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Abstract. Our group has been investigating kinetic models for quite a long time. The structure of classical
kinetic models is described by rather simple assumptions about the interaction of the entities under study. Also,
the construction of kinetic equations (both stochastic and deterministic) is based on simple sequential steps.
However, in each step, the researcher must manipulate a large number of elements. And once the differential
equations are obtained, the problem of solving or investigating them arises. The use of symbolic-numeric
approach methodology is naturally directed. When the input is an information model of the system under
study, represented in some diagrammatic form. And as a result, we obtain systems of differential equations
(preferably, in all possible variants). Then, as part of this process, we can investigate the resulting equations
(by a variety of methods). We have previously taken several steps in this direction, but we found the results
somewhat unsatisfactory. At the moment we have settled on the package Catalyst.jl, which belongs to the Julia
language ecosystem. The authors of the package declare its relevance to the field of chemical kinetics. Whether it
is possible to study more complex systems with this package, we cannot say. Therefore, we decided to investigate
the possibility of using this package for our models to begin with standard problems of chemical kinetics. As
a result, we can summarize that this package seems to us to be the best solution for the symbolic-numerical
study of chemical kinetics problems.
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1. Introduction

The chemical kinetics equations (chemical reaction networks, CRN) are a simplified version of the
stochastic kinetic equations. In the works of C. W. Gardiner [1] and N. G. Van Kampen [2] the chemical
kinetics equations are derived from the more general stochastic kinetic equations.
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Model representation in the form of CRN is mostly used in biochemistry, theoretical chemistry
and biology. Such models are based on a combination of a set of substances, which defines the state
of the system, and a set of reaction events, which describe reaction rates and rules for changing the
state of the system as they occur. This structure makes it easier to understand and analyze the model.
Each reaction includes reagents (initial substances) and products (substances that are formed as
a result of a reaction), which are written as concentrations of objects in the extended sense.

For instance, in the work [3] A. Lotka derived a system of stochastic equations from hypothetical
chemical reaction. The same model was independently arrived at by V. Volterra [4]. This model
describes predator-prey species interaction.

The equations of chemical kinetics are constructed according to rather primitive (but also somewhat
cumbersome) rules. It seems justified to use the analytic-numerical approach for these tasks. This
paper provides an overview of the main functions of the Catalyst.jl library [5, 6] for the programming
language Julia [7, 8], which provides a toolkit for symbolic-numerical exploration of chemical kinetics
models [9]. The Julia programming language is widely used in biology, providing a large number of
tools [10, 11]. Due to Julia’s support for the metaprogramming paradigm, this language is well-suited
for implementing custom domain-specific languages. For example, it is possible to implement
a computer algebra subsystem integrated into the language [12].

1.1. Paper structure

The section 2 briefly provides an overview of the basic principles of chemical kinetics. The section 3
provides brief information about the Catalyst.jl package. The sections 4 and 5 consider examples of
constructing and solving one-dimensional and multidimensional models, respectively. The models
are presented in both deterministic and stochastic forms.

2. Chemical kinetics equations

Representation of kinetics equations in the form of chemical reactions is widely used in modeling. We
will briefly examine the structure of equations of this type. Consider mixtures of chemical substances
Xy a = 1,n. Each substance has a concentration X4. A reaction occurs under the influence of
a catalyst, and the mixture changes. This is expressed as changes in the reaction orders with respect
to the substances, i.e., changes in the amounts of substances, which are represented by the sets of
coefficients N, MZ'. The total amount of substances involved in a reaction is called the reaction
order. In this case, the reaction is characterized by constant proportionality coefficients k* u k™,
which characterize the intensity of the processes—the reaction rate.
The equation of a reversible chemical reaction in a general form is considered [13-16]:

it - —
DINAX, 2 ) MfX,, A=T1m, a=1n (1)
s
a

A a

In the equation (1), MZ and NZ represent the number of components of type X, on the left and
right sides, respectively. In the interaction of type A, a set N* of components of type X,, enters, and
a set M2 of components of type X,, or M} of type X;, (b # a) is informed. The interaction is similar
in the reverse direction.

Velocity is considered proportional to the concentration of substances [2]:

+
sh=k* H x,Na,
a



308 Modeling and simulation DCM&ACS. 2024, 32 (3), 306-318

sa =k [ xoMa.
a

The state of the system x = (xy, X5, ... , X;,,) is introduced, where x, is the substance concentration,
i.e., the number of elements of type X,,. The change in the state of the system is described by the
vector r4:

=M - N4

To construct a system of differential equations corresponding to the interaction scheme (1), we
will consider the Fokker-Planck equation [1]:

3, p(X, 1) = — " 84[Aa(X)P(X, )] + Za 8p[Bop(X)P(X, )], a =1,n,b =1,n,

where

Aq(X) = Z 1 [sSA00) = sz (0],

)
B p(X) = Z Ta Vb [s2(xX) + 53(x)].

The Fokker-Planck equation is mathematically equivalent to the Langevin equation. In the
Langevin equation
dx = a(x) dt + b(x) dW,

where W—n-dimensional Wiener process, the coefficient a(x) ccorresponds to the coefficient A(X),
b(x) = B(x)B(x)T [17, 18].

We discard the stochastic term and use the coefficients of A, from equation (2) to obtain a system
of differential equations:

& 3RS ~ 300l
A

3. The Catalyst library

Numerical modeling of chemical reactions written with the Catalyst.j1l library is usually
performed with the DifferentialEquations.j1[19] package. To work with it, the reaction system
is converted into the desired problem type from this package. It contains a large number of numerical
solution methods and additional functions. The obtained solutions can be visualized with the
Plots.j1 package by specifying the necessary parameters and time interval. Using Catalyst.j1,
reaction systems can be represented as deterministic and stochastic models.

In terms of performance, the Catalyst.j1 package significantly outperforms other chemical
reaction network (CRN) modeling tools such as BioNetGen, COPASI, GillesPy2, Matlab and
SimBiology [6]. The performance of models created with Catalyst depends on a variety of factors.
For instance, Catalyst builds in all reaction conditions in the ordinary differential equations (ODE),
which allows the compiler to optimize computation and reduces function call overhead.

Consider the simplest reversible reaction:

kt+
X+Y2XY,
p

where X, Y and XY are the types of some objects, and k*, k™ are reaction parameters. Parameters
can be either constants and functions of time or other components of the system.
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The @reaction_network macro is used to symbolize a chemical reaction.

First, we load the Catalyst.j1 package using the command using Catalyst.

Then we assign the reaction to the variable rn, where the reaction is described using the
@reaction_network macro:

rn = @reaction_network begin

1.0, X + Y ——> XY

1.5, XY —=> X + Y

end

Here, the proportionality constants k™ and k™ are specified first, followed by the corresponding
reaction, separated by comma. One reversible reaction is written as two irreversible reactions. If it is
necessary to specify a reaction in which reactants are produced/destroyed from nothing, we write
the necessary part as 0 (it is perceived as an empty set).

The Catalyst.j1 package allows to use different ways of writing arrows. Unidirectional arrows
can be written in both directions and with Unicode characters. Accordingly, one reaction can be
represented as four equivalent variants:

rn = @reaction_network begin

1.0, X + Y —-=> XY

1.0, X + Y > XY

1.0, XY ¢ X + Y

1.0, XY <—= X + Y
end

As a result of executing the code, we will get:

1.0
X+Y - XY,
1.0
X+Y - XY,
1.0
X+Y - XY,
1.0
X+Y-XY.

Speaking of bidirectional arrows, both two-line and one-line entries are possible. The following
variants of writing, which are also equivalent, are obtained. The first variant consisting of two
reactions (forward and reverse):

rn = @reaction_network begin
2.0, X + Y -=> XY
2.0, XY <—— X + Y

end

The second option represents a bidirectional reaction:

rn = @reaction_network begin
(2.0, 2.0), X + Y <-=> XY

end

The output will be the same in both cases:

2.0
X+Y2XY.
2.0
The Catalyst.j1 package also allows to use different ways to combine reactions. The combining

of two or more reactions are considered:
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- write both reactions on the same line-1.0, S --> (P1, P2);
- write each reaction on a separate line -

1.0, S --> P1
1.0, S --> P2

- combine reactions with different parameters- (1.0, 2.0), (S1, S2) --> (P1,P2).
In the case where reversible reactions are to be combined, the following notation may occur:
(1.0,(1.0,2.0)), S <--> (P1,P2);
As a result, we get:

S Pl

S P2,

P15s,

2.0
P2 > S.

4. Example of one-dimensional model
Consider the birth-death model of kinetic reactions:

1
X - 2X,
2 (3)

Xz0.
100

We set the differential equations in stochastic and deterministic forms that correspond to this
chemical reaction (3). We write down the vectors describing the state of the system. In our case,

they will be one-dimensional:
rr=2-1=1,

rPr=0-1=-1.
We consider the probabilities of the transitions. The first reaction is irreversible, so s7 = 0.
st=1x! = x,
st =2x! =2x,
s; = 100x° = 100.
Using the transition probabilities, we can write the Fokker-Planck equation:
1
3:p(X, 1) = = ¥ 0a[A()PCX, O] + 5 D [Bap(OPX, )],
a a,b

where
AX) = risf +r?[s3 —s;] = x —2x + 100 = 100 — x

BX) = r*(rHTst + r2(r?)T[sF — 53] = x + 2x — 100 = 3x — 100.

We proceed to write a stochastic differential equation in Langevin form. To do this, we need to
extract the square root of B(x).

dx = a(x)dt + v B(x)dW = (100 — x) dt + 3x — 100dW.
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1.0
X—2X
2

100.0

Figure 1. Result of the chemical reaction initialization code

By removing the stochastic term, we get a deterministic differential equation.
Now we will consider an example of writing and finding a solution to a birth-death model using
Catalyst.j1l. The system (3) is set by the variable rn:

rn = @reaction_network begin
1.0, X -—> 2X
2.0, X -—=> 0
100.0, 0 —-> X

end

We get a system of chemical reactions (Fig. 1).

Here, the first reaction means reproduction of species, the second one means extinction, and the
third one sets a constraint on the population size.

For numerical modeling we use the package DifferentialEquations.j1, which allows solving
a wide range of DEs. The resulting reaction system is converted into a differential equation using
the ODESystem method, and then the initial condition and the time interval on which the solution is
sought are set:

rnsys = convert(ODESystem, rn)

@variables t

@species X(t)

ud = [X => 10]

tspan = (0, 10.0)

symsys = structural_simplify(rnsys)
rnprob = ODEProblem(symsys, u®, tspan)

sol = solve(rnprob, Tsit5())

The macros @variables and @species are used here, where t is time and X(¢) is the population
concentration (number of individuals) dependent on ¢.

We can notice that the system of differential equations (Fig. 2) coincides with the theoretically
derived deterministic part of the equation (4).

The results of modeling can be visualized using the Plots.jl package (Fig. 3).

It is also possible to convert the system of chemical reactions into a stochastic differential equation
in Langevin form, which will have the form:

%§=QW—XUnw+ummw—X®d%.

In this case, the stochastics are different from those derived in (4).
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dX (#)
dt

—100 — X (t)

Figure 2. The result of code converting a death-birth chemical reaction systems into deterministic differential equations
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Figure 3. The birth-death model

sprob = SDEProblem(rn, u®, tspan)
sol_stoch = solve(sprob, EM(), dt = 0.001)

As a result, we get a graph of the solution (Fig. 4).

In addition, we can represent the model as a jump process. To define a jump process, we use
the JumpProblems method. First, from the network of chemical reactions, we construct another
type of problem with which transitions will be associated, namely we create a DiscreteProblem
using Gillespie’s direct method (Direct()), which sets constant transition rates. For the solution,
a high-performance integrator SSAStepper () for pure jump problems (with constant transition
rates) is passed to the solve function:

dprob = DiscreteProblem(rn, u®, tspan)
jprob = JumpProblem(rn, dprob, Direct())
jsol = solve(jprob, SSAStepper())

As a result, we get the solution graph (Fig. 5).

5. Example of a multidimensional model

Also, using this library we can set n-dimensional reactions. In general, the n-dimensional predator

prey system can be written as:
dx! i i . ij
= = z iy
T - x| bt + ajx’ |,

=1
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Number of species
Number of species

o 2 4 6 8 10 0 2 4 6 8 10
Time[days] Time[days]
Figure 4. Stochastic birth-death model. Solution using Figure 5. A stochastic birth-death model. Solution using
the Euler-Maruyama method the direct Gillespie method

wherei # j, X = (x},x?,...,x"")—n species, b = (b!,b?, ..., b")—natural death or birth parameters
(greater than zero for autotrophic species, less than zero for heterotrophic species); A :=
aji—parameters describing the interaction between species (if greater than zero, the individual is
eaten, if less, the individual is born):

A=a = a% 0 a% .
@ a 0
Bazykin’s work [20] examines various types of interactions between three populations, consider
the producer-consultant-predator system (4).
X, 2 0x,
Pij 4)
X +X = X,

wherei,j=1,...,n.
We set it with specific parameters using Catalyst and find the solution using the numerical
method Tsit5():

lv = @reaction_network begin
1.5, X + Y —=> 2xY
3, Y -—> 0
1.5, X + Z —-=> 2*X
3, Z —=> 2%Z
end

@variables t

@species X(t) Y(t) Z(t)

ud = [X => 1.0, Y => 1.0, Z => 1.0]
tspan = (0.0, 16.0)

symsys = structural_simplify(lvsys)
lvoprob = ODEProblem(symsys, u@, tspan)
sol_1lv_ode = solve(lvoprob, Tsit5())
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O - x0-15v 0x0) + 15X 02 (0)
dl;t(t) = —3Y (t) + LBY ()X (t)
dit(f) —3Z(t) — L5X ()2 (t)

Figure 6. The result of code converting a three-dimensional predator-prey chemical reaction systems into deterministic
differential equations
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In the form of differential equations, this system of reactions, transformed with Catalyst, looks
as follows (Fig. 6).

As a result, using the solve method, we get a graph of the solution (Fig. 7), and we can display
a phase portrait (Fig. 8).

This system can also be solved by set a stochastic problem using the function SDEProblem (see
Fig. 9, 10):
lvoprob = SDEProblem(lvsys, u0, tspan)

We also display phase portraits (see Figs. 11, 12). Here additionally, a constraint was set to ensure
that the number of individuals does not fall below zero:

function condition(u, t, integrator)
any(u .< 0)
end

function affect! (integrator)
integrator.u .= max. (integrator.u, 0)
end



Demidova, E. A. et al., Symbolic-numeric approach for the investigation of kinetic models 315

" % 100 [— comumer]
g 5
g, 5 oo
g 2 oz
S 10 €
5 ™
2 o5 = o s 10 15
2 o0 Time [days]
g4 -
g, % 0o
8, ﬂ 1 2 000 - rmm oo Tesssssssssssasssssssssaas ==
g o ,‘A ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Time [days]
v 3 o W "
. Time [days] g
£ g oo
5
i} e ‘ 8 so0a®
5
gost i § o
g d s B o
2 o0 i Time [days]
v s W W
Time [days]
Figure 10. Solution of a three-dimensional stochastic
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cb = DiscreteCallback(condition, affect!)

sol_1lv_sde = solve(lvsdeprob, EM(), dt = 0.001, callback = cb)

We can notice that in the stochastic case, the system can behave in two ways: all species go extinct
or the consumers and predators go extinct and the producers multiply unrestrictedly.
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6. Conclusion

The paper reviews the tools of the Catalyst.jl library for working with symbolic-numerical notation of
kinetic equations, which allows to describe and analyze kinetic processes in a convenient and flexible
form. Examples of constructing and solving one-dimensional and multidimensional models in the
form of ODEs and SDEs are considered, specifically, birth-death and three-dimensional predator-prey
models are constructed and their numerical solutions are found.

Future research plan include exploring the extended functionality of Catalyst.jl with the application
of neural networks. For example, in this library it is possible to set reaction rate parameters not only
as constants but also as neural networks. Also, complex CRN structures can be approximated using
deep learning methods.

Author Contributions: Conceptualization, methodology, Dmitry S. Kulyabov; writing—original draft preparation, Ekaterina A.
Demidova, Daria M. Belicheva; writing—review and editing, Victoria M. Shutenko, Anna V. Korolkova. All authors have read

and agreed to the published version of the manuscript.

Funding: This work was carried out in the framework of grant support of the RUDN University, project 021934-0-000 (Anna V. Ko-
rolkova) and was supported by the program of strategic academic leadership of the RUDN University.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gardiner, C. W. Handbook of Stochastic Methods: for Physics, Chemistry and the Natural Sciences
(Springer Series in Synergetics, 1985).

2. Van Kampen, N. G. Stochastic Processes in Physics and Chemistry (Elsevier Science, 2011).

Lotka, A. J. Elements of Physical Biology 435 pp. (Williams and Wilkins Company, Baltimore, 1925).

4. Volterra, V. Lecons sur la Théorie mathématique de la lutte pour la vie French (Gauthiers-Villars,
Paris, 1931).

5. Loman,T. E., Ma, Y., Ilin, V., Gowda, S., Korsbo, N., Yewale, N., Rackauckas, C. & Isaacson, S. A.
Catalyst: Fast Biochemical Modeling with Julia Aug. 2022. doi:10.1101/2022.07.30.502135. bioRxiv:
2022.07.30.502135.

6. Loman,T. E.,, Ma, Y., Ilin, V., Gowda, S., Korsbo, N., Yewale, N., Rackauckas, C. & Isaacson, S. A.
Catalyst: Fast and flexible modeling of reaction networks. PLOS Computational Biology 19 (ed
Ouzounis, C. A.) e1011530.1-19. doi:10.1371/journal.pcbhi.1011530 (Oct. 2023).

7. Bezanson, J., Karpinski, S., Shah, V. B. & Edelman, A. Julia: A Fast Dynamic Language for
Technical Computing, 1-27. arXiv: 1209.5145 (2012).

8. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to numerical
computing. SIAM Review 59, 65-98. doi:10.1137/141000671. arXiv: 1411.1607 (Jan. 2017).

9. Fedorov, A. V., Masolova, A. O., Korolkova, A. V. & Kulyabov, D. S. Implementation of an analytical-
numerical approach to stochastization of one-step processes in the Julia programming language in
Workshop on information technology and scientific computing in the framework of the XI International
Conference Information and Telecommunication Technologies and Mathematical Modeling of High-
Tech Systems (ITTMM-2021) (eds Kulyabov, D. S., Samouylov, K. E. & Sevastianov, L. A.) 2946
(Moscow, Apr. 2021), 92-104.

10. Roesch, E., Greener, J. G.,, MacLean, A. L., Nassar, H., Rackauckas, C., Holy, T. E. & Stumpf, M. P. H.
Julia for Biologists 2021. doi:10.48550/ARXIV.2109.09973. arXiv: 2109.09973.

11. Pal, S., Bhattacharya, M., Dash, S., Lee, S.-S. & Chakraborty, C. A next-generation dynamic
programming language Julia: Its features and applications in biological science. Journal of
Advanced Research, 1-12. d0i:10.1016/j.jare.2023.11.015 (Nov. 21, 2023).

w


https://doi.org/10.1101/2022.07.30.502135
2022.07.30.502135
https://doi.org/10.1371/journal.pcbi.1011530
https://arxiv.org/abs/1209.5145
https://doi.org/10.1137/141000671
https://arxiv.org/abs/1411.1607
https://doi.org/10.48550/ARXIV.2109.09973
https://arxiv.org/abs/2109.09973
https://doi.org/10.1016/j.jare.2023.11.015

Demidova, E. A. et al., Symbolic-numeric approach for the investigation of kinetic models 317

12. Kulyabov, D. S. & Korol’kova, A. V. Computer Algebra in JULIA. Programming and Computer
Software 47, 133-138. d0i:10.1134/S0361768821020079. arXiv: 2108.12301 (Mar. 2021).

13. Laidler, K. J. Chemical Kinetics 3rd ed. 531 pp. (Prentice Hall, Inc., Jan. 17, 1987).

14. Korolkova, A. V. & Kulyabov, D. S. One-step Stochastization Methods for Open Systems. EPJ
Web of Conferences 226 (eds Adam, G., Busa, J. & Hnati¢, M.) 02014.1-4. doi:10.1051/epjconf/
202022602014 (Jan. 2020).

15. Doi, M. Stochastic theory of diffusion-controlled reaction. Journal of Physics A: Mathematical
and General 9, 1479-1495. doi:10.1088/0305-4470/9/9/009 (1976).

16. Schldgl, F. Chemical reaction models for non-equilibrium phase transitions. Zeitschrift fiir Physik
253, 147-161. doi:10.1007/BF01379769 (1972).

17. Hnati¢, M., Eferina, E. G., Korolkova, A. V., Kulyabov, D. S. & Sevastyanov, L. A. Operator
Approach to the Master Equation for the One-Step Process. EPJ] Web of Conferences 108 (eds
Adam, G., Busa, J. & Hnati¢, M.) 58-59. doi:10.1051/epjconf/201610802027. arXiv: 1603.02205
(2016).

18. Korolkova, A. V., Eferina, E. G., Laneev, E. B., Gudkova, I. A., Sevastianov, L. A. & Kulyabov, D. S.
Stochastization Of One-Step Processes In The Occupations Number Representation in Proceedings 30th
European Conference on Modelling and Simulation (ECMS, Regensburg, Germany, June 2016), 698-
704. doi:10.7148/2016-0698.

19. Rackauckas, C. & Nie, Q. DifferentialEquations.jl - A Performant and Feature-Rich Ecosystem for
Solving Differential Equations in Julia. Journal of Open Research Software 5. doi:10.5334/jors.151
(2017).

20. Bazykin, A. D. Nonlinear Dynamics of Interacting Populations ed. by Khibnik, A. I. Ed. by
Krauskopf, B. d0i:10.1142/2284 (World Scientific, Singapore, May 1998).

Information about the authors

Ekaterina A. Demidova (Russian Federation)—Student of Department of Probability Theory and Cyber Security of RUDN Univer-
sity (e-mail: 1032216451v@rudn.ru, phone: +7 (495) 955-09-27, ORCID: 0009-0005-2255-4025)

Daria M. Belicheva (Russian Federation)—Student of Department of Probability Theory and Cyber Security of RUDN University
(e-mail: 1032216453@rudn.ru, phone: +7 (495) 955-09-27, ORCID: 0009-0007-0072-0453)

Victoria M. Shutenko (Russian Federation)—Student of Department of Probability Theory and Cyber Security of RUDN Univer-
sity (e-mail: shutenkovika@yandex.ru, phone: +7 (495) 955-09-27, ORCID: 0000-0003-3922-4805)

Anna V. Korolkova (Russian Federation)—Docent, Candidate of Sciences in Physics and Mathematics, Associate Pro-
fessor of Department of Probability Theory and Cyber Security of RUDN University (e-mail: korolkova-av@rudn.ru,
phone: +7(495) 952-02-50, ORCID: 0000-0001-7141-7610, ResearcherID: I-3191-2013, Scopus Author ID: 36968057600)

Dmitry S. Kulyabov (Russian Federation)—Professor, Doctor of Sciences in Physics and Mathematics, Professor of Department of
Probability Theory and Cyber Security of Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN Univer-
sity); Senior Researcher of Laboratory of Information Technologies, Joint Institute for Nuclear Research (e-mail: kulyabov-ds@
rudn.ru, phone: +7 (495) 952-02-50, ORCID: 0000-0002-0877-7063, ResearcherID: I-3183-2013, Scopus Author ID: 35194130800)


https://doi.org/10.1134/S0361768821020079
https://arxiv.org/abs/2108.12301
https://doi.org/10.1051/epjconf/202022602014
https://doi.org/10.1051/epjconf/202022602014
https://doi.org/10.1088/0305-4470/9/9/009
https://doi.org/10.1007/BF01379769
https://doi.org/10.1051/epjconf/201610802027
https://arxiv.org/abs/1603.02205
https://doi.org/10.7148/2016-0698
https://doi.org/10.5334/jors.151
https://doi.org/10.1142/2284
mailto:1032216451v@rudn.ru
https://orcid.org/0009-0005-2255-4025
mailto:1032216453@rudn.ru
https://orcid.org/0009-0007-0072-0453
mailto:shutenkovika@yandex.ru
https://orcid.org/0000-0003-3922-4805
mailto:korolkova-av@rudn.ru
https://orcid.org/0000-0001-7141-7610
https://www.webofscience.com/wos/author/record/I-3191-2013
https://www.scopus.com/authid/detail.uri?authorId=36968057600
mailto:kulyabov-ds@rudn.ru
mailto:kulyabov-ds@rudn.ru
https://orcid.org/0000-0002-0877-7063
https://www.webofscience.com/wos/author/record/I-3183-2013
https://www.scopus.com/authid/detail.uri?authorId=35194130800

318 Modeling and simulation DCM&ACS. 2024, 32 (3), 306-318

YAK 004.021:519.2:519.6
DOI: 10.22363/2658-4670-2024-32-3-306-318 EDN: FEMNAB

CUMBONIbHO-YMC/IEHHbIN NoaXxopa, ANA uccnepoBaHus
KUHeTUYeCKUX mogenemn

E.A. lemugosal, 1. M. Bennyesal, B. M. LyTeHko!, A. B. Koponbkosal, 1. C. Kyns6os':2

L Poccunitcknii yumeepcuteT apyx6bl Hapoaos, yn. Muknyxo-Maknas, a. 6, Mocksa, 117198, Poccuiickas
depepaymsa

2 06beMHEHHbIN MHCTUTYT SAEPHbIX UCCNefoBaHuii, yn. Xonuo-Kiopu, a. 6, y6Ha, 141980, Poccuiickas
depepaymsa

AHHoTauus. Hamra rpynma /JocTaTOYHO JOJITO HCCIeAyeT KUHeTHdecKue Mogenu. CTPyKTypa Kiaccude-
CKUX KWHETHYECKUX MOZieJIeH OIMChIBAETCS AOCTATOYHO IIPOCTHIMU IIPEATIOI0KEHUSIMY O B3aUMO/eICTBUU
HCCIelyeMBIX cyLTHocTel. Takke MOCTpOeHe KNHETUIECKUX ypaBHEeHUH (KaK CTOXaCTUYeCKUX, TaK U Jie-
TepMHHUCTHYECKUX) OCHOBBIBA€TCS Ha IIPOCTBIX IIOCJELOBaTEeNbHBIX IIarax. OfHaKO Ha KaKIOM Ilare
HCCIIeIOBATENb JO/DKEH MaHUIIYJINPOBATh GOMBIINM KOJIHMYECTBOM 3JI€MEHTOB. A Iocie moxydeHus aud-
(epeHIaIBHBIX ypaBHEHUI BO3HUKAeT NpobiieMa UX pellleHUs WU UCcCIeloBaHus. EcTecTBeHHBIM 06paszom
HaIpaIIuBaeTcs UCI0Ib30BaHHe MEeTOJO0JOTHH CHMBOJIbHO-YMCIEHHOTO Iozixoza. Korama Ha BXozie mpescTaB-
Jstercst nHQOPMaIOHHAas MOJeJIb UCCIelyeMOH CUCTeMBI, IIPeJCTaBIeHHas B KAKOM-IH00 JrarpaMMHOM
BHZIe. A B pe3yJbTaTe MBI II0JIydaeM CUCTeMbl AubdepeHINaNlbHbIX YPaBHEHUH (3KeJlaTelbHO, BO BCEX BO3-
MOXXHBIX BapMaHTax). /lasiee, B paMKax 3TOTO IIPOIIECCA MbI MOXeM HCCJIel0BATh IIOIyYeHHBIE YPAaBHEHUS
(pasHOOGpasHbIMU MeToAaMu). Panee HaMu GbLIO IIPEATIPUHITO HECKOIBKO LIIATOB B 9TOM HAIIpaBIeHUY, OLHA-
KO pe3y/JIbTaThl HaM [I0Ka3ajlCh HeCKOJIbKO HEYA0BIeTBOPUTEIbHbIMY. Ha aHHBII MOMEHT MbI OCTAaHOBUJINCH
Ha nakeTe Catalyst.jl, mpuHazTexameMy skocucTeMe g3bIKa Julia. ABTOpEI ITaKeTa IEKIAPUPYIOT COOTBETCTBHE
makeTa 001aCTH XMMHUYECKON KMHETUKH. BO3MOXHO JIM HCCIef0BaTh C TOMOIIBIO 3TOrO IaKeTa Gosiee CIOX-
Hble CCTeMBbl, MBI CKa3aTh He MoxeM. I103ToMy Hcciie/[oBaHNe BO3MOXHOCTY IIPUMeHeHNs JaHHOTO ITaKeTa
IJIS HAaIlIUX MOZeJIel MBI PelllMIM Ha4aTh CO CTAHAAPTHBIX 3a/lad XUMUYEeCKOH KUHETUKU. B pesyibpraTe MBI MO-
’XeM Pe3IOMHPOBATb, YTO JaHHBIY IIaKeT BUAUTCS HaM HAUIYYIINM pelleHreM /JIs CHMBOJbHO-IHCIEHHOTO
HccleIoBaHUA 33/jad XUMUYeCKO KUHETUKU.

Kniouesble cNoBa: YpaBHEHUS XMMUYECKOH KMHETUKH, CTOXacTUdecKHe AubdepeHanibHble YPaBHEHNS,

TIOIIY/IAINOHHBIE MO EIM, OAHOIIAaroBbl€ IIPOLECCHI



