
Discrete& Continuous Models
& Applied Computational Science
ISSN 2658-7149 (Online), 2658-4670 (Print)

2024, 32 (3) 271–282
http://journals.rudn.ru/miph

Computer science
Research article

UDC 519.21

DOI: 10.22363/2658-4670-2024-32-3-271–282 EDN: BAUGIT

Analysis of a queuing system of a single capacity with
phase-type distributions and queue updating
Sergey I. Matyushenko, Konstantin E. Samouylov, Nikolai Yu. Gritsenko

RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation

(received: September 14, 2023; revised: September 30, 2023; accepted: October 1, 2023)

Abstract. In this paper, we study a queuing system with a single-capacity storage device and queue updating.
An update is understood as the following mechanism: an application that enters the system and finds another
application in the drive destroys it, taking its place in the drive. It should be noted that systems with one or
another update mechanism have long attracted the attention of researchers, since they have important applied
significance. Recently, interest in systems of this kind has grown in connection with the tasks of assessing
and managing the age of information. A system with a queue update mechanism similar to the one we are
considering has already been studied earlier in the works of other authors. However, in these works we were
talking about the simplest version of the system with Poisson flow and exponential maintenance. In this paper,
we consider a phase-type flow and maintenance system. As a result of our research, we developed a recurrent
matrix algorithm for calculating the stationary distribution of states of aMarkov process describing the stochastic
behavior of the system in question, and obtained expressions for the main indicators of its performance.
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1. Introduction
The tasks related to the assessment and management of information age, which were initiated in [1–
13], revived interest in the study of systems with various kinds of updating mechanisms. One of
these systems is a system with a queue update mechanism [14], the essence of which is that an
application entering the system and finding another application in the drive “kills” it and takes its
place in the drive. This ensures that the information transmitted by the application is updated as
quickly as possible, which is extremely important for real technical systems implementing service
complexes for which the time factor plays the most important role. A system with this queue update
mechanism was considered in [7, 15, 16]. However, the authors of these papers considered a system
with Poisson flow and exponential maintenance, which, according to Kendall’s notation, is usually
encoded as 𝑀/𝑀/1/1. It is known that such models of queuing systems allow us to obtain only
rough estimates of the characteristics of real technical systems, since single-parameter distributions
do not make it possible to take into account all the features of the protocols of modern dispatch
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control and data collection systems, random multiple access from several remote sender nodes,
multistep information transmission routes, etc. Therefore, in this paper we have followed the path of
generalization, assuming that the time intervals between the receipt of applications and the duration
of their service are random variables with phase-type distributions. This circumstance will allow us
to subsequently use the universality of phase-type distributions to build more accurate models of
real technical systems.

2. Description of themodel
A single-line queuing system (QS) with a single-capacity storage device is considered, which receives
a recurrent flow of applications with a phase-type distribution function (DF) 𝐴(𝑡):

𝐴(𝑡) = 1 − 𝜶𝑇𝑒𝜦𝑡𝟏, 𝑡 ≥ 0, 𝜶𝑇𝟏 = 1,

admitting an irreducible PH representation (𝜶, 𝜦) of order 𝑙 [17]. The duration of the application
service has a phase type DF 𝐵(𝑡) with an irreducible PH representation of the order𝑚:

𝐵(𝑡) = 1 − 𝜷𝑇𝑒𝑴𝑡𝟏, 𝑡 ≥ 0, 𝜷𝑇𝟏 = 1.

Consider the QS with queue update. This means that an application that enters the system and finds
the drive busy displaces the application from the drive and takes its place. The repressed application
leaves the system and does not return to it anymore. In accordance with Kendall’s notation, the QS in
question will be encoded as 𝑃𝐻/𝑃𝐻/1/1 with queue update (Fig. 1).

Figure 1. QS 𝑃𝐻/𝑃𝐻/1/1 with queue update

3. Mathematical model
Based on the probabilistic interpretation of the PH distributions, the functioning of the QS under
consideration is described by a homogeneous Markov process (MP) {𝑋(𝑡), 𝑡 ≥ 0} over the state space

X =
2

⋃
𝑘=0

X𝑘,

where X0 = {(𝑖, 0), 𝑖 = 1, 𝑙}, X𝑘 = {(𝑘, 𝑖, 𝑗), 𝑖 = 1, 𝑙, 𝑗 = 1,𝑚}, 𝑘 = 1, 2.
Here 𝑋(𝑡) = (𝑖, 0) if at time 𝑡 the system is empty and the process of generating a new application is

in phase 𝑖. In turn, equality 𝑋(𝑡) = (𝑘, 𝑖, 𝑗)means that in the system of 𝑘 applications, the process of
generating a new application is in phase 𝑖, and maintenance is in phase 𝑗.
It follows from the irreducibility of PH distributions [17] that all states of the process {𝑋(𝑡), 𝑡 ≥ 0}

are reported, the process itself is ergodic, and the limiting probabilities

𝑝𝑖0 = lim
𝑡→∞

𝑃 {𝑋(𝑡) = (𝑖, 0)} ,

𝑝𝑖𝑘𝑗 = lim
𝑡→∞

𝑃 {𝑋(𝑡) = (𝑖, 𝑘, 𝑗)} ,
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X1

X0

(𝑰 ⊗ 𝝁)𝛥

[𝜦 ⊕𝑴 − 𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥 𝑰 − [−𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥

Figure 2. Diagram of transitions of MP𝑋(𝑡) to states X0 for 𝛥

strictly positive, independent of the initial distribution, and consistent with stationary probabilities.
Let’s introduce vectors:

𝒑𝑇0 = (𝑝10,… , 𝑝𝑙0) ,

𝒑𝑇𝑘 = (𝑝1𝑘1,… , 𝑝1𝑘𝑚,… , 𝑝𝑙𝑘1,… , 𝑝𝑙𝑘𝑚) , 𝑘 = 1, 2.

Stationary probabilities {𝒑𝑘, 𝑘 = 0, 1, 2} are the only solution to the system of equilibrium equations
(SEE):

𝟎𝑇 = 𝒑𝑇0𝜦 + 𝒑𝑇1 (𝑰 ⊗ 𝝁), (1)

𝟎𝑇 = 𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇) + 𝒑𝑇1 (𝜦 ⊕𝑴) + 𝒑𝑇2 (𝑰 ⊗ 𝝁𝜷𝑇), (2)

𝟎𝑇 = 𝒑𝑇1 (𝝀𝜶𝑇 ⊗ 𝑰) + 𝒑𝑇2 (𝜦 ⊕𝑴 + 𝝀𝜶𝑇 ⊗ 𝑰), (3)

with the condition of normalization
2

∑
𝑘=0

𝒑𝑇𝑘𝟏 = 1. (4)

Hereafter 𝝀 = −𝜦𝟏, 𝝁 = −𝑴𝟏, the sign⊗means the Kronecker product, and the sign⊕means the
Kronecker sum of matrices.
Let’s explain the conclusion of the SEE (1)–(3) using the MP transition scheme 𝑋(𝑡) on the interval

(𝑡, 𝑡 + 𝛥), where 𝛥 is a “small” time interval.
The subset of states X0 can be accessed from the subset X1 due to the end of the application

service on the device with an intensity characterized by the vector 𝝁 (Fig. 2). In addition to this
transition, Fig. 2 shows two more situations in which the process does not go beyond the subset X0:
during 𝛥 there will be no change in the generation phases, or vice versa — the generation phases
change.
The first situation is reflected by the elements of the main diagonal of the matrix 𝜦, taken with

the opposite sign, which we will denote 𝑑𝑖𝑎𝑔(𝜦), and the second is the non-diagonal elements of this
matrix, which we will denote 𝜦−𝑑𝑖𝑎𝑔(𝜦). In a subset of states X1, during 𝛥, it is possible to get from
the subset X0 due to the receipt of a new application, which occurs with an intensity characterized
by the vector 𝝀. At the same time, we take into account that the generation of the next application
immediately begins, and the choice of the initial phase occurs in accordance with the probability
vector 𝜶. In addition, the subset X1 during 𝛥 can be accessed from the subset X2 by the end of the
service with an intensity determined by the vector 𝝁. In this case, the initial phase of the service of
the next application is selected in accordance with the probabilistic vector 𝜷. The third possibility is
to remain in this subset due to the fact that the passage of the current generation and maintenance
phases will not be completed during 𝛥. This possibility is reflected by the intensities equal to the
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elements of the main diagonal of the matrix 𝜦⊕𝑴, taken with the opposite sign. Either due to 𝛥
there will be changes in the phases of generation or maintenance, which reflect intensities equal to
the non-diagonal elements of the matrix 𝜦⊕𝑴 (Fig. 3).

X2

X1

X0

(𝑰 ⊗ 𝝁)𝛥

(𝝀𝜶𝑇 ⊗ 𝜷𝑇)𝛥

[𝜦 ⊕𝑴 − 𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥 𝑰 − [−𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥

Figure 3. Diagram of transitions of MP𝑋(𝑡) to states X1 for 𝛥

Now let’s explain the derivation of equation (3). In the subset X2 for the time 𝛥 you can get in by
receiving a new application as from a subset X1, while remaining inside a subset of X2. In both
cases, the given transition occurs with intensities equal to the corresponding coordinates of the
vector 𝝀, and ends with the choice of a new generation phase in accordance with the vector 𝜶 (Fig. 4).
In addition, as in the previous case, there are two possibilities to remain in the subset X2: due to the
fact that there are no changes in 𝛥 it will happen, or only a change of generation or maintenance
phases will occur.

X2

X1

(𝝀𝜶𝑇 ⊗ 𝑰)

[𝝀𝜶𝑇 ⊗ 𝑰 + 𝜦⊕𝑴 − 𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥 𝑰 − [−𝑑𝑖𝑎𝑔(𝜦 ⊕𝑴)]𝛥

Figure 4. Diagram of transitions of MP𝑋(𝑡) to states X1 for 𝛥

4. Solution of the SEE
Let’s move on to solving the SEE (1)–(4), noting that we are interested not in numerical, but in the
analytical solution of a system of equations, that is, analytical expressions in explicit form both to
determine the performance indicators of the system itself and to obtain similar results for numerous
special cases of the system under consideration. Before proceeding to the direct solution of the SEE,
we introduce notation and prove the validity of a number of auxiliary correlations.

Let’s introduce the matrices
𝑽0 = 𝜦⊗ (𝟏𝜷𝑇 − 𝑰) − 𝑰 ⊗𝑴, (5)
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𝑽1 = 𝜦⊕𝑴 + 𝝀𝜶𝑇 ⊗ 𝑰, (6)

𝑾0 = −(𝜦 ⊗ 𝜷𝑇)𝑽−1
0 , (7)

𝑾1 = −(𝝀𝜶𝑇 ⊗ 𝑰)𝑽−1
1 , (8)

𝑾 = [(𝑰 +𝑾0 +𝑾0𝑾1)(𝑰 ⊗ 𝟏)] . (9)

Let’s prove that the following lemmas are valid.

Lemma 1.
𝑽0(𝑰 ⊗ 𝟏𝜷𝑇) = 𝑰 ⊗ 𝝁𝜷𝑇. (10)

Proof. Given (5), we get:

𝑽0(𝑰 ⊗ 𝟏𝜷𝑇) = (𝜦 ⊗ (𝟏𝜷𝑇 − 𝑰) − 𝑰 ⊗𝑴) (𝑰 ⊗ 𝟏𝜷𝑇) = (𝜦 ⊗ 𝟏𝜷𝑇𝟏𝜷𝑇) − (𝜦 ⊗ 𝟏𝜷) − (𝑰 ⊗𝑴𝟏𝜷𝑇).

Further, noting that 𝜷𝑇𝟏 = 1 and𝑴𝟏 = −𝝁, we obtain the right part (10). �

Lemma 2.
−(𝜦⊗ 𝜷𝑇)(𝟏𝜶𝑇 ⊗ 𝜷𝑇). (11)

Proof. Obviously, if we consider that 𝜦𝟏 = −𝝀. �

Lemma 3.
−𝒑𝑇0(𝜦 ⊗ 𝜷𝑇) = 𝒑𝑇1𝑽0. (12)

Proof. Multiplying equation (2) on the right by the matrix 𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰), we get:

𝟎𝑇 = 𝒑𝑇0 (𝝀𝜶𝑇 ⊗ 𝜷𝑇) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) + 𝒑𝑇1 (𝜦 ⊕𝑴) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) + 𝒑𝑇2 (𝑰 ⊗ 𝝁𝜷𝑇) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) .

Let’s consider each term of the right part separately:

𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) = 𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇𝟏𝜷𝑇) − 𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇) =

= 𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇) − 𝒑𝑇0(𝝀𝜶𝑇 ⊗ 𝜷𝑇) = 𝟎𝑇,

𝒑𝑇1 (𝜦 ⊕𝑴) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) = 𝒑𝑇1 (𝜦 ⊗ 𝑰 + 𝑰 ⊗𝑴) (𝑰 ⊗ (𝟏𝜷𝑇 − 𝑰)) =

= 𝒑𝑇1 (𝜦 ⊗ (𝟏𝜷𝑇 − 𝑰) + 𝑰 ⊗𝑴(𝟏𝜷𝑇 − 𝑰)) =

= 𝒑𝑇1 ((𝜦 ⊗ (𝟏𝜷𝑇 − 𝑰)) − 𝑰 ⊗ 𝝁𝜷𝑇 − 𝑰 ⊗𝑴) = 𝒑𝑇1 (𝑽0 − 𝑰 ⊗ 𝝁𝜷𝑇) ,

𝒑𝑇2 (𝑰 ⊗ 𝝁𝜷𝑇) (𝟏 ⊗ (𝟏𝜷𝑇 − 𝑰)) = 𝒑𝑇2 (𝑰 ⊗ 𝝁𝜷𝑇𝟏𝜷𝑇) − 𝒑𝑇2 (𝑰 ⊗ 𝝁𝜷𝑇) = 𝟎𝑇.

So,
𝟎𝑇 = 𝒑𝑇1 (𝑽0 − 𝑰 ⊗ 𝝁𝜷𝑇).

Therefore,
𝒑𝑇1𝑽0 = 𝒑𝑇1 (𝑰 ⊗ 𝝁𝜷).

Next, multiplying equation (1) on the right by (𝑰 ⊗ 𝜷𝑇), we obtain

𝟎𝑇 = 𝒑𝑇0(𝜦 ⊗ 𝜷𝑇) + 𝒑𝑇1 (𝑰 ⊗ 𝝁𝜷𝑇).

Given the obtained equality in the expression for 𝒑𝑇1𝑽0, we come to the formula (12). Thus, the
lemma is proved. �
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The main result of this section is formulated in the form of a theorem.

Theorem 5. The stationary distribution {𝑝𝑥, 𝑥 ∈ X } is determined by the formulas:

𝒑𝑇0 = 𝒒𝑇𝑾−1, (13)

𝒑1 = 𝒑𝑇0𝑾0, (14)

𝒑𝑇2 = 𝒑𝑇1𝑾1, (15)

where 𝒒 is the only solution to the system of equations

𝒒𝑇(𝜦 + 𝝀𝜶𝑇) = 𝟎𝑇, (16)

𝒒𝑇𝟏 = 1. (17)

Proof. First, we substitute (14) and (15) into the equations (1)–(3) and let’s make sure that after
substitution they turn into identities.
Let’s start with equation (1). Multiply it on the right by the matrix (𝑰 ⊗ 𝜷𝑇). As a result, we get:

𝟎𝑇 = 𝒑𝑇0(𝜦 ⊗ 𝜷𝑇) + 𝒑𝑇0𝑾0(𝑰 ⊗ 𝝁𝜷𝑻).

Considering (7) and (10), we arrive at the identity for equation (1):

𝟎𝑇 = 𝒑𝑇0(𝜦 ⊗ 𝜷𝑇) − 𝒑𝑇0(𝜦 ⊗ 𝜷𝑇)𝑽−1
0 𝑽0(𝑰 ⊗ 𝟏𝜷𝑇).

Next, consider equation (2), which, taking into account (11) and (15), is written as:

𝟎𝑇 = −𝒑𝑇0(𝜦 ⊗ 𝜷𝑇)(𝟏𝜶𝑇 ⊗ 𝑰) + 𝒑𝑇1 (𝜦 ⊕𝑴) + 𝒑𝑇1𝑾1(𝑰 ⊗ 𝝁𝜷𝑇).

Next, taking into account (10) and (12), we get:

𝟎𝑇 = 𝒑𝑇1𝑽0(𝟏𝜶𝑇 ⊗ 𝑰) + 𝒑𝑇1 (𝜦 ⊕𝑴) + 𝒑𝑇1𝑾1𝑽0(𝑰 ⊗ 𝟏𝜷𝑇).

And finally, multiplying both parts of the obtained ratio on the right by (𝑰 ⊗ 𝟏𝜷𝑇), we arrive at the
identity for equation (2).
Substitute (14) and (15) in equation (3):

𝟎𝑇 = 𝒑𝑇0𝑾0(𝝀𝜶𝑇 ⊗ 𝑰) + 𝒑𝑇0𝑾0𝑾1(𝜦 ⊕𝑴 + 𝝀𝜶𝑇 ⊗ 𝑰).

Considering (6) and (8), we obtain the identity for equation (3).
Next, we multiply the equations (1)–(3) to the right, look at the matrix (𝑰 ⊗ 𝟏) of the corresponding

dimension and sum up the obtained equalities. As a result, we get

𝟎𝑇 = 𝒑𝑇0𝜦 + 𝒑𝑇1 (𝑰 ⊗ 𝝁) + 𝒑𝑇0𝝀𝜶𝑇 + 𝒑𝑇1 (𝜦 ⊗ 𝟏)−

− 𝒑𝑇1 (𝑰 ⊗ 𝝁) + 𝒑𝑇2 (𝑰 ⊗ 𝝁) + 𝒑𝑇1 (𝝀𝜶𝑇 ⊗ 𝟏) + 𝒑𝑇2 (𝜦 ⊗ 𝟏)−

− 𝒑𝑇2 (𝑰 ⊗ 𝝁) + 𝒑𝑇2 (𝝀𝜶𝑇 ⊗ 𝑰) = 𝒑𝑇0(𝜦 + 𝝀𝜶𝑇)+

+ 𝒑𝑇1 (𝜦 + 𝝀𝜶𝑇)(𝑰 ⊗ 𝟏) + 𝒑𝑇2 (𝜦 + 𝝀𝜶𝑇)(𝑰 ⊗ 𝟏) =

= [𝒑𝑇0 + (𝒑𝑇1 + 𝒑𝑇2 )(𝑰 ⊗ 𝟏)] (𝜦 + 𝝀𝜶𝑇). (18)
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Substitute (14) and (15) into equations (18). As a result, we get:

𝟎𝑇 = [𝒑𝑇0 + (𝒑𝑇0𝑾0 + 𝒑𝑇0𝑾0𝑾1)(𝑰 ⊗ 𝟏)] (𝜦 + 𝝀𝜶𝑇). (19)

Considering (9), we write the system (19) in the form (16):

𝟎𝑇 = 𝒑𝑇0𝑾(𝜦 + 𝝀𝜶𝑇),

i.e. the vector 𝒑𝑇0𝑾 is satisfies the system (16) and, therefore,

𝒑𝑇0𝑾 = 𝐶𝒒𝑇. (20)

Since the matrix of coefficients 𝜦 + 𝝀𝜶𝑇 of the system (16) is indissoluble due to the irreducibility
of the PH representation (𝜶, 𝜦), this system, taking into account (17) has a unique solution [18].
It remains for us to define 𝐶. According to (4), we have

𝒑𝑇0𝟏 + 𝒑1𝟏 + 𝒑𝑇2𝟏 = 1,

which, taking into account (14) and (15), we write in the form:

𝒑𝑇0𝟏 + 𝒑𝑇0𝑾0𝟏 + 𝒑𝑇0𝑾0𝑾1𝟏 = 1,

The resulting equality, taking into account (9) and (20), has the form

𝒑𝑇0𝑾𝟏 = 𝐶𝒒𝑇𝟏 = 1.

However, according to (17) 𝒒𝑇𝟏 = 1. Therefore, 𝐶 = 1. So, we have shown that 𝒑𝑇0𝑾 coincides with
the vector 𝒒, i.e. to determine 𝒑0, we can use formula (13), having previously determined 𝒒 from the
system (16)–(17). We were convinced of the validity of formulas (14) and (15) earlier by substituting
them in SEE (1)–(3) and turning the equations of the system into identities.
Thus, the theorem is proved. �

5. Markov chains nested at themoment of entry of applications into the
system

Let’s build a Markov chain (MC) embedded in MP 𝑋(𝑡) at the moments 𝑡 + 0 of receipt of applications
to the system over a set of states:

X +
𝐴 =

2

⋃
𝑘=1

X +
𝐴,𝑘,

where X +
𝐴,𝑘 = {(𝑘, 𝑗), 𝑗 = 1,𝑚}, 𝑘 = 1, 2.

The state (𝑘, 𝑗)means that immediately after the application is received in the system, there are
𝑘 applications in it and at the same time the service process is in phase 𝑗, 𝑗 = 1,𝑚, 𝑘 = 1, 2. It was
received immediately for maintenance and the selection of the maintenance phase was carried out
instantly at the time of its receipt in accordance with the initial distribution set by the vector 𝜷.
To determine the stationary probabilities 𝑝+𝐴,𝑥, 𝑥 ∈ X +

𝐴 , the states of the nested MC will use the
results of the work [19]. In accordance with the recommendations of this work, we will differentiate
the jumps ofMP𝑋(𝑡), considering the jumps associatedwith the receipt of applications into the system
to be “correct”. At the same time, it should be noted that in our system, the incoming application
cannot be lost, but when the drive is busy, it “kills” the application located in it. Considering the
above, and also applying the formulas of [19] to calculate the stationary distribution of states of the
nested MC, we come to the following result:

𝒑+𝐴,1
𝑇 = 1

𝜆𝒑
𝑇
0(𝝀 ⊗ 𝜷𝑇),
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𝒑+𝐴,2
𝑇 = 1

𝜆 [𝒑
𝑇
1 + 𝒑𝑇2 ] (𝝀 ⊗ 𝑰) = 1

𝜆 [𝟏
𝑇 − 𝒑𝑇0] 𝝀, (21)

where 𝒑+𝐴,𝑘
𝑇 = (𝑝+𝐴,(𝑘,1); ...; 𝑝

+
𝐴,(𝑘,𝑚)), 𝜆 = (−𝜶𝑇𝜦−1𝟏)−1.

Next, wewill build aMC embedded in theMP𝑋(𝑡) at themoments 𝑡−0 of the receipt of applications
into the system. The set of states of a given MC will be determined:

X −
𝐴 =

2

⋃
𝑘=0

X −
𝐴,𝑘,

where X −
𝐴,0 = {(0)}, X −

𝐴,𝑘 = {(𝑘, 𝑗), 𝑗 = 1,𝑚}, 𝑘 = 1, 2.
The state (0)means that immediately before the first application was received into the system,

the system was empty, and the state (𝑘, 𝑗)means that immediately before the next application was
received into the system, there were 𝑘 applications in it, and at the same time the application on the
device was serviced in phase 𝑗.
In accordance with the result of [19], we obtain:

𝑝−𝐴,0 =
1
𝜆𝒑

𝑇
0𝝀,

𝒑−𝐴,𝑘𝑇 =
1
𝜆𝒑

𝑇
𝑘(𝝀 ⊗ 𝑰), 𝑘 = 1, 2. (22)

where 𝒑−𝐴,𝑘𝑇 = (𝑝−𝐴,(𝑘,1); ...; 𝑝
−
𝐴,(𝑘,𝑚)).

From (21) and (22) it follows that

𝒑+𝐴,2
𝑇 = 𝒑−𝐴,1𝑇 + 𝒑−𝐴,2𝑇. (23)

Formula (23) means that in order for there to be two applications in the system immediately after
the receipt of the next application, it is necessary and sufficient that there should be one or two
applications immediately before the next application is received. In the first case, the incoming
application will take up free space in the drive. In the second case, it will displace (“kill”) the
application in the drive and take its place.

6. Main indicators of system performance
As noted earlier, there is no loss of applications in the system we are considering due to lack of
storage space. However, some applications leave the system without waiting for service. Let’s call
them “unsuccessful”. An application becomes “unsuccessful” if there are two conditions: firstly, at
the moment 𝑡 − 0 it enters the system, there must be one or two applications in the system, which
will automatically turn it into an application waiting for the device to be released, and secondly,
its waiting time should be longer before generation of the next application, which will force our
application to leave the system by implementing a queue update mechanism. Thus, the time spent
by the “unsuccessful” application in the system is equal to the time until the next application is
generated. To calculate the probability that the application will be “unsuccessful”, consider the
following probabilities [20]:

𝛼1 = 𝜷𝑇∫
∞

0
𝑒𝑴𝑡𝑑𝐴(𝑡)𝟏,

𝛼2 = 𝜶𝑇∫
∞

0
𝑒𝜦𝑡𝑑𝐵(𝑡)𝟏.
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Note that 𝛼1 is a possibility that the service of the application on the device will not be completed
during the time before the next request is generated.
Let’s denote by ̄𝛾 the probability that the next application received by the system will be

“unsuccessful”. Considering the above, it can be argued that

̄𝛾 = (𝒑−𝐴,1𝑇 + 𝒑−𝐴,2𝑇) 𝟏 ⋅ 𝛼1 = (1 − 𝑝−𝐴,0)𝛼1, (24)

𝛾 = 1 − ̄𝛾 = 𝑝−𝐴,0 + (1 − 𝑝−𝐴,0)𝛼2.

Let’s denote by 𝜆𝐴 the intensity of the flow of “successful” applications, and by 𝜆𝐷 the intensity of
the outgoing flow. It is obvious that

𝜆𝐴 = 𝜆𝛾,

𝜆𝐷 = 𝜇(1 − 𝒑+0 𝟏), where 𝜇 = (−𝜷𝑇𝑴−1𝟏)−1.

In stationary mode, 𝜆𝐴 = 𝜆𝐷, from where we get another not so obvious formula for 𝛾:

𝛾 =
𝜇
𝜆 (1 − 𝒑𝑇0𝟏). (25)

Obviously, if you enter the notation for the system load 𝜌 = 𝜆

𝜇
and for the device utilization factor

𝑢 = 1 − 𝒑𝑇0𝟏, then the formula (25) can be written as

𝜌𝛾 = 𝑢. (26)

Considering that only “successful” applications are serviced in the system, formula (26) acquires
a quite obvious probabilistic meaning: the utilization factor of the device is equal to the loading of
the system with “successful” applications.

7. Conclusion
The paper investigates a single-line service system with queue updates and phase-type distributions.
As a result, a recurrent matrix algorithm has been developed to calculate the stationary distribution
of states of the Markov process describing the stochastic behavior of the system, and expressions
for the main indicators of its performance have been obtained. The considered system is planned
to be used as a mathematical model in the tasks of analyzing and managing the age of information.
The authors are confident that this study will allow them to obtain sufficiently accurate estimates of
the age of information for real technical systems in the future, due to the universality of phase-type
distributions.
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Анализ системы обслуживания единичной ёмкости
с распределениямифазового типа и обновлением
очереди
С. И. Матюшенко, К. Е. Самуйлов, Н. Ю. Гриценко

Российский университет дружбы народов, ул. Миклухо-Маклая, д. 6, Москва, 117198, Российская
Федерация

Аннотация. В данной работе исследуется однолинейная система массового обслуживания с накопите-
лем единичной ёмкости и обновлением очереди. Под обновлением понимается следующий механизм:
заявка, поступающая в систему и застающая в накопителе другую заявку, уничтожает её, занимая её
место в накопителе. Следует заметить, что системы с тем или иным механизмом обновления давно
привлекают внимание исследователей, поскольку имеют важное прикладное значение. В последнее
время интерес к системам подобного рода вырос в связи с задачами оценки и управления возрастом
информации. Система с механизмом обновления очереди, подобная рассматриваемой нами, уже ис-
следовалась ранее в работах других авторов. Однако в этих работах речь шла о простейшем варианте
системы с пуассоновским потоком и экспоненциальным обслуживанием. В данной работе мы рассмат-
риваем систему с потоком и обслуживанием фазового типа. В результате проведённого исследования
нами был разработан рекуррентный матричный алгоритм для расчёта стационарного распределения
состояний марковского процесса, описывающего стохастическое поведение рассматриваемой системы,
и получены выражения для основных показателей её производительности.

Ключевыеслова: системамассового обслуживания, распределениефазового типа, механизм обновления
очереди


