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Abstract. Earlier we developed a stable fast numerical algorithm for solving ordinary differential equations
of the first order. The method based on the Chebyshev collocation allows solving both initial value problems
and problems with a fixed condition at an arbitrary point of the interval with equal success. The algorithm
for solving the boundary value problem practically implements a single-pass analogue of the shooting method
traditionally used in such cases. In this paper, we extend the developed algorithm to the class of linear ODEs of
the second order. Active use of the method of integrating factors and the d’Alembert method allows us to reduce
the method for solving second-order equations to a sequence of solutions of a pair of first-order equations. The
general solution of the initial or boundary value problem for an inhomogeneous equation of the second order is
represented as a sum of basic solutions with unknown constant coefficients. This approach ensures numerical
stability, clarity, and simplicity of the algorithm.
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1. Introduction
The paper studies a method for solving linear ordinary differential equations (ODEs) of the second
order using integrating factors [1–3]. The method of integrating factors in combination with the
Chebyshev collocation method [4] was previously applied by the authors to solve first-order ODEs
(of general form) [5]. Moreover, the Chebyshev collocation method was successfully applied by
the authors to solve second-order linear ODEs (LODEs) using both differentiation matrices [6] and
integrationmatrices [7]. K.P. Lovetskiy et al. developed and applied amodified Chebyshev collocation
method, which turned out to be not only more reliable, but also significantly more efficient compared
to previous versions of the collocation method and other Runge–Kutta-type methods (see [5–9]) or
shooting method [10].
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At the first stage of the two-stage modified method proposed by the authors, when expanding the
approximate solution in Chebyshev polynomials (of the first or second kind), the corresponding
special Gauss–Chebyshev–Lobatto grids are used, on which the search for a part of the coefficients
of the approximate general solution of the ODE is reduced to solving non-degenerate and well-
conditioned (with diagonal matrices) System of Linear Algebraic Equations (SLAE). At the second
stage, the solution is refined by using correctly formulated initial (or boundary) conditions. In this
case, the SLAE with a positive definite diagonal matrix is solved first, and then the low-dimensional
(one- or two-dimensional) SLAE is solved with respect to the first coefficients of the expansion of
the solution in Chebyshev polynomials. The method allows solving with equal efficiency both initial
problems and problems with conditions at arbitrary points, previously solved, e.g., by the shooting
method, which thus loses its relevance.
Thus, we propose a constructive algorithm for approximate numerical solution of a wide class of

LODEs. At the same time, the stage of the algorithm, consisting of solving the SLAE with a diagonal
matrix, actually does not require computational costs, because it is reduced to a set of a small number
of the simplest computational procedures. And only at the final stage, comprising the calculation
of the first pair of coefficients of the expansion of the final particular solution, it is necessary to
solve two-dimensional linear algebraic systems of equations determined by the initial or boundary
conditions.
The method has proven itself to be perfect in solving one-point problems for first-order ODEs

(see [5, 8, 9]). The application of the modified Chebyshev collocation method to solving second-order
ODEs has also demonstrated high efficiency. We solve two-point problems for second-order linear
ODEs using [11] the two-stage Chebyshev collocation method. The first stage is devoted to finding
an approximate solution to the ODE in the form of a Chebyshev polynomial [12] with undetermined
first coefficients. At the second stage, the first coefficients (if they exist) are found by solving a 2 × 2
SLAE [5–7, 13]. The first stage can be implemented in several not entirely equivalent ways [14]. Ref. [6]
presents the Chebyshev collocationmethod for obtaining a solution to a second order LODE using the
Chebyshev differentiation matrix [15]. The paper [7] implements the Chebyshev collocation method
for obtaining a solution to a second order LODE using the Chebyshev antidifferentiation matrix. The
authors noted that constructing a general (complete) solution from the individual partial solutions
of the LODE obtained in this way seems to be a computationally complex task. At the same time,
using an intermediate method that makes use of integrating factors to reduce the LODE to the form
of a total derivative allows one to obtain general (complete) solutions of the second-order LODEmore
efficiently.

In the present article we seek approximate solutions of linear second-order ODEs of a rather general
form

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 0, (1)

by the Chebyshev collocation method

2. Methods and algorithms
Let us consider step-by-step the methods for calculating contributions to the complete solution of
a second order LODE. In each specific case, the solution of the original problem is divided into two
stages. At the first stage, we find out the conditions that the coefficients of the second-order equations
under studymust satisfy, allowing us to reduce the search for the first of a pair of linearly independent
solutions of a second-order linear equation to the solution of a first-order equation.
It turns out that such conditions can be determined at least for
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– linear ordinary differential equations with constant coefficients;
– exact linear ordinary differential equations;
– linear equations reducible to a total differential form by means of integrating factors.
In the case of a homogeneous equation with constant non-zero coefficients 𝑎, 𝑏, 𝑐 linearly

independent solutions of such an ODE can be found directly using the characteristic equation [16, 17].
In the worst case, i.e., when the discriminant 𝑏2 − 4𝑎𝑐 is equal to zero, at least one of the solutions is
easily determined.
In this case, the corresponding homogeneous equation takes the form

𝑎𝑦″(𝑥) + 𝑏𝑦′(𝑥) + 𝑏2
4𝑎𝑦(𝑥) = 0,

from which it follows that the characteristic equation allows finding only one solution

𝑦1(𝑥) = 𝑒
−𝑏
2𝑎

𝑥.

If the coefficient functions depend continuously on the argument, a theoretical study of the
conditions for reducing the second order LODE to the form of a full derivative of the first-order LODE
is given below, in Section 3. The conditions that the coefficients of the inhomogeneous equation must
satisfy for the possible construction of the potential are investigated. When sufficient conditions are
met, a particular solution of the homogeneous first order LODE is constructed, which becomes the
first necessary basic solution of the main nonhomogeneous second order LODE.
After obtaining the first linearly independent solution 𝑦1(𝑡) of the second order LODE, at the next

step, using several known algorithms [16–19], one can find the second linearly independent solution
𝑦2(𝑡) and, consequently, the general solution. The most general and convenient method for finding
the second solution numerically is the order reduction method [19, 20] (d’Alembert reduction).
Let one solution 𝑦1(𝑡) of the linear homogeneous equation of the second order (1) be known and it

is required to find the second linearly independent solution 𝑦2(𝑡), thereby constructing a fundamental
system of solutions of the inhomogeneous equation [16, 19]. For the brevity of presenting themethod,

we introduce the notation 𝑝(𝑥) = 𝑏(𝑥)
𝑎(𝑥) , 𝑞(𝑥) =

𝑐(𝑥)
𝑎(𝑥) , 𝑔(𝑥) =

−𝑓(𝑥)
𝑎(𝑥) .

Equation (1) takes the form
𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑔(𝑥).

When the solution 𝑦1(𝑡) of the homogeneous equation

𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 0, (2)

is found, we find another linear independent solution of the nonhomogeneous equation in the form
of a product of the first solution 𝑦1(𝑥) and an unknown function 𝑣(𝑥):

𝑦(𝑥) = 𝑦1(𝑥)𝑣(𝑥).

The search for the solution in the form of a product of the known solution 𝑦1(𝑥) of the homogeneous
equation (2) and a non-constant function 𝑣(𝑥) is explained by the fact that such a product is guaranteed
to be a function linearly independent of 𝑦1(𝑥)𝑦 and thus restricts the search for 𝑦(𝑥) to a one-
dimensional subspace of the space of solutions of our ODE that is not covered by 𝑦1(𝑥).
Actually, such an approach allows finding a general solution to an inhomogeneous equation.

Namely, substituting 𝑦1(𝑥)𝑣(𝑥) into 𝑦″ + 𝑝(𝑥)𝑦′ + 𝑞(𝑥)𝑦 = 𝑔(𝑥), and taking into account that 𝑦1(𝑡) is
a solution to the homogeneous equation, we obtain a nonhomogeneous equation with respect to the
unknown derivative of the desired function 𝑣′(𝑥):

𝑦1𝑣″ + (2𝑦′1 + 𝑝(𝑥)𝑦1)𝑣′ = 𝑔(𝑥).
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As a result, for calculating the factor 𝑣(𝑥) in the second solution (assuming, that 𝑦1(𝑥) ≠ 0) we
obtain a differential equation of the first order with respect to 𝑣′(𝑥)

𝑣″ + (2𝑦
′
1(𝑥)
𝑦1(𝑥)

+ 𝑝(𝑥)) 𝑣′ = 𝑔(𝑥)
𝑦1(𝑥)

. (3)

Applying the technique of solving nonhomogeneous ordinary differential equations of the first
order, based on integrating factors and approved in Refs. [5, 21], we get the desired solution

𝑣′(𝑥) = 𝑉(𝑥) [𝐶1 +∫
𝑥

𝑥0

𝑔(𝑡)
𝑦1(𝑡)𝑉(𝑡)

𝑑𝑡] , (4)

where, considering that the solution passes through a certain point 𝑥0, the following notation is
introduced:

𝑉(𝑥) = [𝑦
′
1(𝑥0)
𝑦1(𝑥)

]
2
exp [∫

𝑥

𝑥0
𝑝(𝑡)𝑑𝑡] .

By integrating the ODE (4), we calculate the desired function 𝑣(𝑥) and become able to determine
the solution of the nonhomogeneous equation by substituting into 𝑦(𝑥) = 𝑦1(𝑥)𝑣(𝑥). Hence, the
general solution of the nonhomogeneous ODE (1) takes the form

𝑦(𝑥) = 𝑦1(𝑥) [𝐶2 + 𝐶1∫
𝑥

𝑥0
𝑉(𝑡)𝑑𝑡 +∫

𝑥

𝑥0
𝑉(𝑡)𝑑𝑡∫

𝑥

𝑥0

𝑔(𝑧)
𝑦1(𝑧)𝑉(𝑧)

𝑑𝑧] . (5)

Finally, we obtained the complete (two-parametric family) solution of the inhomogeneous LODE.
If it is necessary to solve a Cauchy problem of a boundary value problem with Eq. (1), we apply the
second stage of the modified Chebyshev collocation method to calculate the constants 𝐶1 and 𝐶2.
The technique of finding the first coefficients of expansion of the desired solutions in Chebyshev

polynomials is described in enough detail in our papers [6, 7, 13] for all kinds of “boundary” conditions:
the Dirichlet, Neuman, and Robin ones.

3. The search for the first solution by reducing a linear ODE to the total
derivative form

We consider the nonhomogeneous linear ODE of the second order with coefficients depending on
the independent variable:

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 0. (6)

This equation is exact, if there exists such function 𝑢(𝑥, 𝑦, 𝑦′), that

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝑑𝑢
𝑑𝑥 . (7)

We want to reduce the search for a solution of the linear second-order ODE to the search for
a solution of a linear first-order ODE and, therefore, restrict ourselves to a particular case when

𝑢 = 𝐴(𝑥)𝑦′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥). (8)

By substituting expression (8) for 𝑢 into Eq. (7), we obtain equality in the form

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝐴(𝑥)𝑦″ + (𝐴′(𝑥) + 𝐵(𝑥))𝑦′ + 𝐵′(𝑥)𝑦 + 𝐹′.
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It will be valid for any smooth 𝑦(𝑥) then and only then, when the coefficients of the expressions in
the left-hand side and in the right-hand side of the equality coincide:

𝐴(𝑥) = 𝑎(𝑥);
𝐴′(𝑥) + 𝐵(𝑥) = 𝑏(𝑥);
𝐵′(𝑥) = 𝑐(𝑥);
𝐹′(𝑥) = 𝑓(𝑥).

This system of four equations allows unambiguous determination of 𝐴(𝑥), 𝐵(𝑥), (𝑥) from the
coefficients of linear ODE (6):

𝐴(𝑥) = 𝑎(𝑥);
𝐵(𝑥) = 𝑏(𝑥) − 𝑎′(𝑥);

𝐹(𝑥) = ∫𝑓(𝑥)𝑑𝑥,

provided that one more condition is fulfilled,

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′,

which, therefore, is a necessary and sufficient condition for the possibility to represent the linear
ODE (6) in the form (7) with linear potential (8). Hence, the following theorem is valid.

Theorem 3. The linear ODE (6) is exact and has a linear potential

𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥) = 𝑑
𝑑𝑥(𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥)),

when and only when the coefficients of the linear ODE (6) satisfy the condition

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′

and the potential has the form

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝑎(𝑥)𝑦′ + (𝑏(𝑥) − 𝑎′(𝑥))𝑦 +∫𝑓(𝑥)𝑑𝑥 = const. (9)

Corollary 1. The linear homogeneous ODE

𝑎(𝑥)𝑦″𝑥𝑥 + 𝑏(𝑥)𝑦′𝑥 + 𝑐(𝑥)𝑦 = 0 (10)

is exact and has linear potential

𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 = 𝑑
𝑑𝑥(𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦),

then and only then, when the coefficients of the linear ODE (6) satisfy the condition

𝑐(𝑥) = (𝑏(𝑥) − 𝑎′(𝑥))′. (11)

If for a certain second-order equation of the form (6) the condition (11) is fulfilled, then the search
for one of its solutions can be reduced to a search for a solution of the linear first-order ODE with an
arbitrary constant const

𝐴𝑦′ + 𝐵𝑦 + 𝐹 = const.
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Any solution 𝑦𝑝𝑎𝑟𝑡(𝑥) of the linear first-order ODE (8) at any value of the constant const is at the
same time a solution to the initial equation (10).
Knowing one solution of the linear homogeneous equation of the second order (10), one can find

its other linear independent solution using the d’Alembert method.
We have implemented checking of Eq. (8) fulfilment and searching for integral (9) in Sage as

function lsolve.
Example 1. Consider a LODE

𝑦″ + 𝑥𝑦′ + 𝑦 + cos𝑥 = 0.

The application of
sage: lsolve(diff(y, x, 2)+x*diff(y, x)+y+cos(x))

returns
𝑥 + sin𝑥 + 𝑦′.

Thus, the integration of the initial second-order equation is analytically reduced to the integration
of the first order LODE

𝑥 + sin𝑥 + 𝑦′ = const.

Now let us assume that Eq. (6) is not exact. In this case it is possible to try searching for an
integrating factor 𝜇(𝑥) such that the equation

𝜇(𝑥)𝑎(𝑥)𝑦″𝑥𝑥 + 𝜇(𝑥)𝑏(𝑥)𝑦′𝑥 + 𝜇(𝑥)𝑐(𝑥)𝑦 + 𝜇(𝑥)𝑓(𝑥) = 0 (12)

would be exact.

Theorem 4. After introducing the factor 𝜇(𝑥) LODE (6) becomes exact and possesses a linear potential

𝜇(𝑥) ⋅ (𝑎(𝑥)𝑦″ + 𝑏(𝑥)𝑦′ + 𝑐(𝑥)𝑦 + 𝑓(𝑥)) = 𝑑
𝑑𝑥 (𝐴(𝑥)𝑦

′ + 𝐵(𝑥)𝑦 + 𝐹(𝑥))

then and only then, when the coefficients in the LODE (10) satisfy the condition

𝜇(𝑥)𝑐(𝑥) = (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))′)
′
. (13)

In this case the potential has the form

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝜇(𝑥)𝑎(𝑥)𝑦′ + (𝜇(𝑥)𝑏(𝑥) − (𝜇(𝑥)𝑎(𝑥))′)𝑦 +∫𝜇(𝑥)𝑓(𝑥)𝑑𝑥 = const. (14)

Any potential solution at any value of the constant is a solution to Eq. (12).

Having one solution of the linear inhomogeneous second-order equation (12) it is possible to find
its other linearly independent solution, using the d’Alembert algorithm.
Equation (13) is a homogeneous linear ODE of the second order with respect to 𝜇(𝑥). If the initial

linear ODE is also homogeneous, then it is possible to formulate a very simple method to find the
factor.

Corollary 2. If the linear ODE (12) is homogeneous (𝑓(𝑥) = 0) and its coefficients satisfy the relation

𝑏′(𝑥)𝑎(𝑥) − 𝑎′(𝑥)𝑏(𝑥) − 𝑐(𝑥)𝑎(𝑥) = 0 (15)

then the linear ODE (12) has an integrating factor

𝜇(𝑥) = 1
𝑎(𝑥) . (16)
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In this case, the potential for the initial linear second-order ODE is given by the linear ODE of the
first order

𝑢(𝑥, 𝑦, 𝑦′) ≡ 𝑦′(𝑥) + 𝑏(𝑥)
𝑎(𝑥)𝑦(𝑥) = const. (17)

Proof. By Theorem 2, in order to reduce a second-order LODE to a first-order LODE it is sufficient
to find the factor 𝜇(𝑥) from Eq. (13). Substitution of expression (16) into it leads to relation (15). To
determine the coefficients of potential (14) at 𝑓(𝑥) = 0 we have:

𝐴 = 𝜇𝑎 = 1;

𝐵 = 𝜇𝑏 − (𝜇𝑎)′ = 𝑏
𝑎 ;

𝐹 = 𝜇𝑐 − (𝜇𝑏)′ + (𝜇𝑎)″ = 𝑐
𝑎 − (𝑏𝑎)

′
= 0.

Any solution of potential (17) at any value of the constant is a solution to Eq. (12).
Having one solution of the linear homogeneous solution of the second order (12), it is possible to

find its another linearly independent solution by using the d’Alembert method.
We implemented the checking of the search for the factor in Sage within the function lsolve

mentioned above. This function checks the fulfilment of condition (15). In the case of success, it
divides the LODE by 𝑎(𝑥) and finds the first-order LODE by the methods described in Corollary 1. In
the case of failure, the system tries to integrate Eq. (13).

Example 2. Consider a LODE
(𝑥2 + 1)(𝑦′ + 𝑥𝑦)′ = 0.

The application of
sage: lsolve((x^2+3)*diff(diff(y, x)+x*y, x))

returns
𝑦′ + 𝑥𝑦.

Thus, the integration of the initial second-order equation is analytically reduced to the integration
of the first order LODE

𝑦′ + 𝑥𝑦 = const.

Example 3. Consider the LODE
𝑦″ + 𝑦 + sin𝑥 = 0.

Our function
sage: lsolve(diff(y, x, 2)+y+sin(x))

returns a family of factors of this equation:

𝐾1 sin𝑥 + 𝐾2 cos𝑥.

It is possible to take any element of this family: the query
sage: lsolve((diff(y, x, 2)+y+sin(x))*sin(x))

returns the LODE of the first order

sin𝑥𝑦′ + 𝑥
2 − cos𝑥 − sin 2𝑥

4 = const.
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4. Results
Previously, the authors proposed a method for finding a solution to a non-homogeneous linear
ordinary differential equation of the second order using a modified Chebyshev collocation method
using spectral (Chebyshev) matrices of differentiation and anti-differentiation [6, 7]. In this paper,
a method for finding a solution to a second-order LODE is implemented by reducing it to the form of
a total derivative either directly or using an integrating factor.
The modified Chebyshev collocation method allows one to obtain a complete system of linearly

independent solutions to a linear ordinary differential equation of the second order using the
d’Alembert method based on one known existing solution and to construct a general solution to
a two-point problem for the corresponding second-order LODE in the case where it exists. In this case,
the problem of the existence of a solution to a two-point problem for the corresponding second-order
LODE is reduced to the problem of the existence of a solution to a two-dimensional system of linear
algebraic equations for the first two coefficients in the expansion of the desired solution to the original
problem in Chebyshev polynomials using the collocation method on the Chebyshev–Gauss–Lobatto
grid.

5. Discussion
The D’Alembert method allows us to derive Eq. (3), the solution of which using integrating factors
gives us the factor 𝑣(𝑥) of the general solution 𝑦1(𝑥)𝑣(𝑥) of the inhomogeneous equation. As in the
previous case, the numerical solution of Eq. (3) with respect to 𝑣′(𝑥) is carried out approximately
using the Chebyshev collocation method [5, 7]. Integrating expression (4), we obtain 𝑣(𝑥) in the form
of an interpolation polynomial. Substituting the obtained expression into the product 𝑦1(𝑥)𝑣(𝑥), we
obtain the general solution of the inhomogeneous ODE of the second order in the form (5).
The coefficients 𝐶1, 𝐶2 in the general solution formula are further determined based on the initial

or boundary conditions defining the initial or boundary value problem for a second-order differential
inhomogeneous equation. In the case of the Cauchy problem, the coefficients are always uniquely
determined [16, 17]. In the case where a boundary value problem is considered, the system of
resulting equations may have an infinite number of solutions, have no solutions, or have a unique
solution. This is determined by the coincidence or difference of the ranks of the proper and extended
matrices of the SLAE depending on the “boundary conditions”. Thus, if a two-point boundary value
problem has a solution, we obtain its approximate solution using the proposed approach—reducing
the LODE to the total derivative form.

6. Conclusion
The paper considers an approach to solving linear inhomogeneous second-order ODEs based on
the d’Alembert method of order reduction. The method allows, given one solution 𝑦1(𝑥) of the
complementary homogeneous equation, calculating both the general solution of the homogeneous
equation and the general solution of the inhomogeneous equation. The method for obtaining the
first solution of the homogeneous linear differential equation remains a difficult problem within this
approach.
We have formulated the conditions for reducing the second-order LODE to the form of a total

derivative of the solution using the Chebyshev collocation method. In cases where reduction to
the form of a total derivative is not immediately possible, we assume, in the future, the use of
a numerical method for solving a second-order equation using the method of integrating factors
based on the Chebyshev collocation [7] to obtain the first solution of the accompanying first solution
of the homogeneous equation.
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The paper proposes an algorithm for obtaining the first basic solution of a complementary
homogeneous ODE in cases of an equation with constant coefficients, an exact linear ordinary
differential equation, or an equation that can be reduced to the form of a total differential using
integrating factors. At the first step of the algorithm, the fulfillment of the conditions of belonging
to exact equations or the possibility of finding such an integrating factor with which it is possible
to reduce the equation to an exact one is checked. When the conditions set out in the corollaries
to Theorems 1 and 2 are met, it is possible to construct a potential for a homogeneous equation—a
first-order ODE. The solution to the potential equation can be found numerically [5, 21] using the
efficient and stable Chebyshev collocation method. It is this solution to the homogeneous equation
that is used further in the D’Alembert algorithm as the first known solution 𝑦1(𝑥) of a second-order
ODE.
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Решение двухточечной задачи ЛОДУ второго порядка
построением полной системы решений
модифицированным методом Чебышевской коллокации
К. П. Ловецкий1, М. Д. Малых1, 2, Л. А. Севастьянов1, 2, С. В. Сергеев1

1 Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация
2 Объединённый институт ядерных исследований, ул. Жолио-Кюри, д. 6, Дубна, 141980, Российская
Федерация

Аннотация. В предыдущих работах мы разработали устойчивый быстрый численный алгоритм для
решения обыкновенных дифференциальных уравнений первого порядка. Метод, основанный на
чебышевской коллокации, позволяет одинаково успешно решать как начальные задачи, так и с фикси-
рованным условием в произвольной точке интервала. Алгоритм решения краевой задачи практически
реализует однопроходный аналог традиционно применяющегося в таких случаях метода стрельбы
(Shooting method). В настоящей работе мы расширяем разработанный алгоритм на класс линейных ОДУ
второго порядка. Активное использование метода интегрирующих множителей и метода Даламбера
позволяет свести метод решения уравнений второго порядка к последовательности решений пары урав-
нений первого порядка. Общее решение начальной или краевой задачи для неоднородного уравнения
2-го порядка представляется в виде суммы базисных решений с неизвестными постоянными коэф-
фициентами. Такой подход позволяет обеспечить численную устойчивость, наглядность и простоту
алгоритма.

Ключевые слова: линейное обыкновенное дифференциальное уравнение второго порядка, устойчивый
метод, метод чебышевской коллокации, метод Даламбера, интегрирующий множитель


