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Abstract. The paper considers a single-line retrial queueing system with an unreliable server. Queuing systems
are called unreliable if their servers may fail from time to time and require restoration (repair), only after which
they can resume servicing customers. The input of the system is a simple Poisson flow of customers. The service
time and uptime of the server are distributed exponentially. An incoming customer try to get service. The server
can be free, busy or under repair. The customer is serviced immediately if the server is free. If it is busy or
under repair, the customer goes into orbit. And after a random time it tries to get service again. The study is
carried out by the method of asymptotically diffusion analysis under the condition of a large delay of requests in
orbit. In this work, the transfer coefficient and diffusion coefficient were found and a diffusion approximation
was constructed.
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1. Introduction

Queuing systems with repeated requests are quite often used in various areas of telecommunications.
Modern information processing systems often encounter unstable operating conditions, such as
overloads, failures, and resource limitations. Under these conditions, conventional retrial queuing
(RQ) systems may not be able to process all incoming requests, resulting in lost information and poor
performance [1-4].

Repetitive request systems offer a solution to this problem by providing a mechanism for processing
requests that cannot be fulfilled immediately. Instead of discarding such requests, they are
resubmitted to the queue after a certain time, increasing the likelihood of successful completion of
service. The most complete and detailed description of RQ systems and their detailed comparison
with classical queuing systems was reflected in [5-7].

There are different types of unreliability. For example, the works [8-10] consider the unreliability
of the server as a breakdown. The authors in [11-14] consider an unreliable server with collisions or
conflicts during simultaneous access to the server.
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Figure 1. Model of retrial queueing system M/M/1 with unreliable server

This problem is especially relevant when it comes to unreliable servers that can fail due to software
errors, hardware malfunctions or external factors. Server failures can lead to data loss, interruption
of services, and decreased performance.

If the server fails while servicing the request, it goes to repair. A request under maintenance goes
into orbit and awaits recovery of the server. A fairly large number of works are devoted to systems
with unreliable server [15-20].

To understand the behavior of systems with repeated requests and evaluate their performance, it
is necessary to use analytical methods.

In this paper, we consider a single-line queuing system with an unreliable server. We will conduct
the study using the method of asymptotic diffusion analysis. It has been proven that the accuracy of
the diffusion approximation exceeds the accuracy of the Gaussian approximation calculated in [21].

2. System description

Any data network, having generated customers, sends them to a shared resource (server). If the
server is free, then the customer is served. If the server fails while servicing a customer, it is sent for
repair, and the customers go into orbit.

Let’s consider an RQ system with an unreliable server, the input of which receives a simple flow
of customers with parameter 1. The request is served by the server at a random time, distributed
according to an exponential law with the parameter u;. An unreliable server can be in one of the
following states: idle, busy, or under repair. If the server is idle and an entry customer is received,
the server immediately begins servicing the incoming customer. If a customer arrives at a time when
the server is busy, then the received customer goes into orbit and waits for the opportunity to occupy
the server at the next attempt.

After a random delay, a customer with intensity o again contacts the device with an attempt
to capture it (see Fig. 1). The server’s uptime is distributed according to an exponential law with
parameter y, if the server is idle, and with parameter y,, if the server is busy. As soon as a breakdown
occurs, the server is sent for repair. All incoming customers go into orbit. The recovery time after
repair is distributed exponentially with the parameter y,.

The goal of the work is to study such a system, as well as to find its main characteristics.

3. Kolmogorov equations

Let us denote by P{i(t) =i, k(t) = k, n(t) = n} = P(k,i,t)—the probability that at a given time ¢ the
server is in state k and in the orbit of i customers. The probability distribution P(k, i, t) satisfies the
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following system of equations:

B(i,t + At) =(1 — 24t)(1 — icAt)(1 — nADR(, t) + u AtB (0, £)+
+ W, AtB (i, t) + o(At),

B(i,t + At) =(1 — AA0)(A — 11 48)(1 — pAHB(, t) + AAtR(i, t)+
+o(i+ DAtR(i + 1,t) + AB(i — 1,¢t) + o(At),

B(i,t + At) =1 — 246)(A — u,A0)B(, t) + nAtR (i, t)+
+ BAtR (I — 1,t) + AAtB(i — 1,t) + o(At).

Let’s create a system of Kolmogorov differential equations:

OR(i, ¢ . . . .
T = — Gt o+ MR + B0 + 1B D)

OR(.1) _ . .

BEY o (At i+ RGO + ARG O "
+o(i+DR3IE+1,1)+AR3I - 1,1),

PO - @t s)BG 0 + HBGLD + BRG— 1,0+ ABG ~ 1,0,

Let us write down the partial characteristic functions:

Hy(u,t) = Y e™B(i,1), k={0,1,2},

i=0
where j =4/-1.
Multiplying the equations of the system (1) by ¢/, we obtain
T =—- (/1 + yl)HO(u, t) + joe T+
+ i Hy(u, 1) + upHp(u, 1),
aHg(tl’ D A+ + )H(u, t) + AHy(u, £)—
1 )
OHow D |
jo e + Ae/*H,(u, t),
0H,(i, t
TALD Gt Mo, 0) + How )+
+ }/zejqu (u, t) + Aejqu(u, t)

Summing up the equations of the system (2), we write the equation for the characteristic function
H(u, t) = Ho(u, t) + Hy(u, t) + Hy(u, t),
then we get

0H(u,t)
ot

= (el — 1)<Hl(u, DA +75) + Hyu, A + ja%). 3)

We will find a characteristic function of the number of customers in orbit under the condition of
a long delay. We will investigate in two stages.
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4, Stage 1. Getting the transfer coefficient

Let us introduce the substitutions in the system (2) and the equation (3)
c=¢ T=c¢t, u=ctw, Hyut)=F(wr7:e), k={0,1,2}.

Then we get the following system:

OFy(w,7,8) e Oh0(@, 7, €)
i A+ n)k(w,1,¢) + je —5
+ K (w, 7,¢) + u:B(w, 7,€),
E% =— A+ +r)E(w, 1,8+ AR(w,7,£)—
)
OFy(w,T,¢£) .
- JO(T + 1e/*F(w, 1, €),
OB (w, T,
€ # =— A+ u)E(w,1,¢) + nFy(w,7,6)+

+ e/ F (w, T, €) + 1e/*E(w, T, €).
The equation (3) will take the form:

EM’TT’E) = (el — 1)<Fl(w, 1A+ ) + B, 7, ) + j

3 (5)

O0Fy(w, T, €) )
dw ’

In the system (4) and the equation (5), we decompose the exponent into a Taylor series:

ejcos

e/? =1+ jwe, lim = jo.
e—~>0 €&

Let us perform the transition to the limit at ¢ — 0, then we obtain:

OFy(w, T)
d

o THfi(@ )+ wh(®1) =0,

OF(w, T
i + R0 + R0 - 82D

- #ZF‘Z(CU’ T) + )/IE](w’ T) + YZFi (CO, T) =0.

- (/1 + yl)E)(wv T) + .]
(6)

0F(w,7) _
or

We will find a solution to the system (6) and the equation (7) in the form:

oAl 00+ ) + B, o2+ /252D @)

Fk(cu, T) = Rkeij(f)’ k= {O’ 1, 2}’

where R has the meaning of the stationary probability that the server is in state k, and x(7) is a scalar
function of the argument 7, which determines at ¢ — 0 the average value ci(7/0) of the number of
customers in orbit normalized by the value at e = 0.

Then the system (6) and the equation (7) will take the form:

—(A+ 71 +x(D)Ro + Ry + 2R, = 0,
()t + x(T))Ro — (U1 +7)R; =0, (8)
NRo + Ry — R, = 0.



384 Computer science DCME&ACS. 2024, 32 (4), 380-394

The probabilities R can be found from the system (6) taking into account the normalization
condition Ry + Ry + R, = 1.

Since the coefficient of the system of equations (6) depends on x, then R can also be written as
Ry ().
_ (1 +72)
S (At s+ x@) + (A X2+ 1
3 (A2 + x(D)uy
e (M + A+ u + x(O)p + (A + 1y + X(0))pz + 1 '
R, = (l +n+ X(T))Vz + 1M .
(n + A+ u + X0 + (A + w1 + xX(0)p + 1

From the equation (7) we get:

Ro

X'(7) = =x(t)Ry + (1 + p,)R; + AR,.

Let us denote the function a(x) = x'(z), then

a(x) = —x(7)Ry + (A + )R, + AR,,

where a(x) is the transfer coefficient.

5. Stage 2. Centering and obtaining the diffusion coefficient

Let us introduce the substitutions in the system (2) and the equation (3)

Hy(u,t) = HP(u,0)e/s™,  k =1{0,1,2},

we get
(2)
OH, ot
o 0 4P, ' (1) =~ + WHP (o, 0+

(2)
+ Joef“<oa—u + H(() )(u, t)jgx(at))+
+u HP 1) + 1,HP (u, 1) = 0,

(2)
OH St ;
| 20D D, e (1) = Gt g+ w0+

€)
(2)
O0H, ,t
+ AHP (u, ) - jc(w +HP (u,1) jlx(ot))+
ou fof
+ 26 HP W, 1) = 0,
OHP (1) @
T+H2 (u, t)jux'(ot) = —(A + u)Hy " (u, t)+
+ WHP (u, 1) + 1 HP (u, 1) + A HP (u, 1) = 0.
()] .
‘ma—f”’t)m@)(u, 1)jux'(at) = (et — 1)<H§2)(u, DA+ 1)+
(10)

@)
HP (u, t .
+HPu, 02 + ja(—a OaL(lu ) +H(()2)(u,t)]§x(at))).
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Let us introduce the substitutions in the system (9) and the equation (10)
o=¢, t=¢t u=co, HPut) = Fk(z)(w, 1,6), k=1{0,1,2}.

Then we obtain:

AR P(w,7,6) () @
& ————+h" (v 1,0)jewalx,7) = (A + Wk~ (@, 7,0)+
(2)
. 6F s by j
" jgejsw* — eI EP(w, 1, )x(t)+
+ M1F1(2)(60y T,8) + /«‘21:2(2)(‘”’ 7,8),
aF(z)(co, T,€) 2 .
<£ 1aT__+é)@Jﬁymm&J0=—Q+#rH@X (11)
(2)
0F, 5 Ty
x BP(w,7,6) + AR (@, 7,€) - J’f*“L
+ EP(@,1,0x(@) + 2R (@, 7,9,
IR (,1,
g2 —2 $12+é%mnmmmLﬂ=—Q+mﬁp@J@+
+ B (@.7,6) + 1/ RP(@,7,¢) + 2 E > (w, 7, ©).
(2) j
EZW+F(Z)(@T, g)jewa(x, 7) = (e — 1)x
(2) (2)
X(F@,1.9@+p) + B (@ 1,01+ (12)

R (w,1,¢)
E—
dw
In the system (11), we expand the exponential in a Taylor series and group the terms of order of
smallness not higher than 2.

- Fo(z)(co, T, s)x(r)).

FO(Z)(co, 7,¢)jewa(x,7) = — (A + yl)FO(Z)(co, T,6)+

IR (@, 7,¢)
dw
+ ,ulFl(z)(w, 7,6) + ,uze(z)(co, 7,€) + O(g?),

+ je(1 + jwe) -1+ jwz)Fo(z)(w, 7,8)x(1t)+

Fl(z)(co, T,6)jewa(x, ) =— A+ u; + yz)Fl(z)(co, T,6)+ 13)
1 13

(2)
OF; , T,
+ AP (@,7,6) - j5$

+2(1 + joe)EP(w, 7,€) + O(e?),

+ FO(Z)(co, 7,8)x(1)+

FZ(Z)(co, 7,8)jewa(x,7) = — (A + ,uz)Fz(z)(w, T,6) + ylFO(Z)(w, T,6)+

+r1+ jws)Fl(z)(cu, 7,6) + A(1 + jcos)Fz(z)(cu, 7,6) + O(€2).
We will find a solution to the system (13) in the form:
EP(e,7,6) = D(e, )Ry + jeoe i) + O, k =10,1,2}, (14)

where R, = Ry(x, 7).
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Substituting expansion (14) into the system (13), we obtain

P(w, 7)jewRoa(x,7) = — (A + 1) P(w, T)Rg — (A + 1) P(w, T) jowe fo+

0P(w, T)
Ow
— &(w, 1) jwefox(7) + u P(w, )Ry + 1 P(w, T) jwefi+

+ je

Ry — ®(w, T)Ryx(1) — jwed(w, T)Ryx(T)—

+ 1, ®(w, T)R,, + y P(w, T) jwe fy + O(e?),
D(w, 7)jewR a(x,7) = — (Uy + 1)P(w, T)R; + Ljwe®P(w, T)R,—
— (U + 1)P(w, T)jwef; + AP(w, T)Ry + AD(w, T) jowe fo—

0P(w, T)
dw
PD(w, 7) jewR,a(x, 7) = — U, @(w, T)R, + Ljwe®P(w, T)R,—

— U ®(w, 7)jowefo + 1 P(w, )Ry + N P(w, T) jowe fo+

— je Ry + (@, T)Ryx(7) + P(w, T) jewe fox(7) + O(e?),

+ 1 P(w, Ry + yyjwed(w, T)R; + pjwef; + O(e?).
Taking into account the system (8), we get

0P(w
dw
— jowed(w, T)Ryx(1) — D(w, T) jwe fox(T) + w1 P(w, T) jwe fi +
+ 1y ®P(w, T) jwe fy + O(e?),
P(w, 7) jewR a(x, 7) =AjweP(w, T)R, — (U; + 1)P(w, T) jwefi +

0b(w, T)
dw
P(w, 7)jewR,a(x, T) =Ajwed(w, T)R,y — U, P(w, T) jwe fo+

+ 1 P(w, 7)jwefy + . jwed(w, )R+
+ pjwef; + O(€2).

P(w, T)jewRga(x, 7) = — (A + p)P(w, 7) jwefy + je ’T)RO—

+ A®(w, T)jowefy — je Ry + D(w, 7)jowe fox(t) + O(e?),

Dividing the equations of the system (15) by jwe®(w, ) at e — 0, we obtain

0D(w, 7)/0w

Roa(x,7) = — (A + 1 + x(0))fy + w0 ®(@,7)

Ry — Rox(7)+
+ uh + 12 hrs
Rya(x,7) =AR; — (U1 + »fi + (A + x(0)fo —

Rya(x,7) =AR, — o fo + vifo + R + R2fi-

0d(w, T)/acaR
wd(w,7)

(15)

(16)

The inhomogeneous system (16) corresponds to the homogeneous system (8), therefore we will

seek a solution to the system (16) in the form:

0P(w, 7)/0w

s k=012

Jio = CRi + 8k — %x

17)

Substituting the equation (17) into the system (16), we obtain systems with respect to ¢ and g:

- (/1 +nh+t X(T))Goo + @1 + Uaps = Ry,
(/1 + X(T))% — (U1 +12)¢1 = =Ry,
NPo + op1 — Moy = 0.

(18)



Voronina, N. M., Rozhkova, S. V. Asymptotic diffusion analysis of RQ system M/M/1 387

— (A4 1 +x(0)go + g + 1282 = (alx, ) + X(D))Ro,
(A + x(1))go — (M1 + 12)81 = (a(x,7) — )Ry, (19)
N80 + 1281 — Ma282 = (a(x, ) = )R, — paRy.

If we differentiate the equations of the system (8) by x, then the resulting equations are identical to
the equations of the system (16), from which we can conclude that in the system (18) the following
equalities are satisfied:

ORy(x,T)
k=g D) = —52= @+ o+ =0.

Let us consider the system (19), which has an infinite number of solutions, since the determinant
of the system matrix is equal to zero, and the rank of the system matrix coincides with the rank of
the extended matrix of the system.

To find a solution to the system, we add an additional condition g, + g; + g, = 0 to the system (19)
and obtain:

_ (=1 — 72)(‘1(35) + X(T))Ro + Ry(uq — /«lz)(/1 - a(x))

807 G x(D + 1 + i) + 0n + pir + a2+ x(D)
g = (A+x(0) + 1 + 12)(A — a(x))R; — Ro(2 + x(1))(a(x) + x(1))
(/1 +x(D)+n+ /«‘2)7/2 + (0 + My + /«‘2(/1 + X(T))
g = (r+ 4+ 1y + x(0))(al(x) + x(1))Ry + Ry (A + x(1) + 11 + 1 )(alx) — /1)

(A+x(D) +n + 1)1 + (n + w2ty + a(A + x(7))

Let’s return to the equation (12). In this equation we group terms of order of smallness not higher
than 2. o ,
FQ j

82%+F(2)(w, 7,€)jewa(x, ) = (jcos + @)x
aFO(Z)(co, T,€)

XA @@+ 1)+ @i+ je

-FP,, s)x(r)).

(2)
EZW+F(2)(QJ, 7,€) jewa(x, T) = JcoEFl D(w,7,6)( + )+

IR (w,1,
M jwsFo )(co 7,6)x(7)+

(e ) Fz(z)(cu T,8)A—

+qust )(co 7,8)A + jlwe?

(J‘“E) MY ED(w,7,6)(A + 1) +

(J“’E) 2 ED(w, 7,6)x(7) + O(?).

Substituting expansion (14) 1nto the equation (20), we obtain

52% + jewa(x, P, (1 + joe(fy + fi + ) =
9@ 7.¢)

= jcus((/l + %)R; + AR, — X(T)Ry + je 3

R0>¢7(cu )+
(21)
4 Uesr ‘”E) M9 (A + 1Ry + AR, — X()Ry)D(w, T)+

+ (wa) (A +mh +Af = x(D) fo)P(w, ) + O(EY).
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Taking into account that a(x) = —x(7)Ry + (1 + %)R; + AR,, we eliminate the terms of the order
of smallness ¢ in the equation (21). Then we reduce by €2 and perform the transition to the limit at

e— 0.
90D | (o ale (@, Do + fi + ) =

_ (jco)2< 6<1§(co;ur)/5co

(joe)’
2
Substituting the equation (17) into the equation (22), we obtain the following equation:

Ro+(A+p)h+4f— X(f)fo)@(w, )+ (22)

+

a(x, )P(w, 7).

645;6:, o) + (jw)a(x, 1)P(w, ) = (ja))z@(wa‘f)(@ + 72)<CR1 +&1-

0D(w, 7)/0w 0P(w, 7)/0w

W) + A(CRZ + 8- §02W> - X(T)(CR0+ (23)
0d(w, 7)/0w 0D(w, 7)/0w (jcazz)2

0 d(w, 1) ) t b, 0) T3

— ¢

+8 — a(x, )P(w, 7).

In the system (23), terms containing C are destroyed, then we obtain:

0P(w,7) _,. 2 _99(w,T)/0w
e =(era. 0@+ m(s - o ogros”)
0P(w, 1)/0w 0P(w, 7)/0w
+ /1<g2 - %W) - x(T)(go - %W) (24)
0P(w, 7)/0w (jco.s)2
20(@.7) R0> + 2 a(x, 7)P(w, 7).
Let us rewrite the equation (24) by collecting identical terms.
0P(w,7) _ . 2 0D(w, 7)/0w _
R (DR O R s (CREATPES
— (D090 = Ro) + (0@, 0+ 1)y + 48, — (Do )+ (25)

(jeoe)?
+ Ta(x, 7)P(w, 7).

Let us pay attention to the multiplier in the first term of the equation (25), then we get:

IRy (x)
dx
T /laRz(x)
ox

OR,(x)
dx

— Ry(x) = d'(x).

=x(T)po + (A + 1)e1 + A2 — Ry = — x(1)

+ A+

+

Then the equation (25) will take the form:

(jooe)®
2

0P(w,7) _ 0P(w,T)/0w
a7 d(w, 1)
+ gz — x(7)go))-

a'(x) + D(w, 7)(alx, ) + 2((A + »)g1+

Let us denote
b(x) = a(x,7) + 2((A + )81 (x) + 1g>(x) — x(7)go(X)),
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we obtain:
(jews)
2

0P(w,7) 0P (w, 7)/0w
ot D(w, 1)
In this equation, function b(x) is the diffusion coefficient of the diffusion process for which the
transfer coefficient is function a(x).

a'(xX)w + b(x) D(w, 7). (26)

6. Construction of diffuse approximation

Next, applying the inverse Fourier transform to the equation (26), we move on to the equation for the
probability density.
Taking into account the following ratios:

0P(w, T) . ,
T / I (yP(y, 7)) dy,
U2 iy = [ eior®PO2D

2 ’ dy2 P

we obtain an equation that is the Fokker-Planck equation for the probability density of some diffusion
process y(7) with the transfer coefficient a’(x) and the diffusion coefficient b(x).
Thus, the process y(7) is a solution to the stochastic differential equation

dy(z) = a'(x)y(r)dt +  b(x)dw(7),

where w(7) is the Wiener process.
Let us introduce the diffusion process

2(7) = x(7) + ey(0),
where the function x(7) is a solution to the ordinary differential equation
dx(7) = a(x)dr.
Then the diffusion process z(7) is a solution to the stochastic differential equation:
dz(7) = (a(x) + £’ (X)y(0))dt + e/ b(x)dw(7).
Let us write the terms on the right side of the equation
a(x) + ea’(x)y(r) = a(x + ) + O(e?) = a(z) + O(&?),

eVb(x) = s\/b(x +ey—cy) = z\/b(z —¢y) = e\ b(z) + O(e?).

We will assume that terms of order of smallness greater than e do not make a significant contribution
to the solution, which means we can neglect them. Then we get an equation of the form:

dz(1) = a(z)dt + eV b(z)dw(7).
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Let us denote the probability density of the diffusion process z(7):

d(z(z) < z)
I(z,7) = —5
Let us write the Fokker-Planck equation for the diffusion process z(7):

ol(z,7) _ d(a(2)(z,7)) 2 *(b(2)(z,7))
ar 3z t3 32z :

27)

In the equation (27) we make the reverse substitution o = 2 and move on to the equation for the
stationary probability distribution of the diffusion process z(7):

~(a@M@) +2(b@NE)" =0,

;2 (28)
(b(2)(2)) = Ea(z)]‘[(z).
To solve the equation (28), we introduce the substitution G'(z) = b(2)II(z), then we get:
G(2)=2 ZE? G(2). (29)

where a(z), b(z) are the transfer and diffusion coefficients.

G(2)

In the equation (29) we make the reverse substitution —— y = = [1(z), then the stationary probability
z

density of the approximating random process has the form:

_C a(z)
”(Z)‘@e"p( / b(x)d)

where C is a normalizing constant.
Let’s construct a diffusion approximation using the formula:

H (io)

Z I(no)
n=0

PD(i) =

7. Results and discussion

We consider a system with parameters: 4 = 1, u, = 3, 4 = 0.1, » = 0.1 and different system
occupancy parameters p = Xy

M1
Let us determine the accuracy of the approximation using the Kolmogorov distance

A; = max
0<i<N

ZP matrix(i) — ZP diffusion(i)|,

i= 0

ZP matrix(i) — ZP asimpt(i)|,

i=0

A, = max
0<i<N

where P_matrix(i) is the distribution obtained by the matrix method, P_diffusion(i) is the distribution
obtained by the asymptotic-diffusion method and P_asimpt(i) is the distribution obtained by the
asymptotic method.
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As a condition for the applicability of the asymptotic-diffusion method, we take the threshold value
of the Kolmogorov distance 4 = 0.05.
Table 1 shows the accuracy between the matrix and asymptotic-diffusion distributions for various
parameters and different system loads.

Similarly, Table 2 shows the accuracy between the matrix and asymptotic distributions.

Kolmogorov distance
A4 oc=2 oc=1 0d=05]0=02 ]| 0c=01| c=0.05
0 =0.6 | 0.086 0.088 0.064 0.063 0.061 0.060
0 =07 | 0.062 0.049 0.047 0.045 0.043 0.041
0 =0.8 | 0.035 0.031 0.032 0.028 0.026 0.020
=09 | 0.012 | 0.0097 0.019 0.014 0.0085 0.0013
Kolmogorov distance
A, c=2|0=1|0=05]|0=02| 0c=01| 0c=0.05
=06 | 0.160 | 0.124 0.100 0.076 0.053 0.049
=071 0.295 | 0.250 0.219 0.186 0.168 0.134
=08 | 0.439 | 0.391 0.348 0.304 0.223 0.267
=09 | 0.442 | 0.381 0.327 0.193 0.255 0.184

Table 1

Table 2

According to the data in Table 1 and Table 2, we can conclude that the accuracy of the diffusion
approximation increases as the system load factor decreases. The method is applicable when p = 0.8
for all parameters o. The accuracy of the diffusion approximation exceeds the accuracy of the

Gaussian approximation.

8. Conclusions

In this work, a study of the M/M/1 RQ system with an unreliable server was carried out using the
method of asymptotically diffusion analysis. The stationary distribution of server states, the transfer
coefficient and the diffusion coefficient are found. A diffusion approximation is constructed. The
accuracy of the approximation is determined using the Kolmogorov distance between the distributions
constructed by the asymptotic diffusion method and the matrix method. It was proved that the
asymptotically diffusion analysis method is more accurate. It is shown that the accuracy of the
diffusion approximation exceeds the accuracy of the Gaussian approximation.
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AcumnTtoTuyeckm guddysmoHHbIN aHanms RQ cucremol
C HeHap,E)XXHbIM Npubopom

H.M. BopoHuHal, C.B. Poxkosal:?

1 HauunoHanbHbI nccnefoBaTenbCkmMii TOMCKUA MONANTEXHUYECKUIA YHUBEPCUTET, Np. JleHnHa, 4. 30, ToMCK,
634050, Poccuiickas depepaums

2 HauunoHanbHbI nccnefoBaTenbCkmii TOMCKUIA FOCYapCTBEHHbIN YHUBEPCUTET, Np. JIeHUHa, 4. 36, TOMCK,
634050, Poccuiickas depepaums

AHHoTaums. B pabGoTe paccMaTpuBaeTcs ogHOMNHeHas RQ-crcTeMa MaccoBOro o6CIyKUBaHUS C HEHAZEK-
HBIM IIpu60opoM. CHCTeMBI MacCOBOTO OOCIY>KUBaHUS Ha3bIBAIOTCS HEHAEXHBIMY, €CJIU UX IPUOOPHI MOTYT
BpeMs OT BpeMeHH BEIXOAUTD U3 CTPOS U TPeOOBATh BOCCTAHOBIEHH (PEMOHTA), TOIBKO II0CJIe KOTOPOT'O OHU
MOTYT BO30GHOBUTB 06CIy)KUBaHLE 3aIIPOCOB. VicceoBaHMe IIPOBOAUTCS METOAOM aCUMIITOTHYECKY Auddy-
3MIOHHOTO aHaJIM3a B YCJIOBUY OOJIBIION 3a/lePXKKH 3asIBOK Ha opbuTe. HaliieHE cTal[OHapHOe pacipe/eeHre
coCTOSHUY Ipubopa, koaddurreHT neperoca u koabdbunuenT gubdysun. IloctpoeHa guddysHoHHAST an-
npoxcuManus. JJokazaHo, YTO TOUHOCTb AUPDY3NOHHON allIIPOKCHMAIIMH [TPEBBIITAeT TOYHOCTb rayCCOBCKOM
aIIpOKCHUMAIIH.

KnioueBble cnoBa: RQ cucrema, acuMnToTndecku AU Ppy3MoHHBIN aHAIN3, HeHaJeXXHBIN IPUOOD



