step original physical system model construction.
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VK 004.94, 519.21
IIporpaMmHBIii KOMIIJIEKC CTOXAaCTUYECKOTO MOJAEJIMPOBAHUS
O/ITHOIIIATOBBIX ITPOIIECCOB

E.T. Edepuna, A. B. KoposbskoBa, M. H. I'eBopksH,
. C. Kyas6os, JI. A. CeBacTbstHOB

Kagedpa npursadnots unpopmamuru u meopuu sepoamuocmer
Poccutickuti ynusepcumem dpyotcovl Hapodos
ya. Murayxo-Maxaas, 0. 6, Mocksa, Poccus, 117198

HammMm ko/iekTnBoM pa3spaboTaHa METOINKA COTVIACOBAHHOTO (3ABUCSIIIETO OT CTPYKTYPBI
CHCTEMBI) BBEJICHUsI CTOXACTHKHU B IeTepMUHUCTHYECKUE Moznenn. Ha nanHOM srane MeTonuka
OTrpaHIYeHa KJIACCOM OJHOIIAIOBBIX IIPOIIECCOB.

st onTuMmu3anuu paboThI IO CO3TAHUIO MOJIEJIEN C/Ie/lyeT aBTOMATH3MPOBATEH KaK MOXKHO
GouibIlie PYTHHHBIX omepanuii. B mannoM ciaydae mporecc cocTaBiieHusl ypaBHEHUN Mojein
MOKHO aJIr'OPUTMU3UPOBATH U PEaIN30BaTh B CHCTEME KOMITHLIOTEPHON ajrebpbl. Kpome Toro,
Ha 6a3e ITUX Pe3yIbTATOB MOXKHO MOy IUTh U HAOOP MPOrPAMM JIJIsI IPOBEICHUST IUCIEHHOTO
KCIEPUMEHTA.

Jl1s peasin3anuy aHAIUTHIECKUX PACUETOB HCIIOJIB3YETCsl CUCTEMa KOMIILIOTEPHOMN aJreo-
pot Axiom. [lyist mpoBeieHNsT 9UCIEHHOTO IKCIIepUMeHTa UCHob3yioTcs si3bika FORTRAN u
Julia. B kadgectBe unciaennoro meroma ucrnonb3yercs meron Pyure-KyTrer s croxactutae-
ckux nuddepeHIuaIbHbIX YPABHEHNN.

Pazpaboran nporpaMMHBIH KOMIIJIEKC JJISI CO3JAHUSA CTOXACTUIECKUX MOJIeJIel OJTHOIIAro-
BBIX IIpOIeccoB. [IponmocTpupoBaHo ero IpuMeHeHNe Ha IPUMEPE CUCTEMBI TTOIYJISITMOHHOMN
JAUHAMUKY TUIA «XUAMIHUK—KEPTBay. JleTepMUHUCTHYIECKIE MOJEH JJIsi TAKUX IIPOIECCOB JI0-
CTATOYHO XOPOIIO HMCCJIEIOBAHBI, UTO ITO3BOJIAET CPABHUTH IOJIYYEHHBIE PE3Y/IbTAThI C yiKe
M3BECTHBIMU.

CucreMbl KOMIBIOTEPHOH aITe€OPBI OYEHD YIOOHBI 11 1eiei OBICTPOTO MTPOTOTUITNPOBAHUST
IIPY CO3/IaHUU U HMCCJIEIOBAHUU MATEMATUIECKUX MOJEEN.

KuroueBnle ciioBa: croxactuieckue quddepeHImatbHble yPABHEHUT; MOIETb «XUITHUK—
2KepPTBay; OCHOBHOE KMHETUIECKOEe ypaBHeHus; ypasuenne Pokkepa—llmanka; cucTeMbl KOM-
BIOTEPHOI asrebpsr; cucrema Axiom.
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