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Abstract. Superconducting properties of twisted tri-layer graphene (TTG) are studied within the scope of the
chiral model based on using the unitary matrix U € SU(2) as an order parameter. To check the superconductor
behavior of this system, the interaction with the external magnetic field B, oriented along the graphene sheets is
switched on and the internal magnetic intensity in the center is calculated as the function of the twisting angle.
Vanishing of this function, due to the Meissner effect, being the important feature of the superconductivity, the
corresponding dependence of the magic twisting angle on B, is calculated. The unusual effect of re-entrant
superconductivity for large values of B, is discussed.
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1. Introduction

It should be noticed that since the discovery of mono-atomic carbon layers called graphenes [1,
2] this material attracted high attention of researchers due to its extraordinary properties
concerning magnetism, stiffness and considerable electric and thermal conductivity [3, 4]. The
important connection was revealed with other graphene-based materials: Fullerenes [5] and carbon
nanotubes [6]. A very simple explanation of these unusual properties of graphene was suggested in [7],
where the idea of massless Dirac-like excitations of honeycomb carbon lattice was discussed, the
latter one being considered as a superposition of two triangular sublattices. The further development
of this idea was realized in [8, 9].

The unprecedented raise of interest has emerged to graphene-based materials and especially
to moiré super-lattice patterns, this fact being motivated by their unconventional characteristics.
In particular, specific magic-angle systems constructed by stacking two or three graphene layers
twisted relative to each other have shown superconducting behavior [10-18]. However, these
systems exhibit superconducting properties also for the very strong external magnetic fields (up to
10 T) [19], and therefore the standard superconductivity model by J. Bardeen, L. Cooper, J. Schrieffer
and N. Bogoliubov [20] appears to be non suitable for the explanation of this fact. Thus, the
superconductivity in TTG is likely to be driven by a mechanism that results in non-spin-singlet
Cooper pairs. Nevertheless, it can be shown that the phenomenological approach based on the
Landau theory of phase transitions [21] and on the corresponding chiral model of graphene suggested
earlier [8] seems to be well suitable for the description of TTG.
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2. Lagrangian density for the chiral model of graphene

In accordance with the hexagonal structure of the graphene mono-atomic carbon lattice, the three
valence electrons of the atom form strong covalent bonds with the neighbours, but the forth electron
belongs to the so-called hybridized state and appears to be “free”. Thus, let us combine scalar a,
and 3-vector a fields corresponding to the s-orbital and the p-orbital states of the “free” electron,
respectively, into the unitary matrix U € SU(2) serving as the order parameter in our model:

U=ayp+1a-7. (1)

Here 15 is the unit 2 X 2-matrix and 7 stands for the three Pauli matrices, with the subsidiary
SU(2)-condition being imposed: a3 + a?> = 1. To describe a single graphene sheet, one can use the
Lagrangian density of the sigma-model form:

L= —%ISp(lMl“) - %/lzaz, @)

involving the so-called left chiral current L= U+6ﬂU and the coordinates x!, i = 1,2, 3 and the time
x° = ct derivatives. Comparing the Lagrangian density (2) with that of the Landau-Lifshitz theory [22]
corresponding to the quasi-classical long-wave approximation to the Heisenberg ferromagnetic
model, one can interpret the parameter I in (2) as the exchange energy between carbon atoms (per
spacing). The equations of motion corresponding to (2) admit the kink-like or the domain-wall
solution [8]:

U=exp(1i®), A=n-7, O =2arctanexp(—z/¢,); (3)

describing the electrons distribution in an ideal graphene plane oriented along the unit vector n and
orthogonal to the z-axis. The configuration 3 contains the characteristic length ¢, = I'/2/, which
can be identified with the diameter of the carbon atom ¢, = 0.26 nm.

It is worth while to underline that the interaction with an external electromagnetic field can be
included via extending the derivatives in accordance with the gauge invariance principle:

0, = D, —1e0A,[5, U],

where e, 73, A, denote the electromagnetic coupling constant, the charge operator and the 4-potential,
respectively. In particular case of the interaction with the uniform magnetic field oriented along the
y-axis the Lagrangian density reads:

1 1 B2

=_= Wy _ fpg2 _ 20
L= —ISp(ll*) - 57 o )

where
L,=U*D,U, B=(0,B,0), B=A(z), A(z)=A4;, B(*x)=B,= const.

The unitary matrix U for the TTG configuration has the form:
U= Ul U =exp(ih0;), ©;=0;(z2), Aj=n;-; (5)
n; = (cos(a/2), sin(a/2), 0), m, = (cos(a/2), —sin(a/2), 0), ny = (1, 0, 0), (6)

with the vector a being defined as follows:

a=—/2Qtr(zU).
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Here j = 0, 1, 2 is the number of the correspondent sheet.
In accordance with (4), (5) and (6) the Lagrangian density takes the form:
L= —I[S + cos(a/2)@)(0) + 0) + @0} (sin® @, + cos a cos? @0)]
—1e3A*(1-P-Q+R)— (V*2(X + Y + Z) — A?/(87);

where the following denotations are used:

S = (07 + 6% +0p)/2,
P=2 sinz(cx/z) sin® 0, sin 20, sin 20,,
Q = c0s20,cos2(0; — O,),
R = cos(a/2)sin 20, sin 2(O, + O,),
X = cos? Oo[sinz(@l + 0,) — sin*(a/2) sin 20, sin 20, + sin® a sin® O, sin’ @2],
Y = sin? @O[Sinz(a/z) + cos?(at/2) cos*(0; + @2)],
Z = cos(a/2) sin 20, sin(O; + O,)[cos O, cos O, — cos a sin O sin O,].
The boundary conditions read:

@j(—oo) =, @j(+oo) =0, (7)

and central phases are chosen equal: ©,(0) = 0,(-21) = 0,(2]) = 7/2, where 2l stands for the distance
between the sheets.

3. Asymptotic structure of solutions to the equations of motion

Atlarge z — *oo one can put tan ©; = u; — 0 with the discrete symmetry being u; = u, = u. The
asymptotic Lagrangian density

£ = —(1/2)[uf + 2 cos(a/2)u']? — [ug + 2 cos(a/2)u]? (213 A% + 22/2),

where A = Byz, admits the symmetry uy < 2u cos(a/2), with the solution being derived through the
substitution u~! = sinh w, uy = u cos(a/2). The asymptotic estimation reads:

u = 2exp(—eyByz?). (8)

As a result, for the vector potential A = Byz + a(z), where a’(c0) = 0, one finds the equation:

1o =128 Ie}Byz(1 + cos a) exp(—2eyByz?)

with the evident solution:

A' = By — 1287l ey(1 + cos a) exp(—2eyByz?),

z
A = Byz — 1287l ep(1 + cos oc)/ exp(—2eyByz?) dz, 9)

0

where the anti-symmetric property of the vector potential found later was taken into account.
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Now let us investigate the behavior of our system at small z, where one can put due to (7) the
Lagrangian density for the vector potential taking the form:

£ =—21e3A*> — A%/(87).
The corresponding equation of motion reads:
A" —16mIe3A =0
and admits the evident solution:
A = Csinh(k z), (10)

where C is an arbitrary constant and k? = 1671 e3. Taking the derivative, it is not difficult to find the
magnetic intensity B = A" = k C cosh(k z).

Now, to fix the value of the constant C in (10), let us perform the smooth matching of the
expressions (3), (9) and (10) at some intermediate point z = . However, to simplify this operation, let
us introduce some denotations:

y=kC/By,  x*=2¢eyB,?, A =16(1 + cos a) exp(—x?);
sinh xﬁ"
I'=8nley/By, &= M, 7= cosh(xﬁ).

xyar

Also the special representation for the error function is used [23]:

X

1 " 712 " o sny2n
< f exp(—s?)ds = TS erf(x) = (1 + g)exp(—x?); g= n;l G D
0
As a result, one obtains the following system of equations
§y=1-TA(1+g), (11)

ny=1-TA.

Now it is worth while to stress that, in accordance with the Meissner effect [20], our system reveals
superconducting properties if the relative magnetic field y vanishes in the central domain. Let
us first recall some information about graphene properties [24]. For numerical illustration of the
twist effect one can use the following parameters of the chiral model: the spacing a = 0.287 nm,
the exchange energy between atoms E, = 2.9 €V with the value I = Ey/a = 1.619 nN, the coupling
constant ey, = e/(#c), with —e being the electron charge, the value I'e, = 0.246 T being known as the
effective (internal) “magnetic” intensity in graphene, the distance between the sheets 21 = 0.34 nm.
Taking into account that for standard graphene experiments

xX*<1l, g<1, I'=0n)246/B(mT)>1, a~mn-¢ (<1, A=x8%
one concludes that small values of y can be provided by so-called “magic” values of twisting angle:
¢(rad) =~ (8I)~V2,

It should be noted that the other possible magic twisting angle can be obtained through the reflection
a = 7 — a, which leaves the moiré super-lattice invariant.

Let us now discuss, in view of (11), the case of strong magnetic fields, when the quantity I'(1 + g)
retains large values. This fact implies the so-called re-entrant superconductivity. Experimental
verification of this effect can be found in [19], the peculiar symmetry properties of TTG system being
underlined earlier in connection with the boundary conditions (7).
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4. Results and Discussions

In our paper the Landau phase transitions method is applied to the twisted tri-layer graphene
model, the order parameter being the unitary matrix, depending on the twisting angle a. The
superconductivity property of the TTG model is proven for the special “magic” twisting angle, the
cases of small and large external magnetic fields being considered.

5. Conclusions

The superconducting properties of the TTG configuration were studied within the framework of the
chiral graphene model suggested in [8]. The product-ansatz being used for the description of the TTG
system, the Lagrangian density and the asymptotic solutions to the equations of motion at small and
large distances were found. Using the anti-symmetric behavior of the vector potential and matching
these solutions at some intermediate point, a pair of algebraic equations for the magnetic field in
the central domain and the twisting angle were obtained. Finally, in view of the Meissner effect,
the correlation between the magic angle and the external magnetic intensity was established. The
important effect of the re-entrant superconductivity was mentioned for the case of strong magnetic
fields.
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CBepXnpoBoaUMOCTb U 0c06asi CUMMeTPUS CKPY4YeHHOro
TpexcnouHoro rpadeHa B KUpasibHOU Mogenu

HO. M. Pbibakog, M. Ymap

Poccuitcknii yHuBepcnTeT apyx6bl HapofoB, yn. Muknyxo-Maknas, g. 6, Mocka, 117198, Poccuiickas
depepaymsa

AnHoTaums. CBepXIIPOBOZSAIILE CBOMCTBA CKPYIEHHOTO TPEXCIOMHOrO rpadeHa N3y4aloTCsl B paMKaX KUPalb-
HOI Mofle/Ii, OCHOBaHHO Ha MCII0JIb30BAHNY YHUTApHOM MaTpulel U € SU(2) B KauecTBe ITapaMeTpa IOpsKa.
JI71s1 IPOBEPKY CBEPXITPOBOASAIIETO TIOBE/IEHUS 3TOH CHCTeMBI BKIIOYAeTCs B3aMMOZeHCTBIE C BHEITHUM
MarHUTHBIM I10J1eM By, OpreHTHPOBaHHBIM BZOJIb JKCTa IpadeHa, ¥ BHIYUCIIeTCS BHYTPEHHIS MarHUTHAs Ha-
HPSDKEHHOCTD B IIeHTpPe Kak QYHKIINA yIja 3akpyduBaHusi. ObpaleHre 5Tol GyHKIUU B Hy b, BCIeCTBHE
addexTa MericcHepa, ABIAIONIIErOCT BAXKHOH 0COOEHHOCTBIO CBEPXIIPOBOAVMOCTH, BEIYHUCIAETCS COOTBETCTBY-
I0II[as 3aBUCUMOCTDb Maru4ecKoro yria 3akpy4uBanus ot By. O6cy:xgaeTcss HeoObuHbIH 3G GdeKT BO3BpaTHOH
CBepXIIPOBOAMMOCTH IIPY GOJIBIINX 3HAYEHUSX By.

KnioueBble c/loBa: TPEXCIOMHEIN rpadeH, KUpalbHas MO/eNb, CBEPXIIPOBOAUMOCTD



